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Abstract

In this work materials with possible applications in all solid state Li-ion batteries are

explored using computational methods within the framework of density functional

theory and kinetic Monte Carlo. The density functional theory simulations use fun-

damental quantum mechanics along with some approximations to produce accurate

models of real materials. A smaller portion of the work uses kinetic Monte Carlo

to provide qualitative information about the convergence properties of transport co-

efficients. The materials Li2+xSnO3 and Li2+xSnS3 are studied in the context of

electrodes for Li-ion batteries. Their structures are calculated, conduction pathways

for the Li-ions predicted, open cell voltages calculated, and reactivity with lithium

at the surface studied. The results for these materials provided insight into existing

experimental data from the literature and made predictions for open cell voltages

that had not yet been measured. The materials Li4SnS4, Li2OHCl, and Li2OHBr are

studied in the context of solid state electrolytes for Li-ion batteries. The structural

properties are explored for some materials by calculating Helmholtz free energies to

help understand temperature dependent phases. First principles molecular dynamics

are performed on some of these materials to gain insight into the mechanisms for

Li-ion diffusion, which is related to the Li-ion conductivity. The molecular dynamics

simulations of these materials are also used to calculate order parameters, such as

time averaged site occupancies, which provide insight into temperature dependent

aspects of their structure. The computations using kinetic Monte Carlo are limited

ix



x

to the study of the convergence properties of transport coefficients on a lattice equiv-

alent to the Li lattice of Li2OHCl. These Monte Carlo simulations provide critical

insight on the level of statistics needed to converge the transport coefficients related

to ionic conductivity. As a whole the simulations in this research provide atomistic

level knowledge of real world energy storage materials.
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Introduction
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Chapter 1

Thesis introduction

1.1 Overview

The work contained in this dissertation is centered around the calculation of fun-

damental structural and dynamic properties of solid state battery materials. The

work includes both studies of electrodes and electrolytes but is primarily focused on

electrolytes. The goal of the research is developing accurate models that aid in the

fundamental understanding of materials. The calculations contained in this work are

primarily calculated using density functional theory1,2 with the quantum ESPRESSO

code3 with critical datasets necessary for the computations created with the ATOM-

PAW code.4 Some simulations in one project where completed by kinetic Monte Carlo

to provide critical insight on the convergence properties of transport coefficients. The

work can be summarized as an effort to understand the basic structural properties,

conductivity properties, voltage properties, and phase properties of the materials.

Overall the work is applied computational physics to understand battery materials

but some of the work includes some mathematical physics and methods development

applicable outside of the domain of battery materials. The goal for the work was that

by developing accurate models of real materials, insight can be gained at the atomic
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scale of the fundamental nature of these materials and questions can be answered that

may be experimentally challenging. The models are also meant to serve as conceptual

frame works to aid oneself and others in understanding and visualizing the fundamen-

tal properties of the material. An inherent part of the modeling process is working as

closely with existing experimental data or experimental collaborators as possible. By

developing models that reproduce as much of experimental knowledge as possible it

is more reasonable to expect that they are an accurate representation of nature and

that taking the next step and understanding something not experimentally measured

is warranted.

The main driving force behind battery research is the desire for higher capacity

batteries with respect to energy and power in terms of both volume (volumetric) and

mass (gravimetric). There is also a desire for safer batteries that are not flammable.

The electrode materials studied in this work were of interest because of their larger

theoretical volumetric and gravimetric energy density compared to a graphite anode.

The study of solid state electrolytes is related to the desire of using metallic lithium

anodes in lithium ion batteries. The use of a metallic lithium anode offers the high-

est theoretical volumetric and gravimetric energy density and the use of solid state

electrolytes is thought to be a route in achieving this goal. The use of solid state elec-

trolytes also improves safety as compared to many of the liquid polymer electrolytes

that are in use today. It is hoped this work can benefit the effort to improve battery

technology.

The methods section (chapter 1.2 and 1.3) gives a brief overview of the fundamen-

tal quantities to be calculated. This is partitioned into battery physics and quantum

mechanics. In the battery physics section the basic quantities to be calculated are

described and in the quantum mechanics section the very basics of the fundamen-

tal equations are described. The second chapter is a work studying the solid state

lithium ion electrodes Li2SnS3 and Li2SnO3. This work can be described as an effort
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to calculate the open cell voltages, ionic conduction pathways, and reactivity of of the

materials with lithium at the surface. The third chapter is a study of the solid state

electrolyte Li4SnS4 as a collaborative effort with Dr. N.A.W. Holzwarth and Ahmad

Al-Qawasmeh. This work was centered around calculations of the time dependent

motions of the atoms through the method of first principles molecular dynamics.

These calculations enabled a deeper understanding of the motion and average loca-

tion of the lithium ions in Li4SnS4. The fourth chapter is a study of the solid state

electrolyte Li2OHCl as a collaborative effort between Zachary Hood and Dr. N.A.W.

Holzwarth. This work studying Li2OHCl involves finding structural models for the

temperature dependent phases of the material and studying the lithium ion motion

using first principles molecular dynamics in the cubic phase of the material. The fifth

chapter is a kinetic Monte Carlo study of the convergence properties of transport co-

efficients on the lithium lattice of Li2OHCl which is paired with some first principles

molecular dynamics simulations. The kinetic Monte Carlo simulations in this chapter

provided critical insight into the statistical, system size, and time dependent conver-

gence properties of tracer diffusion, cross correlations, and mobility on this lattice.

The first principles molecular dynamics simulations are interpreted using the kinetic

Monte Carlo as a reference. The sixth chapter is a study of the relative stability of

the disordered cubic phases of Li2OHCl and Li2OHBr compared to ordered structures

of the materials. This work addresses the question of why does Li2OHBr exist in the

cubic phase at a much lower temperature than Li2OHCl.

1.2 Battery physics

The goal of this thesis work was to model solid state battery materials in hopes of

revealing fundamental aspects of their properties at an atomistic level. Batteries are

a fundamental part of modern technological societies and improvements in battery

4



technology will allow for them to be used in applications that will help offset the use

of fossil fuels. The primary applications where reducing fossil fuels is a concern is

automotive and grid power. The development of more advanced battery technology

combined with renewable energy resources can allow for this to be achieved. It is the

goal of this work that providing a better fundamental understanding of the materials

in question will aid in the development process. This chapter will explore some of

the fundamental properties of batteries and the equations that determine some of the

fundamental physics.

1.2.1 Voltage

To start it is important to note a battery is technically a collection of cells and that

this chapter will actually focus on the physics of an individual cell. An individual cell

at the theoretical level consists of two electrodes separated by an electrolyte. The

electrodes are materials that allow for the creation of a chemical potential difference

of a working ion between the ion in/at the chemical environment of one electrode vs

the other. The electrolyte is a material that prevents the passage of electrons but

allows the passage of ions letting the electrons then pass through an external circuit

during discharge to do work. This chemical potential difference is related to the open

cell voltage by5

µε1 − µε2

zF
= −Vε1vs.ε2 . (1.1)

Where µ = ∂G
∂n

with G being the Gibbs free energy and n being the particle

number of the working ion plus electron neutral pair, ε1 and ε2 are the electrodes,

z is the charge number of the working ion, and F is Faraday’s constant. A positive

Vε1vs.ε2 means a favorable reaction occurs from moving a working ion plus electron

from electrode ε2 to ε1. The open cell voltage is the maximum possible voltage useful
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for extracting work during the discharge process.

1.2.2 Structure

An important aspect of computational studies of materials is finding an appropriate

model of the materials in question. This process involves careful comparison with

experiment to interpret the computational data. In principle for materials that are

in thermodynamic equilibrium at atmospheric pressures (PV is small) the structures

should be one that minimizes the Helmholtz free energy6

F =
〈
E
〉
− TS (1.2)

The average internal energy
〈
E
〉

and entropy are given in terms of the partition

function,

Z =
∑

i

e
− Ei

kBT , (1.3)

as
〈
E
〉

= −∂ ln(Z)

∂( 1
kBT

)
(1.4)

and

S =

〈
E
〉

T
− kB ln(Z) , (1.5)

where T is the temperature and kB is the Boltzmann constant. The energies Ei

appearing in the partition function, within the context of electrons that are adia-

batic with the nuclear motions (Born-Oppenheimer approximation), are in principle

a function of the nuclear positions Ri and their velocities dRi

dt
.

In many cases, in particular at low temperatures, the structure of a material is

well predicted by only considering the structure with the lowest Ei as a function of

nuclear positions.
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1.2.3 Ionic conductivity

In battery materials, in particular the electrolyte, one property of importance is the

ionic conductivity. Having a high ionic conductivity allows for efficient transfer of the

working ion during battery operation by minimizing the Ohmic losses. In terms of

linear response theory using the fluctuation dissipation theorem a diagonal element

of the dc conductivity tensor has been derived by Kubo7 to be given in terms of

thermodynamic averages as

σxx(T ) =
V

2kBT

∫ ∞

0

〈
Jx(t) · Jx(0)

〉
dt . (1.6)

Where V is the volume and Jx(t) is the x-component of the current density given by

Jx(t) =
e

V

N∑

i=1

Qi
dXi(t)

dt
. (1.7)

Where e is the fundamental charge, N is the total number of ions, Qi is the charge

number of the ion i, and the brackets indicate an average over initial times. The above

equation for ionic conductivity in terms of the velocity auto correlation function has

been shown by Haile8 to be equal to the following.

σxx(T ) =
e2

2kBV T
lim
t→∞

〈[∑N
i=1Qi(Xi(t)−Xi(0))

]2〉

t
. (1.8)

The sum over the charge weighted displacement vectors of the ions will be called the

charge moment vector given by the following.

px(t) ≡
N∑

i=1

Qi(Xi(t)−Xi(0)) . (1.9)

In many materials there is a single highly mobile ion species with the other ion species

effectively trapped in local minimum, under this context the charge moment vector
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can be split into a mobile part and non mobile part as

px(t) = pmx (t) + pnmx (t) . (1.10)

with m referring to mobile and nm referring to non mobile. The squared charge

moment vector is then given as the following.

px(t)2 = pmx (t)2 + 2pmx (t) · pnmx (t) + pnmx (t)2 . (1.11)

For the fully non mobile contribution, the ensemble average should limit to a con-

stant in the long time limit, so that when dividing by t as in the definition of the

conductivity, the contribution will go to zero. The ensemble average cross term can

be argued to go to zero by rewriting the it as

〈
pmx (t) · pnmx (t)

〉
=
〈
|pmx (t)||pnmx (t)|cosθm,nm

〉
. (1.12)

Then noting that because the ensemble average of limt→∞ |pnmx (t)| is bounded by

maximum value defined here as a that Eq 1.12 in limt→∞ is bounded as

−a
〈
|pmx (t)|

〉
≤ lim

t→∞

〈
pmx (t) · pnmx (t)

〉
≤ a
〈
|pmx (t)|

〉
. (1.13)

Then because limt→∞ < pmx (t)2 >→ bt, a constant times time, the inequality can be

written as

−a
√
bt ≤ lim

t→∞

〈
pmx (t) · pnmx (t)

〉
≤ a
√
bt , (1.14)

which when divided by t in the limit both sides of the inequality go to zero. This

indicates that it is only necessary to track the mobile ions of the material in question.

For crystalline materials where the mobile ions sit on sites defined by potential

energy “valleys” and move be traversing over potential energy barriers, the ionic

8



conductivity is well modeled by a Arrhenius equation of the form,

σ =
A

T
e−Ea/kBT , (1.15)

where A is a pre-exponential factor, T the temperature, Ea the activation energy, and

kB Boltzmann’s constant. For defect free crystalline materials the activation energy

Ea normally takes on the form Ea =
Ef

2
+Em, where Ef is the formation energy of a

defect and Em is the potential energy barrier of the conducting pathway.

1.3 Quantum mechanics

The calculations contained in this work are based on the ideal of atomic scale mod-

eling of the materials. At this level the desirable equation to solve is Schrödinger’s

equation, which in the time independent form can be written as the following eigen

value problem.

HΨ = EΨ (1.16)

Where H is the Hamiltonian made of the kinetic and potential energy operators, Ψ is

the many body wave function, and E is the total energy of the system. This equation

is not a relativistic equation and in some cases the more exact Dirac equation must

be used, but in this work all systems were modeled with no relativistic effects. In

practice, solving the Schrödinger equation exactly is not possible which is more clear

if the Hamiltonian is written out in full in Hartree units as following9,10

H =
1

2

Ne∑

j

Ne∑

i 6=j

1

|ri − rj|
+

1

2

NI∑

J

NI∑

I 6=J

ZIZJ

|RI −RJ |

−
NI∑

J

Ne∑

i

ZJ

|ri −RJ |
−

NI∑

I

1

2MI

5I
2 −

Ne∑

i

1

2
5i

2 .

(1.17)
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Here ZI is the atomic charge number of nucleus I, Ne is the number of electrons, NI

is the number of atomic nucleus, RI is the position of nucleus I, ri is the position of

electron i, MI is the mass of nucleus I in terms of the electron mass,5I
2 is the Laplace

operator taking derivatives of the wave function with respect to the coordinates of

nucleus I, and 5i
2 is the Laplace operator taking derivatives of the wave function

with respect to the coordinates of electron i. A Hamiltonian of this form means the

wave function Ψ will be a function of all of the nuclear and electronic coordinates

given by :

Ψ ≡ Ψ(r1, .., rNe : R1, ...,RNI
) (1.18)

This is an immensely difficult problem to solve with the computer time scaling expo-

nentially with the number of particles in the system. Starting in the 1930’s efforts were

made to simplify the problem and produce approximations that would enable accurate

calculations feasible with available computing resources. First came Thomas-Fermi

theory, later the Hartree-Fock equations, and then density functional theory along

with the Kohn-Sham equations. Layered on top of the fundamental theories are a va-

riety of approximations and implementation methods that allow for real calculations.

In the work contained in this dissertation calculations were performed using density

functional theory. For this reason the rest of this chapter will be focused on some of

the basic theoretical details of density functional theory and its implementation.

1.3.1 Born-Oppenheimer approximation

The first step that can be taken to greatly reduce the computational effort of solving

the many body Schrödinger equation is to consider electrons that are adiabatic with

the nuclear positions. Considering the electrons adiabatic with the nuclear positions

implies that the electron density reaches equilibrium with the nuclear positions prac-

tically instantaneously compared with the nuclear motions. This approximation is
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rationalized by the much smaller mass of the electron as compared to nuclear masses.

This approximation is known as the Born-Oppenheimer approximation and gives the

simplified form of the many body Hamiltonian

H =
1

2

Ne∑

j

Ne∑

i 6=j

1

|ri − rj|
−

NI∑

J

Ne∑

i

ZJ

|ri −RJ |
−

Ne∑

i

1

2
5i

2 . (1.19)

1.3.2 Density functional theory

The fundamental principle of density functional theory comes from the Hohnberg

and Kohn theorem,1 which shows that the ground state wave function Ψo and its

properties are a unique functional of the electron density n(r).9,10 The theorem is

based around variational principle

〈Ψ′|H|Ψ′〉
〈Ψ′|Ψ′〉 ≥

〈Ψo|H|Ψo〉
〈Ψo|Ψo〉

= Eo , (1.20)

where Ψ
′
is trial wave function. The next step is to consider two Hamiltonians H and

H
′

that differ only by an external potential such that

H = T + V (1.21)

and

H
′
= T + V

′
. (1.22)

Here T is the kinetic energy operator and V/V
′

denote the external potential. Now

assuming we are working with normalized wave functions 〈Ψ′|Ψ′〉 = 1 and 〈Ψo|Ψo〉 = 1

the proof is by reductio adsurdum. Starting with the assumption that there are two

Hamiltonians H and H
′

with ground state wave functions Ψo and Ψ
′

that differ only

by the external potential such that H −H ′ = V − V ′ but whose ground state wave

11



functions have the same density Ψ∗oΨo = n(r) = Ψ
′∗

Ψ
′
.

〈Ψo|H
′ |Ψo〉 > 〈Ψ

′|H ′|Ψ′〉 = E1 (1.23)

〈Ψo|H|Ψo〉+ 〈Ψo|H
′ −H|Ψo〉 > 〈Ψ

′ |H ′ |Ψ′〉 = E1 (1.24)

E2 + 〈Ψo|H
′ −H|Ψo〉 > E1 (1.25)

E2 +

∫
(V
′ − V )n(r)dr > E1 (1.26)

Then starting by interchaning all the Ψ
′
,H
′
, Ψo, and H.

〈Ψ′|H|Ψ′〉 > 〈Ψo|H|Ψo〉 = E2 (1.27)

〈Ψ′|H ′|Ψ′〉+ 〈Ψ′|H −H ′ |Ψ′〉 > E2 (1.28)

E1 + 〈Ψ′ |V − V ′ |Ψ′〉 > E2 (1.29)

E1 −
∫

(V
′ − V )n(r)dr > E2 (1.30)

By then adding eq 1.26 and eq 1.30 the contradiction,

E1 + E2 > E1 + E2 (1.31)

is found. This means that there cannot be different external potentials that give the

same density and that the wave function and its properties are a unique functional

of the density: Ψ ≡ Ψ[n(r)].

In the context of fixed nuclear coordinates, total energy can be expressed as a

functional of the density as follows.

12



E[n(r)] =

∫
n(r)V (r)dr− 1

2

Ne∑

i

∫
ψ∗i52ψidr +

1

2

∫ ∫
n(r)n(r

′
)

|r− r′| drdr
′
+ Exc[n(r)]

= EV [n(r)] + Tni[n(r)] + EH [n(r)] + Exc[n(r)] .

(1.32)

Where EV [n(r)] is the energy calculated from the interaction of the potential coming

from the fixed nuclei with V (r) being the potential the electrons see from the fixed

nuclei, Tni[n(r)] is the kinetic energy of the electrons assuming they are non interact-

ing, the ψ’s are wave functions for the individual electrons, EH [n(r)] is the Hartree

approximation to the potential energy of the electrons from the Coulomb interaction,

and Exc[n(r)] is the exchange and correlation energy which takes into account every-

thing missing from the other terms. The key equations solved in the codes used in

this work are the Kohn and Sham equations2,9, 10

[
−52

i

2
+ VN + VH + Vxc]ψi = εiψi , (1.33)

where
−52

i

2
is the kinetic energy operator for wave function i, VN is the potential

energy operator from the fixed nuclear positions, VH is the Hartree (classical) potential

energy operator for the electron electron Coulomb interaction, Vxc is defined as the

functional derivative of Exc[n(r)] with respect to n(r). The density n(r) is determined

with the wave functions ψi by

n(r) =
Ne∑

i

ψ∗i (r)ψi(r) . (1.34)

To find an approximation to the ground state energy, trial wave functions are guessed
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and then n(r) determined from this. With n(r) , the potential energy operator VH +

Vxc in Eq. 1.33, is known so these equations can then be solved. The resultant wave

functions are then used to calculated a new density and the process is repeated until

predetermined self consistency is achieved based on numerical convergence criteria.

With the resultant wave functions from the self consistent procedure the total energy

can then be determined with Eq. 1.32. In practice the energy is only approximated

and this is due to the exchange and correlation term which must be treated with an

approximation. In this work the approximation used for all calculations is known

as the local density approximation (LDA).11 Other approximations important for

calculations of solids are the frozen core approximation which freezes the electron

density for the all electron result for the isolated atomic species up to some defined

valence. With the remaining density that is free during the calculations the method

of pseudo potentials is used to treat the wave functions close to the nuclear cores.

In this work the pseudo potentials were implemented in the projector augmented

wave formalism using the ATOMPAW code4 to generate necessary datasets and the

quantum ESPRESSO code for simulations.3

1.3.3 Connections to battery physics

The Kohn-Sham equations allow for the calculation of the total electronic kinetic

plus potential energy of the electrons in terms of the nuclear positions. With these

values important properties of materials can be calculated. The calculation of this

total electronic energy is the starting point for the calculation of many the pertinent

quantities of batteries. The chemical potentials that appear in the equation for the

open cell voltage depend on differences in energy. The ionic conductivity can be

calculated by doing classical molecular dynamics using the quantum mechanical cal-

culation of the electron density to determine the forces on the ions. These calculated

total electronic energies can be interpreted through the partition function to predict
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thermodynamically favorable structures. Perturbation theory can be applied to the

wave functions computed with the Kohn-Sham equations and allow for a harmonic

treatment of lattice vibrations, which allows for more accurate claculations of the

Helmholtz free energies.
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Chapter 2

First principles simulations of

Li2+xSnO3 and Li2+xSnS3

2.1 Introduction

This work started as a project by the suggestion of my advisor Dr. N.A.W. Holzwarth

to understand the Li-ion conduction process in the materials Li2SnO3 and Li2SnS3.

The initial work consisted of looking for migration pathways of a vacancy in the crystal

lattices. The initial work also involved looking for possible vacancy interstitial pairs

in the crystal lattices and calculating their formation energy. Initially it was thought

that the materials may have electrolyte properties and they could be of interest in

that aspect for battery materials. Literature review revealed that Li2SnO3 had been

studied as an electrode material for Li-ion batteries. This information about Li2SnO3

led to the idea of doing simulations with regard to its electrode like properties and

motivated comparison with Li2SnS3 to answer the question “does Li2SnS3 have the

same electrode properties as Li2SnO3”. The next couple paragraphs will give an

overview of this project which eventually culminated in a research article published

in Physical Review B.12
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One goal of studying a solid state ionic conductor is to understand the conduction

mechanisms. Both the materials Li2SnO3 and Li2SnS3 had previous reports of their

Li-ion conductivity through impedance measurements. The use of theoretical models

allows for a picture like view at the atomic scale of the atoms in the crystal lattice.

With a good enough simulation, the hope is that with comparison to experiment

the conduction mechanism can be identified in the material. This was a primary

goal of the work. In the work the, first conduction mechanism investigated was the

vacancy mechanism, which is a common conduction mechanism in ionic crystals. The

second, which came after the identification of interstitial locations in the lattice, was

an interstitialcy mechanism. The interstitialcy mechanism is also referred to the

“kick-out” mechanism, which involves a interstitial site pushing out a host lattice

site into another adjacent interstitial site and then taking its place. In this work

the mechanisms found were evaluated in terms of there activation energy and then

compared to experimental values. There was reasonable agreement with experiment

and some further insights could be proposed based on the simulations.

After performing literature review and it was discovered that Li2SnO3 had elec-

trode like properties, it was decided to study the material in this context. The avail-

able literature described that Li2SnO3 could be used as a secondary electrode (anode)

where in the first cycle it would react with excess lithium and become an amorphous

material of Li2O and Sn, the Sn would then alloy and de-alloy with the lithium. The

usefulness of the material came from the principle that the Li2O would buffer volume

changes of the alloying and de-alloying of Li with the Sn. The initial goal was to

study the initial decomposition process of the material. To do this Li were randomly

placed on the available interstitial sites over the concentration range 0 < x < 1 in

Li2+xSnO3. The calculations agreed with experiment in that they predicted a tran-

sition from crystalline to amorphous at approximately the experimentally observed

value of x. The calculations where further compared to experiment by calculation of
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open cell voltages (vs bcc Li). The voltage calculations where in disagreement with

experiment even when carefully sampling configurational dependence. Calculations

of the open cell voltage including possible defects identified in the literature gave

evidence of Li/Sn site sharing in the material. Calculations were also performed for

Li absorption on to the surface and interfacing with bulk lithium. These simulations

found lithium could be favorably adsorbed to the surface and that the material was

metastable (thermodynamical unstable but with kinetic barrier) at the surface with

respect to bulk lithium.

The material Li2SnS3 had less previous research and had just recently been cate-

gorized in terms of structure and Li-ion conductivity. The goal of the project become

to compare and contrast with Li2SnO3. This included performing the same calcula-

tions of the lithiation process. The simulations found that Li2SnS3 also had electrode

like properties with a positive voltage verus bcc Li , but the material did not de-

compose under bulk intercalation of lithium onto the interstitial sites. The voltage

calculation of Li2SnS3 was corroborated by an experimental measurement published

after our publication from an independent research group.13 Calculations of lithium

absorption to the surface and interfaces with bulk lithium revealed some contrast to

Li2SnO3. The results showed that there was favorable adsorption of lithium to the

surface and that the interface of Li2SnS3 with bulk lithium was unstable.

The completion of this project required some level of programming. The purpose

of this programming could be described as both to prepare input files for Quan-

tum ESPRESSO and post processing of the Quantum ESPRESSO results for the

useful information. Most programming was done using c++ and was facilitated by

the writing of two classes that would prove to be instrumental to fast and efficient

programming for this project and others. These classes were a “file class” and a

“coordinates class” which automated many common issues associated with preparing

files and dealing with coordinates. This allowed for “black boxing” redundant code
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and for efficient programming at a meta-level when dealing with files and atomic co-

ordinates. Coding dealing with preparation of input files primarily revolved around

preparing the interface calculations which required making surface cleaves, making

the Li interface, adjusting vacuum length, and scaling fractional coordinates along

the cleave to adjust for vacuum length. These tasks were facilitated by the writing of

a “clever”, “coordinates scaling”, and “interface maker” program. Programs for post

processing the Quantum ESPRESSO results dealt with averaging data, calculating

standard deviations, and producing partial density of states plots for specific regions

of the supercell. The code for calculation of the regional partial density of states was

the most challenging programming effort of this project.

This project was completed in collaboration with my advisor Dr. N.A.W. Holzwarth

whom gave me the initial task of studying the Li-ion migration paths in the mate-

rials. Dr. Holzwarth had previously done simulations of the materials Li2SnS3 and

Li2SnO3 as a collaboration with the experimental researcher Dr. Brant that was

already published14 when I started this work. The structural simulations in this

previously published work served as the starting point for the simulations in this

work. In this work all calculations were completed by myself under the guidance of

Dr. Holzwarth, aside from the charge density plots shown in Fig 7 and Fig 9 of the

published work12 which were done by Dr. Holzwarth.

2.2 Published work

The published work can be found in appendix A.
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Chapter 3

First principles molecular

dynamics of Li4SnS4

3.1 Introduction

The work in this chapter started as a collaboration between Ahmad Al-Qawasmeh,

Dr. N.A.W. Holzwarth and myself. Ahmad and Dr. N.A.W. Holzwarth had al-

ready began investigating the materials Li4SnS4 and Li4SnSe4 in the context of solid

state Li-ion electrolytes. Ahmad had been making structural models and finding

possible Li-ion conduction pathways in the materials. Dr. N.A.W. Holzwarth had

become interested in the recent developments that computing power had reached the

level that first principles molecular dynamics was a possible means of studying Li-ion

diffusion in materials. With Li-ion diffusion an approximation of the Li-ion conduc-

tivity was possible through the Nernst-Einstein relation. Dr. N.A.W. Holzwarth

had started the process of completing molecular dynamics simulations to calculate

the tracer diffusion coefficients for the Li-ions in these materials. At this point Dr.

N.A.W. Holzwarth asked if I was interested in collaborating on the project. I thought

this would be interesting and took up the task of testing cutoff parameters for the
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molecular dynamics simulations in order to optimize the amount of simulation time

while keeping a reasonable accuracy. After finding more ideal cutoff parameters my

task was to perform the molecular dynamics simulations of Li4SnS4 while Ahmad

was tasked with doing the same for Li4SnSe4. Along with doing the simulations for

Li4SnS4 I spent time researching the theories behind the connection of the Li-ion

tracer diffusion and Li-ion conductivity. The beginnings of these theories originated

in the Brownian motion paper15 by Einstein and later includes contribution from an

experimental scientist named Dr. Haven, whom was a physics professor at Wake

Forest University from 1965-1983. Einstein’s Brownian motion paper gave a general

equation for a diffusion coefficient in terms of mobility and temperature, this equation

was in the non interacting limit of the particles. Later this equation was inverted for

the mobility and expressed in terms of conductivity. This equation became known as

the Nernst-Einstein equation. It was known that this equation would have a system-

atic error if the particle motions were correlated with each other. Dr. Haven spent

time taking careful measurements of ionic conductivity and tracer diffusion coeffi-

cients to investigate the discrepancy that would occur for different materials. There

is a quantity known as the Haven ratio that effectively measures the discrepancy that

occurs between the measured ionic conductivity and the one calculated using the

tracer diffusion coefficient in the Nernst-Einstein relation. Although the simulations

in this work were not long enough to calculate the Haven ratio, understanding the

principles behind the ratio helped to put the simulated results into the appropriate

context.

This work lead to a publication in the Journal of the Electrochemical Society.16

This project required some level of programming. The main programming task for

this project was writing a code that would take the molecular dynamics trajectories

and calculate time averaged site occupancy factors. In the published work presented

in this chapter I was responsible for the molecular dynamics simulations of Li4SnS4,
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coding the program for calculation of site occupancy factors, and helping write the

molecular dynamics and conclusions sections.

3.2 Published work

The published can be found in appendix B.
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Chapter 4

First principles simulations of

Li2OHCl

4.1 Introduction

This project started as a collaboration with the experimental chemist Zachary Hood,

who at the time was working at Oak Ridge national lab and associated with Georgia

Tech University. Zach Hood had recently been involved with a published project17

cycling the solid state Li-ion electrolyte Li2OHCl with lithium metal anodes. The

computational research started with an effort to develop a model for the low tem-

perature orthorhombic structure of the material. The material is known to exist

in two phases, a high temperature (>310K) cubic structure and a low temperature

(<310K) orthorhombic structure. The cubic phase of the material is disordered and

has superior Li-ion conductivity to that of the low temperature phase. One of the

goals of studying this material was to understand the phase transformation and a

key to that was determining a structural model for the orthorhombic phase. Many

structures were tried and a candidate orthorhombic was found that using standard

structural relaxations within density functional theory had lattice parameters in rea-
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sonable agreement with experiment aside from one axis that had a larger error than

usual. It was hypothesized that this discrepancy may be due to non trivial phonon

free energies. To test this hypothesis, the structural free energy was relaxed in the

context of the quasi-harmonic phonon approximation which did improve agreement

with experiment. So one of the outcomes of this research was a prediction for the

detailed structure of the low temperature orthorhombic phase of Li2OHCl. In this

work the computations were aided by carefully performed experimental preparations

and measurements by Zach Hood to whom much gratitude is due.

The other part of the computational work involved the use of first principles

molecular dynamics to study the Li-ion diffusion properties. The published work

included calculations of Li-ion conductivity from tracer diffusion coefficients assuming

no correlation between the Li-ions. Comparison to experimental data revealed a large

discrepancy beyond the reasoned statistical and systematic errors, this indicated a

prediction of highly correlated Li-ion motion. During this work some effort was

put into understanding more advanced methods to calculate Li-ion conductivity that

were derived from the Kubo formalism. It was determined that the calculations

did not have enough statistics to converge these quantities but the research led to

another project that was started partially in parallel. Aside from calculations of

the tracer diffusion coefficients the molecular dynamics were used to give a visual

depiction of the hopping events that occurred on this particular lattice. The molecular

dynamics simulations were also used to understand the average position of the OH

group orientations.

This work was published in Physical Review Materials.18 In the published work all

simulations where completed by myself under the guidance of Dr. N.A.W. Holzwarth,

and all experimental work was completed by Zachary Hood. The manuscript was

written by me aside from the methods section for the experiment. Zachary Hood did

help with review and improvement of the initial draft of the manuscript, in particular
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the parts that compare simulations to experiment.

In this work coding was a vital aspect of its completion. While quantum ESPRESSO

was used for calculation of fundamental quantities a significant amount of post pro-

cessing was required. This coding including integration of the phonon density of

states to calculate phonon free energies, interpolation of free energies on a grid of

lattice constants using MATLAB, calculating histograms of the OH group orienta-

tions, and codes for calculation of transport coefficients from the molecular dynamics

trajectories.

4.2 Published work

The published work can be found in appendix C.
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Chapter 5

Kinetic Monte Carlo study of

convergence properties of

transport coefficients as guide to

first principles molecular dynamics

of Li2OHCl

5.1 Introduction

This work started in parallel with the work of chapter 4. From the first principles

molecular dynamics of Li2OHCl in chapter 4 it was originally desired to calculate

the exact dc conductivity of the lithium ions using the Kubo formalism. The ques-

tion that arose during the work was whether the simulations had enough statistics

to accurately converge the Kubo formalism. To answer this question a kinetic Monte

Carlo code was written to help investigate the convergence properties of transport

coefficients on a lattice equivalent to that of the lithium sub lattice of Li2OHCl. The
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kinetic Monte Carlo simulation is a greatly simplified physical model that only in-

cludes the lattice geometry and site blocking of the hopping ions. The benefit of

the simplified model is the ability to reach levels of statistics not possible with first

principles molecular dynamics. With these Monte Carlo simulations it was deter-

mined that for the simulations of lithium diffusion in chapter 4 that there was not

enough data to converge the Kubo formalism. The work in this chapter aimed to

show a careful study of the convergence properties of transport coefficients using the

lithium lattice of Li2OHCl as an example system. This work also performs some first

principles molecular dynamics on Li2OHCl and shows how the kinetic Monte Carlo

simulations can be used as a reference to interpret them. The first principles simula-

tions are limited to smaller system sizes than the previous study to allow for greater

statistics. The work also provides further evidence for a prediction made of highly

(anti) correlated Li-ion motion in Li2OHCl in the previous work of chapter 4. This

work has been submitted to Solid State Ionics for review.

The work of this chapter was initiated and completed by myself. This included

researching and understanding the fundamental theories of kinetic Monte Carlo and

transport coefficients and the writing of the code for performing the kinetic Monte

Carlo simulations. Revising and editing of the first draft of the manuscript was

completed in collaboration with Dr. N.A.W. Holzwarth.

5.2 Manuscript submitted

The manuscript of this work submitted for publication to Solid State Ionics can be

found in appendix D.
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Chapter 6

Disordered subspace

approximation to the Helmholtz

free energy for systems of known

multiplicity: application to phase

properties of Li2OHCl and

Li2OHBr

6.1 Introduction

This work was started as an effort to understand the difference in temperature de-

pendent phase properties of Li2OHCl and Li2OHBr. Both of these materials have a

potential use as solid state Li-ion electrolytes. The material Li2OHCl is known to

exist in the low temperature (<310K) ordered orthorhombic phase and a high tem-

perature (>310K) disordered cubic phase. The material Li2OHBr is only known to
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exist in a disordered cubic phase down to at least 150K. The question this work set

out to answer is why is Li2OHBr stabilized in the cubic phase down to such a low

temperature. This question is important because the cubic phase is the high ionic

conductivity phase. To address this question it was decided to calculate Helmholtz

free energies for ordered and disordered models of the two materials and compare

the relative stabilities. A difficulty of doing this for these materials is the disordered

phases have a large number of possible lattice configurations which makes evaluation

of the partition function non-trivial. In this work a Monte Carlo like method is pro-

posed to evaluate the Helmholtz free energies of these systems assuming the total

multiplicity of the lattice configurations is known. This method is referred to as the

“disordered subspace approximation” and it is similar to Monte Carlo in that relies

on randomly sampling the the configuration space. The method is advantageous be-

cause it allows for direct evaluation of the Helmholtz free energy without need for

calculation of the partition function and that the lattice configuration samples can be

completed entirely in parallel. The difficulties come from needing an accurate value

for the total multiplicity, the ability to randomly sample the configuration space, and

the need for a large number of lattice configuration samples.

This work was completed mostly independently but with conversations between

Dr. N.A.W. Holzwarth and myself about the status of the project being instru-

mental in moving the research forward. The initial idea for the “disordered subspace

approximation” came when discussing the difficulties of calculating the Helmholtz

free energy for a disordered system. The work is being prepared for publication and

the current state of the manuscript is now presented.
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6.2 Manuscript in preparation

6.2.1 Introduction

All solid state batteries are believed to enable higher energy density and more sta-

ble/safer batteries.19 All solid state Li-ion batteries with a metallic lithium anode will

allow the highest theoretical energy density. Solid state electrolytes unlike polymer

electrolytes are not flammable, leading to a safer battery. Recently two solid state

materials studied for their potential use in batteries are the anti perovskite like halide

materials Li2OHCl and Li2OHBr.17,18,20,21 These materials have been characterized

as fast ion conductors and the material Li2OHCl has been cycled in a symmetric

cell with lithium metal electrodes.17 An interesting aspect of these materials relates

to their possible phases. The material Li2OHCl is experimentally known to exist in

two phases, a disordered cubic phase (T > 310K) and an ordered orthorhombic low

temperature phase (T < 310K). The cubic phase has superior ionic conductivity than

the ordered phase and is the phase of interest for battery application. Interestingly

the material Li2OHBr is only known to exist in the disordered cubic phase. The ques-

tion this paper tackles is what causes the difference in the phase properties between

these similar materials? In this paper this question is tackled by using calculations

of internal energy, configurational entropy, and phonon free energies in the harmonic

approximation for disordered cubic and ordered orthorhombic structural models for

the two materials.

6.2.2 Methods

The calculations in this work were completed using density functional theory1,2 sim-

ulations using the Quantum ESPRESSO code3 within the projector augmented wave

formalism22 and using the local density approximation11 for the exchange and corre-

lation. The data sets for the projector augmented wave formalism basis and projector
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functions were produced with the ATOMPAW code.4 For calculations of the phonon

densities of states quantum ESPRESSO was used to perform density functional per-

turbation theory calculations.23 To visualize and make figures of the crystal structures

VESTA and XCRYSDEN were used.24,25 Post processing of the static lattice internal

energies and phonon free energies was done with MATLAB.26

In this work a plane wave cut off |k + G|2 ≤ 64 Ry was used along with a 2×2×2

shifted (0.5 0.5 0.5) k-point grid was used. For implementation of the disordered

subspace approximation to the Helmholtz free energy the cutoffs were lowered to

optimize computer time but retain sufficient accuracy in energy differences. For the

2×2×2 supercell representations of the disordered cubic phase used in the free energy

calculations a 2×2×2 shifted (0.5 0.5 0.5) k-point grid was used. For the 10 atom

ordered orthorhombic structure reported in a previous study18 a 4×4×2 zone centered

k-point grid was used. For the new ordered structure reported in this work a 2×2×2

zone centered k-point grid was used. Phonon densities of states were calculated

with 4×4×2 and 2×2×2 zone centered q-point grids for the 10 atom and 40 atom

simulation cells respectively. Phonon free energies were calculated from the phonon

density of states g(ω) by

Fph = kBT

∫ ∞

0

ln
[
2 sinh(

h̄ω

2kBT
)
]
g(ω)dω (6.1)

where kB is Boltzmanns’s constant, T is the temperature, and ω is the phonon fre-

quency.

6.2.3 Free energy approximation

The fundamental question this paper is addressing is why does Li2OHBr appear to

only exist in the disordered cubic phase while Li2OHCl has two definite phases. To

answer this question it is desirable to perform a calculation of the Helmholtz free
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energy

F (T ) ≡ −kBT ln(Z) , (6.2)

where T is the temperature, kB is Boltzmann’s constant, and Z is the partition

function.

For the materials in this paper which include possible configurational dependence

of the static lattice internal energies and phonon free energies, the partition function

is given by

Z =
Ω∑

i=1

e
− Ui

kbT Zi
hp =

Ω∑

i=1

e
−

Ui+Fi
hp

kBT (6.3)

where Z is the partition function, Ω is the total number of possible atomic configura-

tions, i is the ith configuration, Ui is the static lattice internal energy for configuration

i, Zi
hp is the harmonic phonon partition function for configuration i, and F i

hp is the

harmonic phonon free energy for configuration i.

The Helmholtz free energy is then given as

F (T ) = < Usl > + < Fhp > −TSΩ (6.4)

where the average static lattice internal energy is given by

< Usl > =
Ω∑

i=1

Ui
e
−

Ui+Fi
hp

kBT

Z
, (6.5)

the average harmonic phonon free energy is given by

< Fhp > =
Ω∑

i=1

F i
hp

e
−

Ui+Fi
hp

kBT

Z
, (6.6)

and the configurational entropy of mixing between the Ω number lattice configurations

is given by

SΩ =
< Usl > + < Fhp >

T
+ kB ln(Z) . (6.7)
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With the definition of entropy given by Eq. 6.7 and the definition of entropy, in terms

of the total number of states M of a system,

S ≡ kB ln(M) , (6.8)

the effective total number of states can be defined as

M = e
<Usl>+<Fhp>

kbT
+ln(Z)

. (6.9)

The exponential weights of the Boltzmann factors and the large number of configura-

tions possible for lattice systems make direct evaluation of the partition function not

feasible so some approximation is required. The first approximation considered is the

fully disordered (fd) approximation that replaces the averages of the static lattice

internal energy, phonon free energy, and the configurational entropy by their values

in the high temperature limit. This approximation is given as

Ffd(T ) =
1

Ω

Ω∑

i=1

Ui +
1

Ω

Ω∑

i=1

F i
hp − kbT ln(Ω) ≥ F (T ) (6.10)

with the inequality noting that this must be greater than or equal to the the true

free energy. The fully disordered free energy is only equal to the true free energy

when all the Ui +F i
hp terms in the partition function are equal. For the cubic systems

studied in this work the value of Ω can be calculated through combinatorics of the

possible configurations of the lithium lattice. Considering only the combinatorics

of the lithium lattice assumes the rotational configuration space of the OH groups is

coupled to the lithium lattice configuration space. In the systems studied in this work

there are 2 lithiums for every 3 lithium sites in a unit cell, taking s as the dimension
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of a cubic supercell Ω is given as the following,

Ω =
(3s3)!

(2s3)!(s3)!
. (6.11)

To build upon this approximation it is useful to imagine that if the spread in the

values of Ui + F i
hp is large than because of the exponential nature of the Boltzmann

weights the system will effectively be restricted to some subset of the entire number

of configurations Ω. First by ordering Ui + F i
hp in ascending order

U1 + F 1
hp ≤ ... ≤ UN + FNhp ≤ ... ≤ UΩ + FΩ

hp (6.12)

a fully disordered subpace approximation to the free energy can be written as

F (T ) ≈
[ 1

N
N∑

i=1

Ui +
1

N
N∑

i=1

F i
hp − kBT

{
ln(Ω) + ln(

N
Ω

)
}]

min→N
. (6.13)

Where the term ln(Ω) has been left in purposes of writing the configurational en-

tropy in terms of the prior known value Ω, and N is the approximate number of

configurations the configuration space is restricted to. Although Eq. 6.13 is a better

approximation to the crude fully disordered approximation in principle it will not be

possible to list all the states and their energies. For practical purposes is useful write

Eq. 6.13 in the alternate form

F (T ) ≈
S→∞

[ 1

N ′
N ′∑

i′=1

Ui′ +
1

N ′
N ′∑

i′=1

F i
′

hp − kBT
{

ln(Ω) + ln(
N ′

S )
}]

min→N ′
(6.14)

where S is the number of randomly generated samples from the configuration space of

the Ω total configurations, i
′

is the i
′
th prime configuration of the S number samples

ordered from least to greatest energy (U
′
i +F i

′

hp), and N ′ are the number of the lowest

energy (U
′
i + F i

′

hp) that minimize Eq. 6.14, and N ′/S = N /Ω as S → ∞.
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6.2.4 Results

In this work density functional theory calculations were used for the calculations of

the static lattice internal energies and phonon free energies. To carry out the fully dis-

ordered subspace approximation is was necessary to produce models of the disordered

cubic phase. A representation of an abstract unit cell of the disordered cubic phase is

shown in Fig 6.1 with more structural details found in.18 To understand the stability

of these calculations relative to the ordered phase it was necessary to have models of

ordered phases for the material. In a previous study18 a orthorhombic structure was

identified that had reasonable agreement with experimental x-ray powder diffraction.

A representation of this previously determined orthorhombic structure is shown in

Fig 6.2. In this work a new ordered structure was found, a representation of this

structure is shown in Fig 6.3. This new structure has a lower static lattice internal

energy as the previously determined structure but it is not clear if it is the structure

that forms in nature. For the purposes of this study both of these ordered structures

will be used to understand the relative stability of the disordered phase in an effort

to understand why Li2OHBr exists in the cubic phase to such a low temperature.

To model the disordered cubic phases first an approximate lattice parameter was

found by relaxing 10 randomly generated structures for each Li2OHBr and Li2OHCl

with respect to the cubic lattice parameter. These structures where generated by

randomly placing the lithiums on the available lithium sites and randomly orienting

the OH groups on the 4π solid angle as described in the previous study.18 These

average lattice parameters where then used for the simulations to compute the dis-

ordered subspace approximation. For the disordered subspace approximation 1000

randomly generated structures in 2×2×2 supercells were relaxed at the average lat-

tice parameter from the previous calculation. These relaxations were completed by
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Figure 6.1: Representation of the disordered cubic structure. Red balls represent
oxygen, dark and light gray balls represent fractionally occupied lithium sites, blue
balls represent hydrogen, and green balls represent chlorine or bromine.

Figure 6.2: Representation of the orthorhombic structure determined in a previous
study. Red balls represent oxygen, gray balls represent lithium, blue balls represent
hydrogen, and green balls represent chlorine or bromine.

first fixing the lithium and relaxing the other atoms and then allowing full relaxation

of all atoms. From these simulations the phonon density of states was computed
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Figure 6.3: Representation of a new ordered structure identified in this work. Red
balls represent oxygen, grey balls represent lithium, blue balls represent hydrogen,
and green balls represent chlorine or bromine.

for the structures with the lowest 20 energies. This was done because phonon free

energies vary less than the static lattice internal energies so in minimizing the disor-

dered subspace approximation it is only necessary to calculate phonon free energies

for a set of the configurations with lowest static lattice internal energies. With these

calculations of the phonon density of states the phonon free energies where then com-

puted. With this set of static lattice internal energies and phonon free energies the

procedure of minimizing the disordered subspace approximation was carried out for

a range of temperatures. At each temperatures the Ui + F i
ph terms are rearranged in

ascending order and the minimization carried out. What is of interest in this work is

to reference these free energy calculations to the free energies of the ordered models

for the materials. The quantity of interest is

F cubic
tot − F ortho

tot = ∆Ftot = ∆Fph + ∆U − T∆SΩ (6.15)
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which if negative indicates the cubic phase is favorable and if positive the orthorhom-

bic phase is favorable.

The results of the simulations for Li2OHCl are shown in Figs 6.4 (a) and (b).

The results of the simulations for Li2OHBr are shown in Figs 6.5 (a) and (b). In

comparing Fig 6.4 (a) to Fig 6.5 (a) it is seen that the results predict that when

referenced to the structure shown in Fig 6.2, Li2OHCl is stable in the cubic phase for

T > 170K and cubic Li2OHBr is stable for all temperatures. In comparing Fig 6.4 (b)

to Fig 6.5 (b) it is seen that the results predict that when referenced to the structure

in shown in Fig 6.3, Li2OHCl is stable in the cubic phase for T > 368 and Li2OHBr

is stable in the cubic phase for T > 183. So between the two ordered reference

structures used they both predict that Li2OHBr should exist in the cubic phase at a

much lower temperature (> 170K lower) than Li2OHCl. This is in agreement with

the experimental finding which makes it reasonable to interpret these results for the

physical reason. In examining the results in Figs 6.4 and Figs 6.5 it is predicted

that the reason for Li2OHBr existing in the cubic phase at a lower temperature is a

combination of a lower ∆Fph and ∆U as compared to Li2OHCl. For referencing to

the ordered structure shown in Fig 6.3 the reason for the predicted lower transition

temperature is predicted to be approximately evenly distributed between the ∆U

and ∆Fph terms. For referencing to the structure shown in Fig 6.2 the reason for the

predicted stability of the cubic phase at all temperatures for Li2OHBr is due primarily

to the ∆U term.

It should be noted that there is an expected systematic error in the calculation

of the ∆Ftot values of at least 0.02eV per formula unit, which is primarily due con-

vergence of low frequency phonon modes and not including temperature dependent

lattice effects through the quasi harmonic approximation. Although the errors in in

∆Ftot are large it is expected that there is some error cancellation in the value of

∆FCl
tot −∆FBr

tot . The value of ∆FCl
tot −∆FBr

tot is related to the differences in predicted
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transition temperatures. In this way it is expected that results are meaningful and

that it is a correct prediction that Li2OHBr should exist in the cubic phase at a lower

temperature as Li2OHCl.

6.2.5 Conclusions

A method is suggested for calculation the Helmholtz free energy of system with many

configurations and a known multiplicity. The method is successfully applied to under-

standing the phase properties of Li2OHCl and Li2OHBr. Confirmation of the experi-

mentally known property of Li2OHBr being stable in the cubic phase at a much lower

temperature than Li2OHCl gives confidence interpreting the results for the physical

reason. The results suggest this is primarily due to a lower static lattice internal

energy difference between the disordered cubic and orthorhombic ordered phases of

Li2OHBr, and also some contribution from a lower phonon free energy difference

between the disordered cubic phase and ordered orthorhombic phases.
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(a)

(b)

Figure 6.4: ∆Ftot and components for Li2OHCl given per formula unit. (a) is the
cubic phase referenced to the ordered structure shown in Fig 6.2 and (b) is the cubic
phase referenced to the ordered structure shown in Fig 6.3.
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(a)

(b)

Figure 6.5: ∆Ftot and components for Li2OHBr given per formula unit. (a) is the
cubic phase referenced to the ordered structure shown in Fig 6.2 and (b) is the cubic
phase referenced to the ordered structure shown in Fig 6.3.
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Chapter 7

Conclusions

7.1 Conclusions

In this work first principles simulations and kinetic Monte Carlo simulations have

been used to understand specific and general properties of solid state battery materi-

als. The first principles simulations are used to accurately model real materials and

provide a conceptual framework to aid in the understanding of the basic properties of

these materials. In general the calculations have produced accurate structural mod-

els, accurate calculations of voltages, ionic diffusion, time averaged order parameters,

and ionic correlations. The kinetic Monte Carlo simulations have provided critical

insight in to the statistical and convergence properties of tracer diffusion, effective

diffusion, and mobility for a lattice system.

Along with simulations of the properties of real materials some mathematical work

was accomplished. The cross correlations of the effective diffusion were recast into

a sum over event products which allowed for decreasing the standard deviation and

to better understand the correlation in terms of time and spatial separation of the

events. In an effort to understand the phase properties of disordered lattice materials

a approximation to the Helmholtz free energy called the “disorderd” subspace ap-
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proximation was developed. This approximation was successfully implemented in the

understanding of two solid state electrolytes. This approximation is general and can

be applied to any ensemble of energies (states) where the total number of energies

(states) is known and can be sampled randomly. In this work the states took the

form of lattice configurations.

Overall this work has provided accurate simulations of real materials and qualita-

tive simulations of transport coefficients. These simulations are useful to the greater

scientific literature because they help others understand the materials and help to

understand properties of the materials difficult to understand through experiment.

This work also puts forth some advancements in methodology which are hoped to

assist other computational researchers.
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First principles simulations of

Li2+xSnO3 and Li2+xSnS3
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First-principles simulations of the porous layered calcogenides Li2+xSnO3 and Li2+xSnS3
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First-principles simulations of the porous layered calcogenide materials Li2SnO3 and Li2SnS3 are used to study
their structures, Li ion mobilities, and their interactions with excess Li. The pristine materials are characterized by
a regular pattern of voids within the calcogenide layers which are occupied by intralayer Li ions. The energetically
most favorable Li ion migration processes for both materials result in a net motion perpendicular to the layers and
involve intralayer Li ions and nearby interstitial sites. The ideal lattice has eight symmetry related stable interstitial
sites within the conventional unit cell which, in addition to participating in the Li ion migration processes, are
also important for accommodating excess Li during lithiation processes. Consistent with experimental findings,
the simulations find that the addition of Li atoms to Li2SnO3 results in a disruption of the calcogen lattice with
the breaking of Sn-O bonds. The estimated voltage versus bcc Li for this system is in qualitative agreement
with experiment provided that Sn/Li disorder is taken into account. By contrast, the simulations predict that
the addition of Li atoms to Li2SnS3 results in a stable metallic material up to a stoichiometry of Li3SnS3. This
prediction has not yet been studied experimentally. Simulations of surfaces of these materials find that it is
energetically favorable to add a small amount of excess surface Li. However, interfaces of these materials with
Li metal are found to be reactive. Some of the findings may be relevant to other materials having the same crystal
structure such as Li2MnO3 and Li2TiO3.

DOI: 10.1103/PhysRevB.94.064108

I. INTRODUCTION

Efficient ionic conductivity in crystalline materials depends
on a delicate balance of structural, chemical bonding, and
charge transfer factors. The study of Li ion conduction in
Li2SnO3 and Li2SnS3 provides an interesting example of these
factors with possible implications for a variety of technologies
including solid state batteries.

The crystal structure of Li2SnO3 and Li2SnS3 is related
to the structure of layered dichalcogenides such as SnS2

[1]. A patterned layer of the calcogenide is constructed by
systematically removing one-third of the Sn atoms within a
layer of SnS2, leaving star-shaped voids. Filling these voids
with Li results in a structure similar to the corresponding layers
in Li2SnO3 and Li2SnS3, as shown in Fig. 1. In SnS2 each
calcogen is bonded to three Sn atoms, while the void pattern
in Li2Sn(O/S)3 allows for each calcogen to be bonded to two
Sn atoms. As will be discussed in more detail in Sec. III, the
full structure of Li2Sn(O/S)3 includes a particular stacking
of the layers and the placement of interlayer Li sites [2–4].
Interestingly, a number of other Li ion conducting materials
have this same structure including Li2MnO3 and Li2TiO3 [5,6].

The conductivity of Li ions in Li2SnO3 has been measured
to be very small (10−8 S/cm at 290◦ C), although the activation
barrier for conduction is in a reasonable range [7]. One of the
interesting proposed uses for Li2SnO3 is as an anode material
for lithium ion batteries [8–10]. The mechanism involves the
material undergoing an irreversible decomposition during the
first lithiation of the material forming a composite of Li2O
and LixSn. Li2O serves to buffer the volume expansion of
the active anode material LixSn. Li2SnO3 is among other tin
based electode materials with a similar mechanism such as
SnS2, SnO, and SnO2 [8,11,12]. By contrast, Brant et al. [4]

*natalie@wfu.edu

showed that Li2SnS3 has good ionic conductivity (10−5 S/cm
at 25◦ C). The lithiation properties of Li2SnS3 have not yet
been studied.

The purpose of the present study is to computationally
examine both Li2SnO3 and Li2SnS3 in order to understand
the mechanisms for Li ion migration, the lithiation processes,
and the interface properties. The remainder of the paper is
organized as follows. Section II details the computational
methods used in this work. Structural details are presented in
Sec. III while Li ion migration in the stoichiometric materials
are presented in Sec. IV. Models of the lithiation processes
are presented in Sec. V and interfaces with vacuum and with
Li metal are discussed in Sec. VI. Section VII contains the
discussion and conclusions. Some of the structural details are
given in the appendix.

II. METHODS

The computational methods used in this work were based
on density functional theory [13,14] implemented with the
projector augmented wave formalism (PAW) [15]. The PAW
atomic data sets were calculated using the ATOMPAW code
[16] and the materials simulations were performed using the
QUANTUM ESPRESSO software package [17]. The local density
approximation exchange correlation functional (LDA) [18,19]
was used throughout all calculations. The minimum energy
path for Li ion migration was estimated using the “nudged
elastic band” (NEB) method [20–22] as programmed in the
QUANTUM ESPRESSO package, using five images between each
metastable configuration. In modeling charged defects (Li ion
vacancies or interstitials), the system was assumed to remain
electrically insulating and a uniform background charge was
added in order to evaluate the electrostatic interactions. The
partial density of states 〈Na(E)〉 were calculated as described
in previous work [23,24], using weighting factors based on the
charge within the augmentation spheres of each atom with radii

2469-9950/2016/94(6)/064108(13) 064108-1 ©2016 American Physical Society
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FIG. 1. (a) Planar projection of ball and stick model of a single
layer of SnS2 with gray and yellow balls representing Sn and S,
respectively. Lines indicate the two-dimensional (hexagonal) unit
cells. (b) Planar projection of ball and stick model of a single layer
of Li2SnO3, excluding the interlayer Li sites. This structure has
two inequivalent Sn sites indicated with two shades of gray, three
inequivalent O sites indicated with three shades of red, orange, and
pink, and one Li inequivalent intralayer Li site indicated with light
blue. Lines indicate the boundaries of the two-dimensional unit cells.

rLi
c = 1.6, rSn

c = 2.3, rO
c = 1.2, and rS

c = 1.7 in bohr units. The
reported 〈Na(E)〉 curves are averaged over all sites of type a.
The isosurfaces of electron density were computed using the
PWPAW code [25] and visualized using OPENDX [26]. Structural
visualizations used the XCRYSDEN code [27,28] and the VESTA

code [29].
Integrals over the Brillouin zone used a Gaussian smearing

factor of 0.001 Ry and a uniform grid of 4 × 2 × 2 Bloch
vectors k for the conventional unit cells. Supercell simulations
used consistent k-point sampling. For evaluating the partial
densities of states, the k-point sampling was increased by a
factor of 2 in each dimension. The plane wave expansions of
the electron wave functions included reciprocal lattice vectors
G such that |k + G|2 � 64 bohr−2. Most of the defect studies
were modeled using 2 × 1 × 1 supercells. Spot checks of finite
size errors show them to be approximately 0.02 eV for the NEB
calculations and for the relative energies of point defects.

III. STRUCTURE

The crystal structures of Li2SnO3 [2] and Li2SnS3 [4]
are very similar, both having the centered monoclinic space
group C2/c (No. 15 as listed in the International Table
of Crystallography [30]). The materials are layered in the
a-b planes with an A-B stacking sequence. The A and B
layers are geometrically equivalent but differ by an inversion.
Visualizations of the structure are shown in Fig. 2 from two
different perspectives. The layered structure of Li2SnS3 was
described by Kuhn et al. [3] as Li[Li 1

3
Sn 2

3
S2], with the outer Li

representing the planes of Li and the inner bracket representing
the layers of the complex of tin sulfide plus Li. Using this same
notation Li2SnO3 can be described as Li[Li 1

3
Sn 2

3
O2].

The crystal axes and angle are labeled a, b, c, and β.
Computational and experimental results for lattice parameters

FIG. 2. Ball and stick model of Li2SnS3 with lithium light gray,
tin dark gray, and sulfur yellow. Site labels di , fi , and ei reference
possible lithium vacancy conduction pathways with the letter being
the Wyckoff label. (a) and (b) Show different viewpoints as labeled
by the corresponding axes to the left. This figure is geometrically
representative of Li2SnO3 as well.

are listed in Table I. When scaled by 1.02 to compensate for
the systematic LDA lattice contraction, the calculated results
agree well with the experimental measurements. The fractional
coordinates for the structures are presented in Appendix A. The
electronic structures including band structures and densities of
states were previously reported [4].

TABLE I. Computational and experimental lattice parameters for
Li2SnO3 and Li2SnS3. Experimental results for Li2SnO3 and Li2SnS3

are from Refs. [31] and [4], respectively.

Lattice(Å,◦) Comp. Expt.

Li2SnO3 a 5.22 5.3033(2)
b 9.06 9.1738(3)
c 9.78 10.0195(2)
β 100.31◦ 100.042(2)◦

Li2SnS3 a 6.30 6.3964(5)
b 10.91 11.0864(9)
c 12.15 12.405(1)
β 99.94◦ 99.867(5)◦

064108-2
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TABLE II. Relative energies (in eV) of lithium ion vacancies
with the zero of energy set to the lowest energy vacancy for each
material calculated in a 2 × 1 × 1 supercell. The site labels refer to
the Wyckoff letters for the distinct Li sites.

Material d site f site e site

Li2SnO3 0.11 0.09 0
Li2SnS3 0 0 0.35

In preparation for studying Li ion conduction and lithiation
in these materials, the energies of relaxed ideal point defects
in 2 × 1 × 1 supercells were studied. Table II lists the relative
energies of the inequivalent Li ion vacancies. It is of interest
to note that the most favorable vacancy in Li2SnO3 is located
at an e site while in Li2SnS3 the e site is the location of the
least energetically favorable vacancy. Interstitial defects were
also studied. In a search of the void regions of the crystal,
only one unique site for a stable interstitial defect was found
in each material. Within the conventional cells, the interstitial
sites have multiplicity and Wyckoff label 8f and are located
at the fractional coordinates (0.066, 0.093, 0.425) and (0.062,
0.086, 0.430) for Li2SnO3 and Li2SnS3, respectively. In both
materials, the interstitial sites are located near the Li e sites of
the host lattice, displaced along the c axis above and below the
[Li 1

3
Sn 2

3
(O/S)2] layers.

The literature has identified several other defects in both
materials [3,4,31,32]. These defects include Li/Sn antisites
and stacking faults. These defects can be important factors in
both Li ion migration and lithiation processes.

IV. ION MIGRATION

Li ion conductivity has been experimentally measured for
stoichiometric Li2SnO3 and Li2SnS3 [4,7]. The conductivity
can be modeled by an Arrhenius relationship in the form of
Eq. (1):

σ = A

T
e−Ea/kT . (1)

In this equation A is a constant, T the temperature in Kelvin,
k the Boltzmann constant, and Ea the activation energy for Li
ion conduction. The activation energy Ea is a parameter that
is determined experimentally by analyzing the temperature
dependence of the conductivity and can be theoretically
approximated through Eq. (2):

Em � Ea � Em + Ef

2
. (2)

The migration energy Em is the lowest energy barrier for Li
ion conduction approximated using NEB calculations. The
formation energy Ef is the energy of creating a vacancy
interstitial pair calculated using Eq. (3), with Edefect and Eperfect

being total density functional energies in equivalent supercells
of the structurally relaxed vacancy interstitial pair and the
perfect crystal, respectively:

Ef = Edefect − Eperfect. (3)

In Eq. (2) the lower limit represents the “intrinsic” case where
the material has a large population of native vacancy interstitial

defects and the upper limit represents the “extrinsic” case
where material has few native vacancy interstitial defects [33].
Additionally, real materials can have other defects such as
Li/Sn antisite defects and stacking faults which can be detected
by x-ray analysis. For the case of Li2SnO3, several samples
were studied by Teo et al. [7]. The sample with the lowest Ea

and highest conductivity had the sharpest and most complete
diffraction peaks. This indicates that this sample is relatively
free of these Sn/Li antisite and stacking fault defects [31].

In computationally determining Em for the vacancy mech-
anism, suitable pathways were chosen along the main axes
of the 2 × 1 × 1 supercell. Two pathways corresponded to
migration in the a-b plane in the Li layers between the main
[Li 1

3
Sn 2

3
(O/S)2] layers of the material, while the other was

a spiral along the c axis through the [Li 1
3
Sn 2

3
(O/S)2] layers.

Geometrically identical pathways were investigated in the two
materials using the vacancy labels shown in Fig. 2. The paths
in the figure are labeled by their Wyckoff label and numeric
identifier. Table II gives the relative energies for the vacancies
on the Li site types. The results for the NEB calculations
showing the energy landscape connecting the images for
the relaxed vacancy configurations are displayed in Fig. 3.
The desired quantity from these plots is Em and it is found
by searching for the path with the lowest energy difference
between highest and lowest energy along the path. The results
for vacancy migration in Li2SnS3 are relatively large with
migration barriers of 0.6–0.7 eV for all of the paths. By contrast
Li2SnO3 shows an interesting result of having Em = 0.3 eV
along the c axis while the other paths have Em = 0.8–0.9 eV.

In this study, no viable pure interstitial conduction mech-
anisms were found. On the other hand several viable intersti-
tialcy [34] mechanisms were found; the most favorable path is
shown in Fig. 4. An interstitialcy mechanism is one in which
an interstitial ion moves into a host lattice site as that host
lattice ion moves to an adjacent interstitial location. In Fig. 4
the two unique steps of the path are labeled as “a” and “b”
and shown from two viewpoints. In the “a” step, an interstitial
ion moves onto a host e site as that e-site ion moves to the
neighboring interstitial site. In the “b” step, the interstitial ion
moves to the nearest host d site as that d-site ion moves to the
nearest interstitial site. It is the “a” step that allows the Li ion
to move through the [Li 1

3
Sn 2

3
(O/S)2] layers. The results for

the NEB calculations in Fig. 4 show that for both Li2SnO3 and
Li2SnS3, this interstitialcy mechanism is the most favorable
mode of Li ion conduction. The Em values for this most
favorable interstitialcy mechanism is 0.14 eV for Li2SnO3 and
0.22 eV for Li2SnS3. Interestingly the “a” step in this process
has a markedly smaller barrier than the “b” step for Li2SnO3,
while for Li2SnS3 both steps have approximately the same
barrier. The other less favorable interstitialcy mechanisms had
Em values of 0.46 eV for Li2SnO3 and 0.59 eV for Li2SnS3.
These mechanisms had equivalent “a” steps as in Fig. 4 but the
“b” step was different by the involvement of host f-site ions
moving to neighboring interstitial sites.

To compare the most favorable Em for the vacancy and
interstitialcy mechanisms with experiment, the inequality in
Eq. (2) is used. To estimate the interstitial-vacancy pair
formation energy Ef , Eq. (3) is used. Edefect is determined from
metastable configurations of a host lattice Li ions displaced
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FIG. 3. Energy path diagrams for vacancy migration calculated
using NEB with Li2SnO3 (red) and Li2SnS3 (blue). Path labels refer
to the site labels in Fig. 2. The zero of energy for each curve has been
set to the lowest energy of that path. Migrations along the a, b, and c

axes are shown in plots (a), (b), and (c), respectively.

into an interstitial site. From these results, the lowest Ef

for a vacancy interstitial pair was 1.25 eV for Li2SnO3 and
0.96 eV for Li2SnS3. If a large population of defects is present
in the material, it is expected for Ea to be closer to Em,
while if very few are present Ea is expected to be closer to
Em + Ef

2 . The results are listed in Table III. The experimental
values of Ea for both samples are best explained by the
interstitialcy mechanism using the upper limits of Eq. (2).
This infers that these samples have a small number of native
vacancy-interstitial defects.

V. LITHIATION

A. Geometrical structures

Several authors have studied lithiation of Li2SnO3 [8–10]
and have shown lithium can be absorbed into the material.
Experimental lithiation of Li2SnS3 has not been reported in

FIG. 4. (a) Ball and stick model for the interstitialcy Li ion
conduction mechanism in Li2SnS3 using the same ball conventions
as in Fig. 2. This figure is geometrically representative for the same
conduction mechanism in Li2SnO3. (b) Energy path diagrams for
interstitalcy Li ion migration using red for Li2SnO3 and blue for
Li2SnS3. The labels a and b above the diagrams in (a) and the
path labels in (b) refer to the two unique steps of this interstitialcy
mechanism.

the literature. In order to model a possible mechanism of
the lithiation for Li2SnO3 and Li2SnS3, a bulk intercalation
process was assumed. This process involved placing excess
lithium in the lattice of interstitials given by the coordinates in
Sec. III. There are eight interstitial sites per conventional cell.

TABLE III. Calculated lower an upper bound for Ea from Eq. (2)
using the most favorable Em for the vacancy and interstitialcy
mechanisms along the indicated axis. Listed experimental results
are from Refs. [7] and [4], respectively. All energies given in eV.

Li2SnO3 Em Ea Em + Ef

2
Vacancy (c axis) 0.28 � Ea � 0.91
Interstitialcy (c axis) 0.14 � Ea � 0.77
Experiment 0.69–0.91

Li2SnS3 Em Ea Em + Ef

2
Vacancy (b axis) 0.61 � Ea � 1.07
Interstitialcy (c axis) 0.22 � Ea � 0.68
Experiment 0.59
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FIG. 5. Ball and stick models of optimized structures for
Li2+xSnO3 in (a) and Li2+xSnS3 in (b) for indicated values of x.
Li, Sn, O, and S are represented by blue, gray, red, and yellow balls,
respectively.

Initially a random sampling of configurations of lithium
placed in the interstitial sites for 2 × 1 × 1 supercells were
optimized with full structural relaxations for 0 � x � 1 in
Li2+xSn(O/S)3. The limit x = 1 corresponds to filling all
available interstitial sites defined for the perfect lattice. A
sample of these configurations over the concentration range
is shown in Fig. 5. It is shown in Fig. 5(a) that Li2+xSnO3

gradually becomes disordered as x increases. Qualitatively
the material could be described as experiencing an amorphous
transition at x ≈ 0.75, which is consistent with the findings
of Zhang et al. [9] who show that Li2+xSnO3 loses its
diffraction peaks in the range 0.75 � x � 5. Figure 5(b)
shows that the computed model of Li2+xSnS3 is stable up
to x = 1. Analysis of the change in cell parameters is given in
Appendix B. The lattice of Li2+xSnO3 expands monotonically
with concentration along all axes for 0 � x < 0.5. For 0.5 �
x � 1 the expansion continues to be monotonic but there
is a large variability in the cell parameters. The lattice of
Li2+xSnS3 expands monotonically across all axes for 0 �
x � 1 with relatively small variability in the results due to
Li configurations.

B. Electronic structures

Partial density of states calculations in the range 0 � x �
1 are shown in Figs. 6 and 8. The partial density of states

FIG. 6. Partial density of states for Li2+xSnO3 with the zero of
energy set to the top of the occupied valence band of the pure material.
In addition to the partial density of states for the perfect crystal, a
sample of results for x = 0.25,0.5,0.75, and 1.0, calculated within the
2 × 1 × 1 supercell, are presented in separate panels. For visibility,
the lithium curves were scaled by a factor of 5.

for x = 0 for both materials agree with those presented by
Brant et al. [4] While the calculational methods are known
to underestimate the energies of the band gaps, the relative
energies are expected to be well represented.

Pristine Li2SnO3 is found to have a relatively large band
gap (roughly 4 eV). For x > 0, an occupied impurity-like
band appears within the original band gap for Li2+xSnO3.
The impurity band moves towards the top of the valence as x

increases, as shown in Fig. 6.
In order to get a better idea of the nature of the “gap states”

in Li2+xSnO3, an example of a x = 0.25 configuration within
the conventional cell was modeled and the results are shown
in Fig. 7. Isosurfaces of the electron density associated with

FIG. 7. Ball and stick diagram of an orthorhombic section of a
unit cell of Li2.25SnO3 with Li, Sn, and O indicated with blue, gray,

and red balls, respectively. Isosurfaces bounding the 0.1e/Å
3

density
level of the states associated with the excess electrons are indicated
in green. The orientation is similar to that of Fig. 2(b).
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FIG. 8. Partial density of states for Li2+xSnS3 with the zero of
energy set to the top of the occupied valence band of the pure material.
In addition to the partial density of states for the perfect crystal, a
sample of results for x = 0.25,0.5,0.75, and 1.0, calculated within the
2 × 1 × 1 supercell, are presented in separate panels. For visibility,
the lithium curves were scaled by a factor of 5.

the occupied intercalation states are shown. In this case, the
intercalation density is localized primarialy on O sites near
one of the Sn sites which has a broken Sn-O bond.

By contrast, pristine Li2SnS3 is found to have a small
band gap (roughly 1 eV), due to unoccupied conduction bands
formed from the hybridization of Sn 5s and S 3p orbitals. For
x > 0, the excess electrons of Li2+xSnS3 occupy the available
conduction states with little change in the shapes of the partial
densities of states curves, as shown in Fig. 8.

Figure 9 illustrates the isosurfaces for the excess electron
charge density in Li2+xSnS3 for two selected configurations at
x = 0.5 and x = 1.0 in the conventional cell. The form of the
isosurfaces is consistent with an antibonding hybridization of
the Sn 5s and S 3p states that make up the conduction band.

FIG. 9. Ball and stick diagrams of an orthorhombic section of unit
cells of Li2.5SnS3 (a) and Li3SnS3 (b), with Li, Sn, and S indicated
with blue, gray, and yellow balls, respectively. Isosurfaces bounding
the 0.03e/Å3 density level of the states associated with the excess
electrons are indicated in green. The orientation is similar to that of
Fig. 2(b).

In the x = 1 case the isosurfaces for the two layers are related
by an inversion consistent with the symmetry of the lattice.

C. Voltage profiles

The average open cell voltage of the compound
Li2+xSn(O/S)3 lithiated with x Li ions per formula unit versus
bcc lithium metal can be approximated by [35]

Vavg(x) = −�E

x
=

∫ x

0 dx ′Vobs(x ′)
x

. (4)

For computational reasons, it is convenient to calculate
the averaged voltage between the two intercalation limits
Li2Sn(O/S)3 and Li2+xSn(O/S)3 and Eq. (4) can be used
to relate the result to an experimental voltage Vobs(x). The
approximation assumes that the internal energy difference �E

is a good approximation to the Gibbs free energy difference
�G where �G = �E + P�V − T �S. This implies that
P�V and T �S as small compared with �E. We further
approximate �E by its value at T = 0 K.

In practice, for a given value of x there are many possible
configurations (σ ) of the lithium interstitials. Each of these
configurations will have a configuration dependent internal
energy difference �Eσ (x) given by

�Eσ (x) = Eσ
Li2+xSn(O/S)3

− ELi2Sn(O/S)3
− xELibcc . (5)

The internal energy difference of the system can be determined
by averaging over all of the configurations,

�E(x) =
∑

σ

�Eσ (x)Pσ (x), (6)

where Pσ (x) denotes the probability of any given configuration
σ at Li concentration x.

Open cell voltages are equilibrium processes so the prob-
abilities can be approximated by a Boltzmann distribution at
temperature T :

Pσ (x) = e−�Eσ (x)/kT

Z(x)
where Z(x) =

∑

σ

e−�Eσ (x)/kT .

(7)

Here k denotes the Boltzmann constant and Z(x) denotes the
partition function. In practice, it is difficult to sample enough
configurations to evaluate the probabilities in Eq. (7) using first
principles alone. However, qualitative information is readily
available from samples of the configuration and concentration
dependent voltages Vσ (x) defined as

Vσ (x) = −�Eσ (x)

x
, (8)

and presented in Figs. 10 and 11. In Fig. 10, the simulations
were done using 2 × 1 × 1 supercells. For each concentration
x with 0.0625 < x < 1, two randomly chosen configurations
σ were computed. For x = 0.0625 and x = 1 only one
unique configuration is possible for these supercells. Figure 11
includes results from a variety of supercells. The results for
0.0625 < x � 0.5 all had their initial configurations chosen
randomly aside from the special case of Vσ (x = 0.25) =
0.53 V.

Due to its stable interstitial lattice, to interpret the results for
Li2+xSnS3, the ideas of cluster expansion [36] can be used. The
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FIG. 10. Sampling of Vσ (x) calculated with Eq. (8) for Li2+xSnS3.

idea of a cluster expansion is to expand �Eσ (x) over a set of
configuration variables σi..σk and effective cluster interactions
Ei..k as in Eq. (9):

�Eσ (x) =
∑

i

Eiσi +
∑

i,j

Eijσiσj +
∑

i,j,k

Eijkσiσjσk.... (9)

The Ei , Eij , and Eijk ... terms represent the lattice site, pairwise
interaction, and three site interactions, respectively. For this
system, the Ei terms are all equivalent due to the interstitial
sites being geometrically equivalent. If the Ei terms are
concentration independent and if higher order terms Ei..k are
small, then �Eσ (x) can be approximated by Eq. (10):

�Eσ (x) ≈
∑

i

Eiσi ∝ xEi. (10)

This implies that a plot of Vσ (x) will be approximately constant
over x and σ . The plot in Fig. 10 shows this behavior so
we can infer that in Li2+xSnS3 the lattice site interaction
is concentration independent and is large compared to the
pairwise and higher interactions. For this constant voltage case,
we can predict that the measured voltage will be Vobs(x) ≈
1.2 V.

While there has apparently not yet been an experimental
measurement of the intercalation voltage of Li2+xSnS3, there
have been several measurements of the intercalation voltage

FIG. 11. Sampling of Vσ (x) calculated with Eq. (8) for Li2+xSnO3.

of Li2+xSnO3 reported in the literature [8–10]. The literature
results find Vobs(x) to be a decreasing function of x with Vobs(x)
varying from ∼1.0 V to ∼0.4 V for 0 � x � 0.5. By contrast,
the simulation results for the concentration and configuration
dependent voltages Vσ (x) shown in Fig. 11, together with
Eqs. (4) and (6), indicate that the intercalation voltage for
Li2+xSnO3 is predicted to be an increasing function of x.

Some details of this apparent discrepancy between the sim-
ulation results and experiment are as follows. For Li2+xSnO3

the limits of x for the voltage calculations were restricted to
0 � x � 0.5. This was done because the breakdown of the
lattice makes the voltage approximation less applicable due to
increasing entropy and that as the system becomes disordered
the configurational space becomes much larger. Even for the
0 � x � 0.5 range, the lattice of interstitials can be described
as metastable, so that an analytic cluster expansion [36] such
as given in Eq. (9), is not well defined for Li2+xSnO3. For the
calculated range of 0 � x � 0.5 seen in Fig. 11, the results
must be analyzed qualitatively keeping in mind that results
higher in voltage for a particular x are more probable. Esti-
mating the concentration and configuration averaged voltage
from Vσ (x) given in Fig. 11 shows that the simulations predict
a voltage which increases with x. For 0 � x � 0.5, the voltage
can be estimated as roughly 0.1 V � Vavg(x) � 0.6 V. It
is notable that at the low concentration of x = 0.0625, the
voltage is predicted to be ∼0.9 V below that of experiment.
In order to thoroughly study this particular concentration,
22 calculations were performed with a variety of supercells
(1 × 1 × 4, 2 × 2 × 1, 2 × 1 × 2, 4 × 2 × 1). This was done
to qualitatively study the Li-Li interactions on the interstitial
lattice. Pair interactions were thoroughly studied, a sample of
short- to mid-range three site interactions, some close ranged
four site, and the possibility of staging into the layers. The
results suggest it is unlikely that the large gap with experiment,
at this particular x = 0.0625 concentration, can be explained
by simply not having sampled the right configurations. The
special result Vσ (x = 0.25) = 0.53 V was a configuration of
four favorable pairs of Li interstitials identified while studying
the x = 0.0625 case, dispersed uniformly in a 2 × 2 × 1
supercell. The converged configuration retained the Li pair
structure, but the resulting voltage cannot be explained by the
Li pair interactions found at x = 0.0625. This illustrates the
concentration and configuration dependence of the voltage for
this system.

In an effort to understand the discrepancy between the
calculated voltage and experimental voltage for Li2+xSnO3,
crude modeling of defects and their effect on voltage was
done. The defects accounted for were antisite defects and
stacking faults, both studied in the literature [31,32]. A
brief study of the formation energy of Sn/Li antisite defects
were calculated for a particular Sn(4e) site, in a 2 × 1 × 1
supercell, swapped with its nearest 8f, 4d, or 4e lithium
host lattice sites. Using Eq. (3) the formation energies for
the Sn(4e)-Li(8f,4d,4e) antisite defects were calculated to
be 2.3, 1.6, and 1.8 eV, respectively. The Sn(4e)/Li(4d) was
found to have the lowest formation energy and chosen for the
model. This Sn(4e) site was equivalent to the (0.00, 0.749,
0.25) tin site listed in Appendix A. For a stacking fault a
2 × 1 × 1 supercell was used with the uppermost (along the
c axis) [Li 1

3
Sn 2

3
O2] plane shifted by the [ 1

2 , 1
6 ,0] suggested
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FIG. 12. Sampling of Vσ (x) calculated with Eq. (8) for Li2+xSnO3

with antisite and stacking fault defects. Red stars represent results
in the presence of Li/Sn antisite defects. Black diamonds represent
results in the presence of stacking faults.

by Tarakina et al. [31] as the most probable with a 40%
likelihood. Our simulation is a coarse approximation with 50%
stacking faults imposed on every other [Li 1

3
Sn 2

3
O2] plane.

Using Eq. (3) the formation energy of this configuration is
0.01 eV. Figure 12 shows a sampling of Vσ (x) for both
of the defective structures. It is shown in these results that
Sn/Li antisite defects can have a large impact on the voltage
and greatly improves correspondence with experiment. The
stacking fault results show very similar results to the voltage
profiles of the simulations without stacking faults shown in
Fig. 11.

VI. SURFACES AND INTERFACES WITH LITHIUM

The purpose of studying surfaces and interfaces for
Li2SnO3 and Li2SnS3 is to explore their interaction with
lithium at the surface. Transmission electron microscopy im-
ages of Li2SnO3 reported by Wang et al.[10] show nanoflakes
with their exposed surface in the a-b plane. Motivated by this
observation, only surfaces and interfaces in the a-b plane were
studied.

A. Surface simulations

Surface simulations were performed using the slab geom-
etry shown in Fig. 13. The supercells were simulated using
fixed lattice constants based on the 1 × 1 cell in the a-b
plane using the optimized a and b lattice constants and a
slab thickness determined by n = 4 as defined in Fig. 13,
corresponding to 20 formula units of Li2+xSn(O/S)3. The
vacuum distance separating the periodic slabs was chosen to
be 15 Å for Li2+xSnO3 and 18.7 Å for Li2+xSnS3.

A convenient measure of surface stability is the surface
energy which can be defined according to

γ = Eslab − NEbulk − xELi

2A . (11)

Here Eslab and Ebulk denote the total electronic energies of
the slab and of the bulk Li2Sn(O/S)3, respectively. N is the
number of formula units in the slab and ELi denotes the total

FIG. 13. Schematic diagram of surface geometries for
Li2+xSn(O/S)3 slabs in vacuum. Here x represents the excess lithium
per formula unit and is assumed to be distributed equally on the
two surfaces. The variable n determines the thickness of the slab.
The normalizing factor α = 3

2(n+1) is introduced so that the diagram
corresponds to one unit of Li2+xSn(O/S)3.

energy per atom of bcc Li. A denotes the area of a single
surface plane in the simulation cell.

For this surface geometry, the stoichiometric surface (x =
0) is missing half of its Li sites. For convenience, the
simulations assumed that the missing sites were distributed
evenly over the two simulation surfaces. For the chosen
supercell, simulations with two, four, and six extra Li atoms
correspond to x = 0.1,0.2, and 0.3, respectively. Figure 14
shows the results for the surface energies of Li2SnS3 and
Li2SnO3. This figure shows both materials tend to lower their
surface energy when absorbing lithium, which is indicative of
a favorable process.

FIG. 14. Surface energies as a function of x as defined in Eq. (11)
with Li2+xSnO3 shown as red squares and Li2+xSnS3 with blue
diamonds. For all concentrations except Li2.3SnS3, two or more
configurations were modeled.
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FIG. 15. Optimized surfaces for Li2+0.3SnO3 with different initial
positions. In (a), the initial surface Li positions were the ideal bulk
lattice sites. In (b), random noise added to the surface lithium sites.

Multiple metastable configurations were found for excess
Li concentrations x > 0 as indicated in Fig. 14. An interesting
example is shown in Fig. 15 which shows two configurations
of Li2+0.3SnO3. The configuration shown in Fig. 15(a) was

FIG. 16. Partial densities of states for (a) ordered [correspond
to Fig. 15(a)] and (b) disordered [corresponding to Fig. 15(b)]
Li2+0.3SnO3 surfaces. In each plot, the Li contribution has been scaled
by 5.

FIG. 17. Partial densities of states for a Li2+0.3SnS3 surface. In
this plot, the Li contribution has been scaled by 5.

optimized from the ideal bulk positions of the surface Li
sites. The configuration in Fig. 15(b) was optimized from
randomized positions of the surface Li sites and has a lower

value of γ by 1 meV/Å
2
. The corresponding partial densities

of states plots for these two cases are shown in Fig. 16. These
results show that the metastable ordered configuration has a
partial density of states much like that of the bulk lattice with
the Fermi level raised to within the conduction band due to
the excess Li atoms at the surface. The relaxed configuration
shows new states within the bulk band gap which are due to
broken Sn-O bonds.

Less variation in the surface geometries and energies were
found for the Li2+xSnS3 simulations. The partial density of
states are shown in Fig. 17. In this case, the density of states
is similar to that of the bulk with the Fermi level located
within the Sn-S conduction band due to the excess surface Li
atoms. The shift in the energies of the conduction band states
is localized to the surface layer Sn 5s states.

B. Interface simulations

To further explore the interaction of these materials with
lithium interface calculations were done with bulk lithium
using slab geometry. The converged results from the x = 0.3
surface calculations, with lithium left in their native positions
from the layers, were used as the starting point for these
simulations. The vacuum of these relaxed surface calculations
were filled with 30 Li atoms distributed uniformly and at
a density that is approximately that of bulk lithium. These
structures were optimized with fixed lattice parameters in the
layer planes while the supercell dimension perpendicular to
the layers was allowed to vary.

FIG. 18. Ball and stick model of the optimized ideal interface of
Li2SnO3/Li. Li, Sn, and O are indicated with blue, gray, and red balls,
respectively.
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FIG. 19. Partial densities of states of regions of the optimized
interface of Li2SnS3/Li (with Li contributions scaled by a factor of
5). The corresponding ball and stick model of the optimized geometry
is shown on the right of the diagram with Li, Sn, and S indicated with
blue, gray, and yellow balls.

Figure 18 shows the optimized geometry for the ideal
Li2SnO3/Li interface. In this case, the converged geometry
of the lithium slab resembles that of bcc lithium, skewed by
the interface boundary. While this ideal interface has been
found, it is metastable relative to the formation of Li2O. For
example, displacing one of the surface O sites into the lithium
slab generally results in a lower energy structure (by 1.5 eV in
one example) with broken Sn-O bonds.

Figure 19 shows the optimized geometry for the Li2SnS3/Li
interface, showing that Li2SnS3 undergoes a decomposition at
the surface. In order to examine the Li2SnS3/Li in greater
detail, partial densities of states from four different sections of
the calculation slab were analyzed as shown in Fig. 19. The
top section represents pure metallic Li. The second section
resembles Li2S, while the third section shows nonstoichio-
metric LixSnSy . The central layer of the slab represents bulk
Li2SnS3.

VII. DISCUSSION AND CONCLUSIONS

The results of these simulations show that, despite the
fact that the porous layered calcogenide materials Li2SnO3

and Li2SnS3 both have the same crystal structure based on
the space group C2/c, they have very different responses
to excess Li. An important component of the explanation
is the qualitative differences in the band structures of the
two materials. Li2SnS3 has an unoccupied conduction band
formed from Sn 5s and S 3p states [4] located 1 eV above
the valence band. The simulations for Li2+xSnS3 show that
these bands readily accommodate the excess electrons from
lithiation. Figure 9 shows isosurface plots for electrons within
this band for particular configurations of the lithiated material
for x = 0.5 and x = 1, illustrating the antibonding Sn 5s and
S 3p states. A consequence of this lithiation mechanism is
the predicted constant voltage versus Li concentration x as
shown in Fig. 10. By contrast, in Li2SnO3 the corresponding
bands for Sn 5s and O 2p states lie much higher in energy. The

TABLE IV. Fractional coordinates (x,y,z) of unique atoms in
the conventional unit cells of Li2SnO3 and Li2SnS3 compared
with experimental measurements reported by Refs. [2] and [4],
respectively. The “site” column lists the site multiplicity and Wyckoff
label. In order to more easily compare the two structures, the crystal
origin chosen by Ref. [4] for Li2SnS3 was shifted by (0, 1

2 , 1
2 ).

Atom Site Comp. Expt.

Li2SnO3 Li 8f (0.232, 0.077,−0.001) (0.239, 0.078,−0.001)
Li 4e (0.000, 0.085, 0.250) (0.000, 0.083, 0.250)
Li 4d (0.250, 0.250, 0.500) (0.250, 0.250, 0.500)
Sn 4e (0.000, 0.417, 0.250) (0.000, 0.417, 0.250)
Sn 4e (0.000, 0.749, 0.250) (0.000, 0.751, 0.250)
O 8f (0.134, 0.258, 0.131) (0.134, 0.260, 0.133)
O 8f (0.114, 0.583, 0.131) (0.110, 0.584, 0.134)
O 8f (0.133, 0.909, 0.129) (0.135, 0.909, 0.133)

Li2SnS3 Li 8f (0.256, 0.085, 0.000) (0.253, 0.084, 0.000)
Li 4e (0.000, 0.083, 0.250) (0.000, 0.083, 0.250)
Li 4d (0.250, 0.250, 0.500) (0.250, 0.250, 0.500)
Sn 4e (0.000, 0.417, 0.250) (0.000, 0.417, 0.250)
Sn 4e (0.000, 0.750, 0.250) (0.000, 0.750, 0.250)
S 8f (0.132, 0.255, 0.128) (0.136, 0.258, 0.131)
S 8f (0.115, 0.583, 0.127) (0.112, 0.583, 0.131)
S 8f (0.132, 0.911, 0.126) (0.135, 0.908, 0.127)

simulation shows that the lithiation process is still energetically
favorable, but in order to accommodate the excess electrons,
new localized states are formed within the band gap of the
material. The simulations show that these states are typically
associated with broken Sn-O bonds such as shown in Fig. 7.

Calculations of the voltage versus lithium concentration
for Li2+xSnO3 shown in Figs. 11 and 12 demonstrate that
Li/Sn antisite defects can have a significant impact on the
voltage profiles. The results suggest that Li/Sn antisite defects
are present in the experimental samples presented in the
literature [8–10]. Preliminary computational results for Li/Sn
antisite defects in Li2+xSnS3 suggest their effects on the
voltage profiles are small. Our calculations for defect free
Li2+xSnS3 predict a constant voltage versus lithium concen-
tration, which has not yet been confirmed experimentally.
Assuming that the lithiation proceeds to the concentration of
x = 1 without interference from possible competing reactions,
the theoretical capacity is estimated to be 117 mAh/g.

For both materials, the most efficient ion migration
processes were shown to involve the interstitial sites in
interstitiacy mechanisms with net migration perpendicular to
the porous layers as shown in Fig. 4, finding Em = 0.14 eV and
Em = 0.22 eV for pristine Li2SnO3 and Li2SnS3, respectively.
Recently, nuclear magnetic resonance experiments on Li2SnO3

have detected signals corresponding to the three unique Li
sites, finding evidence for the predominant diffusion pathway
to occur perpendicular to the a-b layer planes [37]. This is
in qualitative agreement with the calculations, although the
analysis of the experiments did not involve consideration
of interstitial sites. Comparing the calculated results for
Em with activation energies Ea extracted from impedance
measurements, suggests that the bottleneck for ion migration
in the pristine materials is the formation of vacancy-interstitial
pairs. For lithiated Li2+xSnS3, we expect there to be a sizable
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FIG. 20. Percent change in volume for Li2+xSnO3 (red circles)
and Li2+xSnS3 (blue squares). Error bars are the standard deviation
of the mean.

population of interstitial Li ions so that their migration should
be dominated by Em. Further computational and experimental
investigations are needed to verify whether or not the activation
energy of lithiated Li2+xSnS3 has the expected small value of
Ea ≈ Em = 0.2 eV.

FIG. 21. Average cell dimensions (a) and angles (b) for
Li2+xSnO3. Error bars are the standard deviation of the mean.

FIG. 22. Average cell dimensions (a) and angles (b) for
Li2+xSnS3. Error bars are the standard deviation of the mean.

Simulations of surfaces and interfaces of these materials
suggest that it is energetically favorable to add a small amount
of excess Li at the surface, but the surfaces seem to be reactive
when interfaced with Li metal. While a metastable interface of
Li2SnO3/Li was found, displacing surface O atoms was found
to lower the energy of the model interface. The modeled inter-
face of Li2SnS3/Li found the likely formation of Li2S and the
breaking of Sn-S bonds. These simulations are very sensitive
to the initial model geometries. Additional simulations would
be needed to go beyond the qualitative observation that the
interfaces are reactive with respect to Li metal.

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. DMR-
1507942. Computations were performed on the Wake Forest
University DEAC cluster, a centrally managed resource with
support provided in part by the university. We would like to
thank Jennifer A. Aitken for introducing us to these materials.
Helpful discussions with Michael Gross, Nicholas Lepley, and
Chaochao Dun of Wake Forest University are also gratefully
acknowledged.

064108-11

56



JASON HOWARD AND N. A. W. HOLZWARTH PHYSICAL REVIEW B 94, 064108 (2016)

APPENDIX A: STRUCTURAL DETAILS

For completeness, the unique positions of the atoms within
the conventional cells of Li2SnO3 and Li2SnS3 are listed in
Table IV. The calculated fractional coordinates agree well with
the experimental results. Additionally, after shifting the origin
of the coordinate systems, the two materials are shown to have
very similar fractional coordinates.

APPENDIX B: LITHIATION EFFECTS
ON CELL DIMENSION

The results presented here detail the lithiation studies
discussed in Sec. V A. Figures 20, 21, and 22 show changes

in volume and lattice parameters calculated from a ran-
dom sampling of configurations in 2 × 1 × 1 supercells. For
Li2+xSnO3, two or more configurations were sampled for
x > 0.0625. For x = 1, although there is only one ideal
configuration for the interstitial lattice, the system is highly
metastable such that a small displacement in the initial
ideal configuration results in significantly different optimized
lattice parameters. For Li2+xSnS3, two configurations were
sampled for 0.0625 < x < 1. For this system, the results
for each concentration are relatively insensitive to the initial
configurations of interstitial placements. The points on the
graphs represent simple averages and the error bars represent
the standard deviations of the mean from the those averages.
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Recent experimental literature reports the solid state electrolyte properties of Li4SnS4 and Li4SnSe4, identifying interesting questions
regarding their structural details and motivating our first principles simulations. Together with Li4GeS4, these materials are all
characterized by the orthorhombic space group Pnma and are found to be isostructural. They have a ground state crystal structure
(denoted Li4SnS0

4) having interstitial sites in void channels along the c-axis. They also have a meta-stable structure (denoted Li4SnS∗
4)

which is formed by moving one fourth of the Li ions from their central sites to the interstitial positions, resulting in a 0.5 Å contraction
of the a lattice parameter. Relative to their ground states, the meta-stable structures are found to have energies 0.25 eV, 0.02 eV,
and 0.07 eV for Li4GeS∗

4, Li4SnS∗
4, and Li4SnSe∗

4, respectively. Consistent with these simulation results, the ground state forms for
Li4GeS0

4, Li4SnS0
4 and Li4SnSe0

4 and the meta-stable form for Li4SnS∗
4 have been reported in the experimental literature. In addition,

simulations of Li ion migration in these materials are also investigated.
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Recently, there has been significant progress in developing stable
solid electrolytes with high ionic conductivity,1 which has been iden-
tified as a key to improving battery technologies.2 Recent literature3–7

reports the use of Li4SnS4 and related materials as relatively stable
solid electrolytes for use in all-solid-state Li batteries. Kaib, Haddad-
pour, et al.3 and Kaib, Bron, et al.5 synthesized Li4SnS4 and Li4SnSe4,
showing that pure materials could be obtained by removing water
or methanol from solution based preparations, and comparing their
structures and ionic conductivities. MacNeil et al.4 used high temper-
ature solid state techniques to synthesize Li4SnS4 and made a detailed
structural analysis to show it to be isostructural with Li4GeS4. Sahu
et al.6 showed that Li4SnS4 and its alloys with Li3AsS4 have reason-
able ionic conductivity (10−5–10−4 S/cm at room temperature) with
comparatively more air-stability than other sulfide electrolytes. Park
et al.7 demonstrated favorable conductivity and stability properties of
Li4SnS4 and its alloys with LiI.

From this literature, some interesting questions arise regarding
crystal structures and mechanisms for ion mobility. In order to address
these questions, we use first principles methods to examine the ideal
crystal forms and defect structures of Li4SnS4 and the structurally and
chemically related materials Li4GeS4 and Li4SnSe4. For each of these
materials, we identify two closely related structures – an ideal ground
state structure and an ideal meta-stable structure. The simulations
show that the meta-stable structural form is most accessible to Li4SnS4

of the three materials studied. The simulations are extended to study
mechanisms of Li ion migration in both Li4SnS4 and Li4SnSe4 and
are related to the experimental results reported in the literature.

Computational Methods

The computational methods used in this work are based on den-
sity functional theory (DFT),8,9 using the projected augmented wave
(PAW)10 formalism. The PAW basis and projector functions were gen-
erated by the ATOMPAW11 code and the crystalline materials were
modeled using the QUANTUM ESPRESSO12 and ABINIT13 pack-
ages. Visualizations were constructed using the XCrySDEN,14,15 and
VESTA16 software packages.

∗Electrochemical Society Student Member.
∗∗Electrochemical Society Member.

zE-mail: natalie@wfu.edu

The exchange correlation function is approximated using the local-
density approximation (LDA).17 The choice of LDA functional was
made based on previous investigations18–20 of similar materials which
showed that, provided that the lattice constants are scaled by a cor-
rection factor of 1.02, the simulations are in good agreement with
experiment, especially lattice vibrational frequencies and heats of for-
mation. The partial densities of states were calculated as described
in previous work,20,21 using weighting factors based on the charge
within the augmentation spheres of each atom with radii rLi

c = 1.6,
rSn

c = 2.3, rS
c = 1.7, and rSe

c = 2.3 in bohr units. The reported partial
densities of states curves < N a(E) > were averaged over the atomic
sites of each type a.

The calculations were well converged with plane wave expansions
of the wave function including |k + G|2 ≤ 64 bohr−2. Calculations
for the conventional unit cells were performed using a Brillouin-zone
sampling grid of 4 × 8 × 8. Simulations of Li ion migration were
performed at constant volume in supercells constructed from the opti-
mized conventional cells extended by 1 × 2 × 2 and a Brillouin-zone
sampling grid of 2 × 2 × 2. In modeling charged defects (Li ion
vacancies or interstitials), the system was assumed to remain electri-
cally insulating and a uniform background charge was added in order
to evaluate the electrostatic interactions. The minimum energy path
for Li ion migration was estimated using the “nudged elastic band”
(NEB) method22–24 as programmed in the QUANTUM ESPRESSO
package, using 5 images between each metastable configuration. For
each minimum energy path, the migration energy, Em was determined
as the energy difference between the lowest and highest energy of
the path. The “formation energies” E f for producing neutral defects
in the form of vacancy-interstitial pairs were calculated for the same
supercells. The molecular dynamics simulations were performed at
constant volume in neutral 1 × 2 × 2 supercells using further reduced
convergence parameters, including a reduced plane wave expansion
cutoff of |k + G|2 ≤ 49 bohr−2 and a Brillouin-zone sampling grid
of 1 × 1 × 1. The simulations were performed for a microcanoni-
cal ensemble with a time integration step of �t = 3.6 × 10−15 s
for simulation temperatures less than 900 K. For simulation tem-
peratures greater than 900 K, the time integration step was reduced
to �t = 2.4 × 10−15 s. This resulted in total energy conservation
within 0.1 eV throughout the simulation. The simulations were car-
ried out for durations between 3-8 pico seconds. After an equilibra-
tion delay of approximately 0.1 ps, the temperature of the simulation
was determined from the averaged kinetic energy of the ions. The
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Figure 1. Ball and stick models of (a) Li4SnS0
4 and (b) Li4SnS∗

4. Li, Sn, and
S are represented by light gray, dark gray, and orange balls respectively. The
red arrows indicate the a, b, and c lattice vectors.

simulated temperatures ranged between 550 K and 1000 K, well be-
low the melting temperature of 1231 K reported by MacNeil et al.4

Simulated Crystal Structures

There are two reported analyses of the crystal structure of
Li4SnS4.3,4 The two analyses agree that the structure is character-
ized by the space group Pnma (No. 62 in the International Table of
Crystallography25), but differ slightly in the reported lattice constants
and the fractional coordinates of one of the Li sites.4 The structural
analysis of MacNeil et al.4 was measured at room temperature and is
perfectly ordered. However, the structural analysis of Kaib, Haddad-
pour, et al.,3 was measured at the temperatures in the range 100–193
K, and instead of the Li sites found by MacNeil et al. at the Wyckoff
labeled 4a positions, fractionally occupied 8d Li sites are found.

We computationally investigated both structures, finding that the
ordered structure analyzed by MacNeil et al.4 to be the ground state
structure which we denote as “Li4SnS0

4”. Simulations of ordered ap-
proximations to the disordered structure of Kaib, Haddadpour, et al.3

find a meta-stable structure which we denote as “Li4 SnS∗
4” having an

energy 0.02 eV/formula unit higher in energy than the ground state
structure. Ball and stick drawings of the two structures are shown in
Fig. 1. The corresponding calculated and measured lattice constants
are listed in Table I and the calculated and measured fractional coor-

Table I. Comparison of lattice parameters for Li4SnS4 and related
compounds in their ground state and meta-stable structures.
Calculated parameters are scaled by factor of 1.02 to correct
for systematic LDA error. Measured parameters are listed in
parentheses. The relative energies E for the ground state and meta-
stable structures are also listed in units of eV per formula unit.

Li4GeS0
4 Li4GeS∗

4

a (Å) 14.01 (14.06)a 13.49
b (Å) 7.74 ( 7.75)a 7.79
c (Å) 6.12 ( 6.15)a 6.30

E (eV/FU) 0.00 0.25
Li4SnS0

4 Li4SnS∗
4

a (Å) 14.25 (14.31)a 13.81 (13.81)b

b (Å) 7.86 ( 7.90)a 7.93 ( 7.96)b

c (Å) 6.31 ( 6.33)a 6.41 ( 6.37)b

E (eV/FU) 0.00 0.02
Li4SnSe0

4 Li4SnSe∗
4

a (Å) 14.98 (14.93)c 14.48
b (Å) 8.26 ( 8.22)c 8.38
c (Å) 6.62 ( 6.60)c 6.86

E (eV/FU) 0.00 0.07

aRef. 4.
bRef. 3.
cRef. 5.

dinates are listed in Table II. In addition to results for Li4SnS4, results
for Li4GeS4 and Li4SnSe4 are also listed in these tables.

Interestingly, the main difference between the simulated structures
of Li4SnS0

4 and Li4SnS∗
4 is that four Li’s per unit cell occupy different

void regions between the SnS4 tetrahedra. In the Li4SnS0
4 structure,

the special Li ions occupy sites at the center and boundaries of the
unit cell having multiplicity and Wyckoff label 4a. In the Li4SnS∗

4
structure, the special Li ions instead occupy sites interior to the unit
cell having multiplicity and Wyckoff label 4c. In order to avoid con-
fusion of this site with the other fully occupied 4c Li site of these
structures, we use the symbol c′ to refer to this site. While the sim-
ulated fractional coordinates of the special Li ions for this 4c′ site
do not agree with the two 8d fractionally occupied coordinates found
by Kaib, Haddadpour, et al.,3 the optimized lattice constants are in
excellent agreement, as shown in Table I. It is interesting to note that
the lattice constants for these ideal structures are characterized by a
contraction of the a lattice parameter by approximately 0.5 Å for
the meta-stable structure relative to the ground state structure, while
the changes to the other lattice parameters are in the neighborhood
of 0.1 Å. This lattice contraction is energetically significant; the en-
ergy difference between Li4SnS∗

4 calculated with the lattice constants
of Li4SnS0

4 relative to Li4SnS4 calculated with its optimized lattice
constants is 0.03 eV/formula unit. We should also point out that the
original X-ray analysis of Kaib, Haddadpour, et al.,3 for the Li4SnS∗

4
structure was performed at low temperatures (100–193 K) while the
X-ray analysis of MacNeil et al.4 was performed at room tempera-
ture. It is our experience that lattice constants typically change with
temperature by less than 0.1 Å, so that the lattice constant differences
between the Li4SnS0

4 and Li4SnS∗
4 structures should not be attributed

to temperature alone. In addition, Sahu et al.6 report room temperature
X-ray analysis for Li4SnS∗

4 consistent with an expansion of the lattice
by approximately 0.02 Å.

Because of its low atomic number, the X-ray signal for Li positions
is notoriously small so that it is reasonable to ask whether the simu-
lated Li4SnS∗

4 structure might be compatible with the structural data
reported by Kaib, Haddadpour, et al.,3 even if the site analysis differs.
Using the Mercury software package,26 with the structural data from
experiment and simulations we compare the computed X-ray patterns
for the structures of Li4SnS0

4 and Li4SnS∗
4 in Fig. 2. We see that the

patterns for Li4SnS0
4 and Li4SnS∗

4 are distinguishable and that there
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Table II. Comparison of fractional coordinates of unique atomic positions for Li4SnS4 and related compounds in their ground state and meta-
stable structures, using orientation and origin choice given in Ref. 4. The second column lists the site multiplicity and Wyckoff label. We use the
notation c′ to denote the special Li site which characterizes the meta-stable structures. Measured parameters are listed in square brackets when
available.

Atom Site Li4GeS0
4 (x, y, z) Li4GeS∗

4 (x, y, z)

Li 4a (0.000, 0.000, 0.000) [(0.000, 0.000, 0.000)]a −
Li 4c′ − (0.260, 0.250,-0.001)
Li 4c (0.412, 0.250, 0.127) [(0.412, 0.250, 0.129)]a (0.429, 0.250, 0.216)
Li 8d (0.177, 0.000, 0.186) [(0.178, 0.000, 0.192)]a (0.147,-0.023, 0.139)
Ge 4c (0.089, 0.250, 0.645) [(0.089, 0.250, 0.649)]a (0.097, 0.250, 0.620)
S 4c (0.084, 0.250, 0.277) [(0.086, 0.250, 0.291)]a (0.105, 0.250, 0.261)
S 8d (0.158, 0.010, 0.780) [(0.157, 0.015, 0.779)]a (0.177, 0.019, 0.761)
S 4c (0.437, 0.250, 0.728) [(0.439, 0.250, 0.731)]a (0.434, 0.250, 0.810)

Atom Site Li4SnS0
4 (x, y, z) Li4SnS∗

4 (x, y, z)
Li 4a (0.000, 0.000, 0.000) [(0.000, 0.000, 0.000)]a −
Li 4c′ − (0.287, 0.250. 0.003) [ - ]b

Li 4c (0.410, 0.250, 0.124) [(0.409, 0.250, 0.126)]a (0.429, 0.250, 0.359) [(0.430, 250, 0.338)]b

Li 8d (0.176, 0.003, 0.178) [(0.178, 0.004, 0.179)]a (0.158,-0.004, 0.149)[(0.160, 0.005, 0.154)]b

Sn 4c (0.093, 0.250, 0.640) [(0.092, 0.250, 0.642)]a (0.090, 0.250, 0.633) [(0.087, 0.250, 0.635)]b

S 4c (0.080, 0.250, 0.255) [(0.083, 0.250, 0.267)]a (0.092, 0.250, 0.256) [(0.091, 0.250, 0.263)]b

S 8d (0.152,-0.005, 0.787) [(0.161, 0.001, 0.784)]a (0.158,-0.004, 0.149) [(0.167, 0.007, 0.767)]b

S 4c (0.430, 0.250, 0.732) [(0.432, 0.250, 0.766)]a (0.423, 0.250, 0.748) [(0.424, 0.250, 0.736)]b

Atom Site Li4SnSe0
4 (x, y, z) Li4SnSe∗

4 (x, y, z)
Li 4a (0.000, 0.000, 0.000) [(0.000, 0.000, 0.000)]c −
Li 4c′ − (0.282, 0.250, 0.002)
Li 4c (0.413, 0.250, 0.118) [(0.412, 0.250, 0.106)]c (0.428, 0.250, 0.358)
Li 8d (0.175, 0.003, 0.178) [(0.178, 0.005, 0.180)]c (0.157, -0.006, 0.147)
Sn 4c (0.094, 0.250, 0.639) [(0.092, 0.250, 0.643)]c (0.090, 0.250, 0.630)
Se 4c (0.080, 0.250, 0.252) [(0.082, 0.250, 0.264)]c (0.093, 0.250, 0.250)
Se 8d (0.162,-0.008, 0.785) [(0.161,-0.002, 0.784)]c (0.177, 0.005, 0.770)
Se 4c (0.430, 0.250, 0.725) [(0.432, 0.250, 0.728)]c (0.422, 0.250, 0.750)

aRef. 4.
bRef. 3, omitting fractionally occupied Li position.
cRef. 5.

seems to be good agreement between our simulated structures and
the corresponding X-ray results. While it would be better to compare
the simulated diffraction patterns directly with the experimental data,
the good agreement between the simulations and the fitted results
from experiment shown in Fig. 2 is encouraging. It is interesting to
note that two other groups6,7 have recently reported preparations of
Li4SnS4 using relatively low temperature processing similar to that of
Kaib, Haddadpour, et al.3 Both of these studies report X-ray diffrac-
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Figure 2. X-ray diffraction patterns generated by the Mercury software
package26 assuming an X-ray wavelength of λ = 1.54056 Å, comparing
simulation (calc) and experimental (exp) results for the Li4SnS0

4 and Li4SnS∗
4

structures. The structural parameters from experiment were taken from Ref. 4
for Li4SnS0

4 and from Ref. 3 for Li4SnS∗
4.

tion patterns, presumably measured at room temperature, which show
strong similarity to the patterns for Li4SnS∗

4 shown in Fig. 2. Presum-
ably, the ground state Li4SnS0

4 structure is accessible using the higher
temperature processes described by MacNeil et al.4

It is interesting to ask the question whether the structurally and
chemically similar material Li4GeS4 behaves in a similar way. The
simulation results for the the Li4GeS0

4 and Li4GeS∗
4 structures are

listed in Table I and in Table II together with available experimental
values. The fractional coordinates are very similar to those of Li4SnS4.
However, in this case, we would predict that the meta-stable Li4GeS∗

4
structure is less likely to form since its energy is predicted to be
0.25 eV/formula unit higher in energy than the ground state energy.
The investigation was also extended to Li4SnSe4 which was recently
synthesized by Kaib, Bron, et al.5 using relatively high temperature
techniques. These authors find Li4SnSe4 to take the “ground state”
Li4SnSe0

4 structure. Our simulations find that the meta-stable Li4SnSe∗
4

to have an energy of 0.07 eV/formula unit higher in energy than the
ground state structure, suggesting that it is less likely than Li4SnS∗

4
to form at room temperature. The results are listed in Table I and in
Table II.

Electronic Structure Results

In order to gain a qualitative understanding of the electronic struc-
ture of the various forms of of these materials, it is helpful to analyze
the partial densities of states which are shown in Fig. 3. The partial
density of states of Li4GeS0

4 in its ground state structure was previ-
ously presented in Ref. 27. While, density functional theory is known
to systematically underestimate the band gaps, the relative band gaps
are usually well represented. For these materials, Li4GeS4 has a com-
puted bandgap of 2.1 eV, while the computed band gaps for Li4SnS4

and Li4SnSe4 are 2.2 eV and 1.6 eV respectively. For both of these
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Figure 3. Partial densities of states for Li4SnS0
4 and

Li4SnS∗
4 (a) and Li4SnSe0

4 and Li4SnSe∗
4 (b), separately

indicating contributions from Li, Sn, S, and Se sites.

materials the upper part of the valence band is dominated by chalco-
genide states while the conduction band is dominated by Sn 5s states
forming a narrow band below the Sn 5p states. The results for Li4SnS4

presented in Fig. 3 are consistent with the results previously reported
by MacNeil et al.4 The partial densities of states for the ground state
and meta-stable structures have nearly indistinguishable partial den-
sity of states curves. The materials are clearly insulating with band
gaps expected to be larger than 2 eV found in the present study due to
the systematic gap underestimation known for LDA calculations.

Another result from the electronic structure calculations is the total
energies which approximate the internal energies at zero temperature.
These can be used to study the stability of the materials relative to
various possible reactions such as those listed in Table III. If the ef-
fects of zero point motion and finite temperature are small, the results
can be related to experimental enthalpies. The values listed in this
table correspond to the ground state structures of Li4SnCh0

4. Results
for the meta-stable form of Li4SnCh∗

4 can be determined by adding
0.02 eV or 0.07 eV for Ch=S or Ch=Se, respectively. Reaction 1
listed in Table III corresponds the enthalpy of formation referenced to
the standard states of the elements28 including Li in the bcc structure,
Sn in the diamond structure, S in the orthorhombic structure,29 and Se
in the trigonal structure.30 Reaction 2 listed in Table III corresponds
to decomposition into two binary materials. Li2S and Li2Se both form
in the fluorite structure, while SnS2 and SnSe2 both form in the hexag-
onal CdI2 structure. Our simulations indicate that the two reactions
have opposite sign, meaning that Li4SnS4 is more stable than its bi-
nary products, while Li4SnSe4 is less stable. Reaction 3 listed in Table
III involves two new materials with the stoichiometry Li2SnCh3. Re-
cently, Brant et al.31 synthesized and characterized Li2SnS3, finding
it to have a densely packed layered structure. The electronic structure
results indicate that Li2SnS3 together with excess Li2S is more sta-
ble than Li4SnS4. Li2SnSe3 was recently synthesized by Kaib, Bron,
et al.5, characterized by one dimensional chains of SnS4 tetrahedra.
The electronic structure results indicate that this material together
with excess Li2Se has about the same stability as Li4SnSe4.

Table III. Estimates of various reaction energies (in eV) for
Li4SnCh4 for the calcogens Ch=S and Ch=Se based on total energy
calculations. In each case the ground state structures of Li4SnCh0

4
was assumed; the structures of the products are mentioned in the
text of the manuscript.

Reaction Ch=S Ch=Se

1 Li4SnCh4 → 4Li + Sn + 4Ch −9.99 −8.94
2 Li4SnCh4 → 2Li2Ch + SnCh2 −0.09 0.04
3 Li4SnCh4 → Li2Ch + Li2SnCh3 0.17 −0.01

Figure 4. Ball and stick model of ground state structure of Li4SnS0
4 and

Li4SnSe0
4 using the same ball convention and viewpoint as in Fig. 1(a). Distinct

vacancy sites are indicated with their Wyckoff labels ai , ci , and di . Interstitial
sites are colored green and are labeled Ii . Possible vacancy and interstitialcy
trajectories are indicated with transparent purple and green arrows respectively.

Defect Structures and Ion Migration Paths in Li4SnS0
4, Li4SnS∗

4,
Li4SnSe0

4, and Li4SnSe∗
4.

Point defects were modeled at fixed volume in 1×2×2 supercells.
For the ground state structure of Li4SnS0

4 and Li4SnSe0
4, there are

three distinct Li ion vacancy sites which can be uniquely labeled by
the Wyckoff letters ai , ci , and di as visualized in Fig. 4. The vacancy
energies are listed in Table IV relative to the most stable vacancy at
an a site.

Vacancy migration in Li4SnSe0
4 was previously studied by Kaib,

Bron, et al.5 who showed that a sequence of hops of the vacancy
between the sites a1 → c1 → d1 → a2 . . . results in net ion motion

Table IV. Relative energies (in eV) of vacancies in the ground
state structures of Li4SnS0

4 and Li4SnSe0
4 calculated in 1 × 2 × 2

supercells. The vacancy sites are indicated by their Wyckoff site
labels with the zero energy chosen at the a site.

Vacancy label Li4SnS0
4 Li4SnSe0

4
a 0.00 0.00
c 0.30 0.20
d 0.26 0.16
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Figure 5. Ball and stick model of ground state structure of Li4SnS∗
4 and

Li4SnSe∗
4 using the same ball convention and viewpoint as in Fig. 1(b). Distinct

vacancy sites are indicated with their Wyckoff labels c′
i , ci , and di . Interstitial

sites are colored green and are labeled Ii . Possible interstitialcy trajectories are
indicated with transparent green arrows.
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Figure 6. NEB calculated energy path diagram for Li ion vacancy migration
in Li4SnS0

4 and Li4SnSe0
4. The vacancy site labels correspond to the diagram

in Fig. 4.

in the b and c directions in the crystal as illustrated in Fig. 4. The
corresponding energies along this path as calculated using the NEB
method are shown in Fig. 6 and tabulated in Table V. From Table
V we see that the vacancy hopping distances d are slightly smaller
and the path energies are somewhat larger for Li4SnS0

4 compared with
Li4SnSe0

4. The bottleneck of this process occurs during the c1 → d1

step, resulting in the estimated migration energies of Em = 0.46 eV
and Em = 0.32 eV for Li4SnS0

4 and Li4SnSe0
4, respectively. Another

vacancy migration path for this involves vacancy hopping between
the sites a → c → a → c . . . resulting in net migration along
the b axis. The estimated migration energy for this path is Em =
0.33 eV and Em = 0.28 eV for Li4SnS0

4 and Li4SnSe0
4, respectively.

We also investigated vacancy migration mechanisms along the a axis.
The bottleneck for a axis vacancy migration involves hops between

Table V. NEB calculated migration energies (Em) and ideal
distances (d) for vacancy migration in Li4SnS0

4 and Li4SnSe0
4.

Migration energies are referenced to a vacancy at the a site.

Li4SnS0
4 Li4SnSe0

4

Em (eV) d (Å) Em (eV) d (Å)
a → c 0.33 3.3 0.28 3.5
c → d 0.46 3.6 0.32 3.8
d → a 0.26 2.8 0.21 2.9
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Figure 7. NEB calculated energy path diagram for Li ion migration with an
interstitialcy mechanism as shown in Fig. 4 for Li4SnS0

4 and Li4SnSe0
4 and as

shown in Fig. 5 for Li4SnS∗
4 and Li4SnSe∗

4.

nearest neighbor d sites which raise the estimated migration energies
substantially above the migration barriers along the b and c axes. In
general there is good agreement between our calculated results for
Li4SnSe0

4 and the corresponding results of Kaib, Bron, et al.,5 within
a small descrepancy of 0.03 eV or less.

For the meta-stable structure of Li4SnS∗
4, only the c′ site vacancy is

stable. Calculations initialized with vacancies on c or d sites relax to
a vacancy on nearby c′ site. For the meta-stable structure of Li4SnSe∗

4,
the story is slightly different. For that system, the c′ site vacancy is
again the most stable. Calculations initialized with vacancies on a
c site relax to a vacancy on a nearby c′ site. Calculations initialized
with vacancies on a d site are meta-stable with considerable distortion,
having an energy of 0.24 eV above the energy of the c′ site vacancy. We
did not investigate vacancy migration mechanisms in the meta-stable
structures.

Another important mechanism for ion migration involves intersti-
tial sites. For the ground state structures of Li4SnS0

4 and Li4SnSe0
4

there is one main interstitial site located in the void regions between
SnS4 or SnSe4 tetrahedra as shown in Fig. 4 which happens to be the
c′ Li site of the meta-stable Li4SnS∗

4 and Li4SnSe∗
4 structures. Corre-

spondingly, for the meta-stable structures of Li4SnS∗
4 and Li4SnSe∗

4
the one main interstitial site is located in the void regions which hap-
pens to be the a site of the ground state structures as shown in Fig. 5.
For both structures, migration between these interstitial sites occurs
most efficiently using an ”interstitialcy” mechanism. An interstitialcy
mechanism is one in which an interstitial ion moves into a host lattice
site as that host lattice ion moves to an adjacent interstitial site. The
resulting migration processes for Li4SnS0

4 and Li4SnSe0
4, with an in-

termediate d host lattice site, and for Li4SnS∗
4 and Li4SnSe∗

4, with an
intermediate c host lattice site, are illustrated with the green arrows in
Figs. 4 and 5 and the corresponding NEB energy paths are shown in
Fig. 7.

From the energy path diagram shown in Fig. 7, it is evident that the
interstitialcy mechanism results in the lowest migration barrier for all
of the structures investigated and is predicted to dominate migration
processes. For electrolytes in the so-called “intrinsic” regime, the NEB
estimate of the activation energy ENEB

A for conductivity is related to the
migration energy Em and the formation energy E f to form a vacancy
and interstitial pair according to

ENEB
A = Em + 1

2
E f . [1]

A summary of results including optimal calculated values of ENEB
A

from Eq. 1 and available experimental values are listed in Table VI.
For the ground state structures of Li4SnS0

4 and Li4SnSe0
4 the calculated

optimal values of E f were obtained for vacancies on an a site moving
to the nearest interstitial site I c′ which corresponds to the site we’ve
called c′ in the meta-stable structures. The calculated values of E f

are 0.27 eV and 0.36 eV for Li4SnS0
4 and Li4SnSe0

4, respectively. The
corresponding estimates of the activation energies ENEB

A are 0.3 eV
and 0.4 eV for Li4SnS0

4 and Li4SnSe0
4, respectively. To the best of our
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Table VI. Activation energies for ion migration for ground state and meta-stable state structures of Li4SnS4 and Li4SnSe4. Calculated migration
energies Em were determined from NEB calculations of the interstitialcy mechanism shown in Fig. 7. Formation energies E f for interstitial-vacancy
pairs, calculated activation energies ENEB

A based on Eq. 1 and literature values of the activation energy Eexp
A are also listed. For comparison, the

calculated activation energies Etrace
A and their error estimates associated with the Arrhenius temperature dependence of the simulated “tracer”

diffusion coefficients Dtrace(T ) are also listed here and will be discussed in the Molecular dynamics section.

Em (eV) E f (eV) ENEB
A (eV) Eexp

A (eV) E trace
A (eV)

Li4SnS0
4 0.19 0.27 0.3 0.24 ± 0.06

Li4SnS∗
4 0.06 0.15 0.1 0.41a 0.25 ± 0.04

Li4SnSe0
4 0.20 0.36 0.4 0.45b 0.23 ± 0.1

Li4SnSe∗
4 0.07 0.15 0.1 0.08 ± 0.01

aRef. 3.
bRef. 5.

knowledge, there are no published conductivity measurements for the
Li4SnS0

4 material, but Li4SnSe0
4 has been well studied by Kaib, Bron,

et al.5 Our NEB calculated result for Li4SnSe0
4 is in disagreement

with the value of 0.6 eV calculated by Kaib, Bron, et al.,5 but is
in better agreement with the value of E A = 0.45 eV deduced from
fitting the temperature dependence of the experimental conductivity
measurements in the same study.

For the meta-stable structures of Li4SnS∗
4 and Li4SnSe∗

4, the cal-
culated optimal values of E f were obtained for vacancies on an c′

site moving to the nearest interstitial site I a which corresponds to
the a site in the ground state structures. The calculated values of E f

are 0.15 eV for both Li4SnS∗
4 and Li4SnSe∗

4, resulting in estimates of
the activation energies ENEB

A of 0.1 eV for both materials. This result
is not in agreement with the value of E A = 0.41 eV obtained from
fitting the temperature dependence of the experimental conductivity
measured by Kaib, Haddadpour, et al.3

Molecular Dynamics Simulations

In studying the ion migration mechanisms for the Li4SnCh0
4 and

Li4SnCh∗
4 structures, we find the Li ion motions to be highly correlated

presumably due to a complicated energy landscape. For example, in
creating single defects in an otherwise perfect lattice, we found some
of the configurations to be unstable. For example, in the Li4SnS0

4
structure, a d site vacancy is unstable relative to a vacancy on the
nearest a site Li. In the Li4SnS∗

4 structure a d site vacancy is unstable
relative to a vacancy on the nearest c′ site Li. The NEB analysis dis-
cussed in the previous section was unable to completely explain the
conductivity results. In order to get additional information about the
migration processes, we performed molecular dynamics simulations
using the QUANTUM ESPRESSO12 code. While the NEB method
gives insight about the probability of individual hops of the migrating
Li ions, molecular dynamics simulations provide information about
the motions of the ensemble of ions within the simulation cell. As
shown by Mo, Ong, and others,32–35 one way to improve the config-
uration sampling of the simulations is to perform the simulations at
elevated temperatures. The expectation (although unproven) is that
the behaviors of the materials at room temperature can be estimated
from the extrapolated simulation results.

Figure 8 shows a visualization of the Li mobility with a ball and
stick model of the crystals with superposed Li positions at 136 time
steps at intervals of 0.05 ps. It is apparent from these diagrams that at
the relatively low simulation temperatures of T = 635 K and T = 656
K there is substantial motion of all of the Li ions. In addition to the
vacancy and interstitialcy mechanisms studied by the NEB analysis as
discussed above, several other pathways for Li ion motion are evident.

In order to better analyze the molecular dynamics simulations, it
is convenient to define a site occupancy factor as a function of time
si (t) where i denotes the site type. For the ground state structure,
the sites were labeled according to their host site type (a, c, or d) or
the interstitial site type (I c′). For the meta-stable state structure, the
sites were labeled according to their host site type (c′, c, or d) or the
interstitial site type (I a). The site label i was determined from the

closest Li position of the perfect lattice relative to the instantaneous
position of each Li. For convenience, the site occupancy factors were
normalized to unity at full occupancy and followed the sum rule:∑

i

si (t)
ni

N
= 1, [2]

where ni denotes the multiplicity of the site and N denotes the total
number of Li sites. For the materials in this study, nd/N = 2n j/N ,
where j indexes the a, c, or c′ sites and d denotes the d site type. As
shown in Fig. 9, the instantaneous site occupancy factors si (t) are very
noisy and it is convenient to define a time averaged site occupancy
parameter

〈si 〉t ≡ 1

t

∫ t

0
si (t

′)dt ′. [3]

As shown in Fig. 9, 〈si 〉t tends to an asymptotic value at long times.
It is interesting to study the asymptotic time averaged site occu-

pancy factors 〈si 〉t→∞ ≡ 〈si 〉 as a function of simulation temperatures
for the four materials as shown in Fig. 10. These values were deter-
mined from the final time step of each simulation which was between 3
and 8 ps. The values of 〈si 〉 for Li4SnS0

4 and Li4SnSe0
4 structures show

relative small values (<0.5) for the interstitial I c′ site and relative
large values (>0.75) for the host lattice sites (a, c, and d), indicating
a relatively well-ordered structure. On the other hand for the Li4SnS∗

4
and Li4SnSe∗

4 structures, the interstitial sites (I a) are substantially oc-
cupied (>0.5) throughout the temperature range, indicating relatively
disordered structures.

It is possible to use molecular dynamics results in a more quan-
titative analysis of ionic conductivity following the approach imple-
mented by Mo, Ong, and others.32–35 For a molecular dynamics simu-
lation at temperature T with resultant ion trajectories {ri (t)} as a func-
tion of time t , one can calculate the mean squared displacement and use
Einstein’s expression to determine the diffusion constant Dtrace(T ):36

〈
1

6N

N∑
i=1

|ri (t) − ri (t0)|2
〉

= Dtrace(T )[t − t0] + C. [4]

Here the summation over i denotes the N Li ion positions {ri (t)} in the
simulation cell and C denotes a constant. In order to improve the sam-
pling of the simulation, the incremental distance is averaged over the
initial times t0 as implied by the angular brackets in the expression.
As pointed out by Murch,37–39 the temperature dependent diffusion
constant Dtrace(T ) calculated from the mean squared displacement in
this way approximates the diffusion of tracked particles such that can
experimentally realized in radioactive tracer experiments. Since diffu-
sion takes place near equilibrium, it is reasonable to also assume that
the diffusion coefficient has an Arrhenius temperature dependence40

Dtrace(T ) = Dtrace(0)e−E trace
A /kT , [5]

where Dtrace(0) denotes the diffusion coefficient at 0 K, E trace
A de-

notes the activation energy for diffusion, and k denotes the Boltzmann
constant.
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Figure 8. Ball and stick diagrams of molecular dynamics simulations for Li4SnS0
4 at T = 635 K (a) and Li4SnS∗

4 at T = 656 K (b). Initial Sn and S positions are
represented by gray and orange balls respectively. Li positions of the initial configuration and 136 subesquent positions at time intervals of 0.05 ps are indicated
with gray balls. Simulations were performed using microcanonical ensembles (constant energy and volume) in 1 × 2 × 2 supercells. The viewpoint is a projection
down the c-axis.

The temperature dependent direct-current ionic conductivity is
related to Dtrace(T ) by the equation38

σ(T ) = ρq2

kT

Dtrace(T )

H
, [6]
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Figure 9. Instantaneous and time averaged site occupancy factors for molec-
ular dynamics simulation of Li4SnS∗

4 at a temperature of T = 830 K.
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Figure 10. Asymptotic time averaged site occupancy factors 〈si 〉 for (a)
Li4SnS0

4, (b) Li4SnS∗
4, (c) Li4SnSe0

4 and (d) Li4SnSe∗
4 evaluated at various

simulation temperatures.
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Figure 11. Plots of the ionic conductivity in terms of log(T σ) of Li4SnS4
(a) and Li4SnSe4 (b). The calculated values were evaluated using Eq. 6 with
H = 1. The experimental values for Li4SnS∗

4 were taken from Refs. 3 (A),
6 (B), and 7 (C), while experimental results for Li4SnSe0

4 were taken from
Ref. 5 (D). All of the experimental values were analyzed from the published
graphs using digitizing software. The lines represent least squares fits to the
calculated results or the digitized experimental values.

where ρ denotes the number of mobile ions (Li) per unit volume,
q denotes the charge of each Li ion. The factor H is known as the
Haven ratio41 which takes into account so called correlation effects.
For example, the conductivity due to an interstitialcy process which
involves the concerted motion of interstitial and host ions as discussed
above, is not well modeled by the mean squared displacements of
independent ions. If the temperature dependence of the Haven ratio
H were trivial, the activation energy for tracer diffusion E trace

A would
also approximate the activation energy of the conductivity according
to Eq. (6). A simulation to estimate the Haven ratio42 is beyond the
scope of the present work. On the other hand, comparing a calculation
of the conductivity using Eq. (6) assuming H = 1, with experiment,
can provide information on the Haven ratios for these materials.

Figure 11 summarizes the simulation results in comparison
with experimental conductivity measurements. The conductivity of
Li4SnS∗

4 was measured by 3 independent groups,3,6,7 showing very
similar results. The small differences among the experimental con-
ductivity results shown in Fig. 11a may be due to digitization errors.
The digitized data from these experiments are consistent with the Ar-
rhenius activation energy of E exp

A = 0.4 ± 0.1 eV. The simulation
results reported here should be regarded as preliminary, due to the
relatively small number of configurations sampled. Previous work of
this sort32–35 was based on simulation times 10-100 times as long as
our 3-8 ps simulations. For these reasons, the least squares fit lines

through the simulated results for log(T σ) versus 1000/T should be
considered with large error bars.

Mindful of the limitations, it is nevertheless interesting to analyze
the simulation results obtained in this study. Despite the differences
in their site occupancies, the computed tracer diffusion behaviors of
Li4SnS0

4 and Li4SnS∗
4 shown in Fig. 11a were found to be similar.

The magnitudes of the high temperature simulated conductivities is in
the range of the extrapolated experimental conductivities. By fitting a
straight line through the simulated conductivities, the deduced values
of the tracer activation energies are E trace

A = 0.24 ± 0.06 eV and
0.25 ± 0.04 eV for Li4SnS0

4 and Li4SnS∗
4 respectively as listed in

Table VI. The reported errors of the activation energies are likely
underestimates, since they include only errors due to the linear fit and
not the additional sampling errors of the simulation. However, these
errors suggest that the activation energies for Li ion diffusion in these
materials may differ by as much as 0.1 eV. While the tracer diffusion
result for Li4SnS0

4 is consistent with the NEB result, the tracer diffusion
result for Li4SnS∗

4 is not in agreement either with experiment or with
the NEB estimate for the activation energies. For the selenide materials
shown in Fig. 11b, the magnitudes of the high temperature simulated
conductivities are again in the range of the extrapolated experimental
conductivity. However, in contrast with sulfide materials, the deduced
values of the tracer activation energies are distinct; E trace

A = 0.23 ±
0.1 eV and 0.08 ± 0.01 eV for Li4SnSe0

4 and Li4SnSe∗
4 respectively

as listed in Table VI. The activation energy for tracer diffusion in
Li4SnSe0

4 is smaller than both the values obtained from experimental
conductivity measurements and from the NEB calculations. However,
the computed E trace

A value for Li4SnSe∗
4 happens to agree well with

the NEB estimate of the activation energy ENEB
A which was based on

an idealized interstitialcy mechanism. In future work, the molecular
dynamics simulations could be improved by reducing the sampling
errors in terms of the finite size effects, increasing the simulation
times, and considering multiple initial configurations. Additionally,
it may be important to go beyond the constant volume simulations
and to include the effects of lattice expansion. For example, in the
Li4SnS4 system, the lattice contraction accounts for an energy gain
of 0.03 eV/formula unit. One can guess that the constant volume
simulations might bias the systems to result in distinct configurations
at high temperature. Perhaps more realistic representations of the
volumetric variations with temperature could be used to investigate
possible transitions between the structural forms. In addition to these
possible numerical improvements, some of the discrepancies of the
measured and simulated conductivities come from the Haven ratio
which is expected to be non-trivial for these materials due to the
importance of the interstitialcy mechanism.

Conclusions

Our simulations identify ideal ground state structures for Li4GeS0
4,

Li4SnS0
4, and Li4SnSe0

4 and ideal meta-stable structures Li4GeS∗
4,

Li4SnS∗
4, and Li4SnSe∗

4. The meta-stable structures differ from the
ground state configurations by the removal of the a site Li’s to
the so-called c′ sites and the contraction of the a axis lattice pa-
rameter by approximately 0.5 Å. The ground state structures have
been experimentally reported for Li4GeS0

4, Li4SnS0
4, and Li4SnSe0

4 in
References 4, 4, and 5, respectively. Our ideal meta-stable structure is
consistent with the structure of Li4SnS∗

4 reported by Reference 3 and
corroborated by References 6 and 7.

Based on these ideal structures, Li ion migration processes were
computationally examined for Li4SnS0

4, Li4SnS∗
4, Li4SnSe0

4, and
Li4SnSe∗

4. Considering simple defects and NEB analysis, we find
interstitialcy mechanisms in all of these materials to provide efficient
motion of the Li ions primarily along the b and c lattice directions.
The small “formation energy” involved with moving a Li ion from a
host lattice site into an interstitial site resulting in a interstitial-vacancy
pair, E f = 0.15 eV for both Li4SnS∗

4 and Li4SnSe∗
4 implies that these

structures are likely to be disordered at relatively low temperatures as
suggested by the original analysis of Kaib, Haddadpour, et al.3 The
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simulations indicate that the corresponding formation energy is larger
for the ground state structures, where E f = 0.27 eV for Li4SnS0

4 and
E f = 0.36 eV for Li4SnSe0

4, suggesting that these structures are likely
to remain ordered at relatively low temperatures. At the present time,
experimental measurements of the activation energy for ion conduc-
tivity are available only for Li4SnSe0

4 and Li4SnS∗
4. As shown in Table

VI, the NEB estimate of ENEB
A for Li4SnSe0

4 is in reasonable agreement
with experiment assuming an interstitialcy mechanism. On the other
hand, the NEB estimate of ENEB

A for Li4SnS∗
4 is not in good agreement

with experiment, presumably because significant contributions from
more complicated configurations than the pure interstitialcy mecha-
nism are important of ion migration in this case. Molecular dynamics
simulations performed at temperatures of T = 600K and higher in-
dicate that there is significant motion of all of the Li ions including
appreciable occupancy of the interstitial sites for all of the structures.
Plots of the site occupancy parameters from the molecular dynamics
simulations shown in Fig. 10 are consistent with the notion that the
ground state structures remain more ordered for a larger temperature
range than do the meta-stable structures. Sequences of the molecular
dynamics steps identify the interstitialcy mechanism as well as more
complicated motions which contribute to the Li ion mobility. While
these molecular dynamics studies, provide interesting insight into the
properties of these materials, further work is needed to reconcile the
calculated tracer diffusion simulations to quantitative estimates of the
ion conductivity as shown in Fig. 11. In principle if the numerical
accuracy and physical approximations could be improved, it would
be reasonable to attribute the difference between the tracer diffusion
simulations and the conductivity measurements to the Haven ratio.
However, the error bars of the present work are too large to make this
connection at the present time.

The simulations suggest that both Li4SnS4 and Li4SnSe4 have
two ideal phases. The current literature suggests that the ground state
structure is accessible by higher temperature processing while the
meta-stable structure is formed at lower temperatures. For Li4SnS0

4,
MacNeil et al.4 report their highest synthesis temperature as 1023 K,
while for Li4SnS∗

4, Sahu et al.6 report the highest synthesis temperature
as 723 K. Understanding how to control the physical realization of
these two phases, and possibly observing the phase transition might
be of interest for future investigations.
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Solid-state electrolytes that are compatible with high-capacity electrodes are expected to enable the next
generation of batteries. As a promising example, Li2OHCl was reported to have good ionic conductivity and
to be compatible with a lithium metal anode even at temperatures above 100 ◦C. In this work, we explore
the fundamental properties of Li2OHCl by comparing simulations and experiments. Using calculations based
on density functional theory, including both static and dynamic contributions through the quasiharmonic
approximation, we model a tetragonal ground state, which is not observed experimentally. An ordered
orthorhombic low-temperature phase was also simulated, agreeing with experimental structural analysis of
the pristine electrolyte at room temperature. In addition, comparison of the ordered structures with simulations
of the disordered cubic phase provide insight into the mechanisms associated with the experimentally observed
abrupt increase in ionic conductivity as the system changes from its ordered orthorhombic to its disordered
cubic phase. A large Haven ratio for the disordered cubic phase is inferred from the computed tracer diffusion
coefficient and measured ionic conductivity, suggesting highly correlated motions of the mobile Li ions in the
cubic phase of Li2OHCl. We find that the OH bond orientations participate in gating the Li ion motions which
might partially explain the predicted Li-Li correlations.

DOI: 10.1103/PhysRevMaterials.1.075406

I. INTRODUCTION

The drive to produce all-solid-state batteries has led to
exploration of novel solid-state materials that can replace
traditional liquid electrolytes. There are many factors that
determine whether a material can be used in an electrochemical
cell, with one of the most important being that it is a very
good ionic conductor. With the demand for batteries to have
large energy and volumetric densities, all solid-state lithium
ion batteries are very promising. In a battery, the electrolyte
functions to allow transport of the energy storing ion between
the electrodes while preventing the passage of electrons. This
allows for the electrons to be passed through an external circuit
and do work. An efficient mechanism that often results in high
mobility of the “working” ion involves lattice structures with
fractionally occupied (disordered) sites for the working ion.

Recently, two independent experimental investigations
[1,2] showed that introducing defects into the disordered phase
of crystalline Li2OHCl can enhance its Li ion conductivity,
suggesting this system to be very promising as an electrolyte
material for all solid-state Li ion batteries. Earlier studies
reported that Li2OHCl and related materials have a low-
temperature orthorhombic structure [3,4] having low ionic
conductivity and a high-temperature cubic structure [3–5]
having increased ionic conductivity. The temperature of the
phase transition has been reported [1,4] to be approximately
35 ◦C, depending upon sample preparation. In fact, very little
is known about the low-temperature phase of Li2OHCl other
than its reported [3,4] orthorhombic structure. In this work,
we report a detailed experimental and computational study of
pure Li2OHCl in both its low- and high-temperature structures

*natalie@wfu.edu

in order to understand their fundamental properties and their
relationships to the electrolyte capabilities of this material.

II. METHODS

A. Computational methods

In this work, computations were based on density functional
theory [6,7] using the projector augmented wave (PAW)
formalism [8]. The ATOMPAW code [9] was used to generate
the PAW basis and projector functions, and the solid-state
materials were modeled with periodic boundary conditions
using the QUANTUM ESPRESSO software package [10]. The
software packages VESTA [11] and XCRYSDEN [12] were
used for visualizations of structural properties at the atomic
level, and FINDSYM [13] helped in space-group analysis of
the structures. MATLAB [14] was used in the quasiharmonic
analysis of the Helmholtz free energy on a three-dimensional
grid of lattice parameters. It was also used in visualizing
histograms of the OH orientations.

The exchange-correlation functional was approximated
using the local-density approximation [15] (LDA). The choice
of LDA functional was made based on previous investigations
[16–18] of similar materials which showed that provided that
the lattice constants are scaled by a correction factor of 1.02,
the simulations are in good agreement with experiment, espe-
cially lattice vibrational frequencies and heats of formation.

In general, self-consistent field and structural optimization
calculations were well converged with a plane-wave expansion
of wave vectors and reciprocal lattice vectors including
|k + G|2 � 64 Ry. However, a larger plane-wave expansion
including |k + G|2 � 90 Ry was needed for using density
functional perturbation theory, which involves evaluating
derivatives with respect to atomic displacements [19–21],

2475-9953/2017/1(7)/075406(13) 075406-1 ©2017 American Physical Society
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for the simulations of the phonon modes, as discussed
in Sec. III A 2. For converging the electronic structures of
the tetragonal and orthorhombic structures, zone-centered
k-point grids of 12 × 12 × 12 and 12 × 12 × 6 were used,
respectively. The total energy tolerance of the self-consistent
field calculations was set to 10−12 Ry and the resulting
forces were converged within 7 × 10−4 eV/Å. The phonon
density of states was calculated with an energy convergence
parameter of 10−14 Ry for the density functional perturbation
self-consistent cycles. The interatomic force constants were
calculated from density functional perturbation theory using
3 × 3 × 3 and 3 × 3 × 2 zone-centered phonon q-point grids
for the tetragonal and octahedral structures, respectively. The
resultant force constants were then interpolated to evaluate
the phonon density of states using the finer q-point mesh
of 10 × 10 × 10 and 10 × 10 × 5 for the tetragonal and
orthorhombic structures, respectively. The acoustic sum rule
was imposed along the diagonal elements of the dynamical
matrices [21] at q = 0.

In order to simulate the disordered cubic structures, the
numerical accuracy of the calculations could be relaxed while
ensuring that energy differences were calculated with errors
less than 7 × 10−4 eV/formula-unit. The plane-wave expan-
sion included |k + G|2 � 45 Ry and the energy tolerance of
the self-consistent field was set to 10−8 Ry. For simulations
based on supercell sizes 2 × 2 × 2, 3 × 3 × 3, 4 × 4 × 4,
and 5 × 5 × 5, using the corresponding zone-centered k-
point sampling grids of 3 × 3 × 3, 2 × 2 × 2, 1 × 1 × 1, and
1 × 1 × 1, respectively. The molecular dynamics simulations
were performed using 3 × 3 × 3 supercells using a single
zone-centered k point to sample the Brillouin zone. A time
step of 0.96 fs was used for all simulations. Each simulation
was done using the microcanonical ensemble (NVE). The
temperature was controlled by initializing the atoms of the
relaxed supercell with Boltzmann distribution of velocities
corresponding to twice the target temperature. We found that
within the first 0.03 ps of the simulation run, the temperature
typically dropped to approximately its target temperature.
Simulations were carried out for 60–135 ps. Throughout the
simulations, we found that the total energy remained constant
except for a small drift per formula unit of 6 × 10−7 eV/fs and
a corresponding positive drift in the simulation temperature.

B. Experimental methods

In previous work [1], the “fast-cooled” samples of Li2OHCl
were reported. In this work, we focus on “slow-cooled”
samples in order to make it easier to compare with model
calculations. The synthesis of slow-cooled Li2OHCl was based
on the methods previously reported [1]. All reagents were dried
under vacuum at 90 ◦C for 4 h prior to use. LiOH (Sigma
Aldrich, � 98%) and LiCl (Sigma Aldrich, � 99%) were
mixed in a nickel crucible and sealed with a copper gasket
in a bomb reactor inside of an argon-filled glove box. The
reactor was heated to 350 ◦C for 24 h at a rate of 25 ◦C/h,
then slowly cooled to 250 ◦C at 8 ◦C/h, maintained at 250 ◦C
for 24 h, and then cooled to room temperature at 25 ◦C/h.
The material was then hand ground with a mortar and pestle
for 10 min and ball milled (8000M Spex Mixer Mill) using a
mixture of 3 and 5 mm Y-ZrO2 ball milling media in a 1:25

(solid electrolyte: media) mass ratio in a HDPE vial. Due to
the sensitivity of Li2OHCl to moist air, all processes were
completed under argon.

Identification of the crystalline phase for Li2OHCl was
conducted on a PANalytical X’pert Pro Powder Diffractometer
with CuK α radiation (λ = 1.54056 Å). Powder samples
were dispersed on quartz slides and sealed with Kapton R©
films. High-temperature x-ray diffraction (XRD) scans were
conducted with an Anton Paar XRK 900 Hot Stage which
was heated to 200 ◦C at 2 ◦C/min; the temperature was
maintained for 20 min prior to collecting crystallographic data.
Rietveld refinements and analysis of crystallographic data
were completed with HIGHSCORE PLUS, which is a software
package provided through PANanalytical.

Slow-cooled Li2OHCl was cold pressed at 300 MPa in an
airtight cell designed by our group with Al/C blocking elec-
trodes for all electrochemical impedance spectroscopy (EIS)
measurements (Bio-Logic, VSP). EIS measurements were
measured between 1 mHz and 1 MHz with an amplitude of
100.0 mV in a temperature-controlled chamber. For Arrhenius
measurements, the temperature control chamber was ramped
from 25 ◦C to 200 ◦C and allowed to equilibrate for 2 h before
EIS measurements were collected.

III. CRYSTAL STRUCTURE

A. Low-temperature structures of Li2OHCl

1. Static lattice simulations

By static lattice simulations we mean simulations per-
formed by assuming that the atomic positions are time
independent, with no effects of quantum lattice vibrations
taken into account. These results are obtained by optimizing
the total energy with respect to atomic positions and simula-
tion cell parameters within self-consistent density functional
calculations.

One goal of the simulations is to make accurate models
of the available experimental results. Information about the
low-temperature structure of Li2OHCl from experimental
evidence can be summarized as follows. Below temperatures
of approximately 35 ◦C, Schwering et al. [4] reported the
structure of Li2OHCl to be orthorhombic. The analyzed lattice
constants were given as a = 3.8220(1) Å, b = 7.9968(2) Å,
and c = 7.7394(2) Å, and the space group Amm2 (#38)
[22] was suggested. While the fractional coordinates of the
atoms were not reported, the experimental study of the phase
transition indicated the low-temperature phase to be ordered.
The x-ray diffraction pattern of samples of the low-temperature
phase of “fast-cooled” samples were also recently reported
by Hood et al. [1], and analogous results for “slow-cooled”
samples are presented in this work.

From this evidence, we carried out a computational
structure search to determine the ground-state structure of
Li2OHCl. Several candidate structures were optimized using
the density functional theory methods described in Sec. II A.
The candidate structures were based on ordered variations
of the cubic structure found in the literature [3]. As a result
of this computational search, we found the lowest-energy
structure to have a tetragonal lattice characterized by the space
group P 4mm (#99) as shown in Fig. 1(a). (For convenience
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FIG. 1. Ball and stick representations of the computationally
optimized structures of Li2OHCl in the (a) tetragonal structure [space
group P 4mm (#99), rotated by 90 ◦ about the a axis from the standard
orientation] and (b) orthorhombic structure [space group Pmc21

(#26)]. For both structures, green balls represent Cl, red O, blue
H, and silver Li.

in making structural comparisons, we rotated the standard
lattice orientation by 90 ◦ about the a axis.) This ground-state
structure has all of the OH groups oriented along the b

axis and is very closely related to an ordered form of the
high-temperature cubic structure which will be discussed
in Sec. III B. The optimized lattice constants and fractional
atomic coordinates are given in Table I.

The challenge introduced by this DFT ground-state struc-
ture is to reconcile the determined tetragonal structure with
the experimental findings [1,4] of an orthorhombic structure.
One variation of the ground-state structure that could give

TABLE I. DFT ground-state structure of Li2OHCl having tetrag-
onal structure with space group P 4mm (#99), using the nonstandard
coordinates x → x, y → z, and z → −y. The lattice constants
(scaled by 1.02 to correct for the systematic LDA error) are a = c =
3.794 Å and b = 3.578 Å. The columns below list the atomic species,
the multiplicity and Wyckoff label, and the fractional coordinates.

Atom Wyckoff x y z

O 1a 0.000 0.925 0.000
H 1a 0.000 0.654 0.000
Cl 1b 0.500 0.439 0.500
Li 2c 0.500 0.015 0.000

TABLE II. DFT metastable state structure of Li2OHCl having
orthorhombic structure with space group Pmc21 (#26). The lattice
constants (scaled by 1.02 to correct for the systematic LDA error) are
a = 3.831 Å, b = 3.617 Å, and c = 7.985 Å. The columns below
list the atomic species, the multiplicity and Wyckoff label, and the
fractional coordinates.

Atom Wyckoff x y z

O 2a 0.000 −0.024 0.000
H 2a 0.000 0.699 0.000
Cl 2b 0.500 0.500 0.250
Li 2a 0.000 0.001 0.250
Li 2b 0.500 0.086 0.000

rise to the orthorhombic structure is that the OH groups have
a more complex orientational configuration compared with
uniform alignment along the b axis. A structure search found
a candidate orthorhombic structure having a DFT energy of
0.02 eV/FU (eV per formula unit) higher than the ground-state
structure. Other distinct candidate orthorhombic structures
were less stable by at least 0.1 eV/FU. This orthorhombic
structure was found by optimizing the structure obtained by
doubling the c axis of the tetragonal unit cell and coordinating
the OH groups in opposite directions along the b axis. This
structure has the space-group symmetry Pmc21 (#26). A
visualization of this structure is shown in Fig. 1(b) and the
lattice coordinates and fractional coordinates are given in
Table II.

Although this candidate structure can explain the ex-
perimental observation of an orthorhombic unit cell, the
computed lattice constants of a = 3.831 Å, b = 3.617 Å, and
c = 7.985 Å (scaled by 1.02 to account for the systematic
LDA error) are not in good agreement with the x-ray results
measured in this work for the slow-cooled samples, nor the
results reported by Schwering et al. [4], which correspond to
a = 3.8697 Å, b = 3.8220 Å, and c = 7.9968 Å, presumably
measured at room temperature. (Note that we assume that
the mapping of the lattice convention used by Schwering
et al. [4] to our convention corresponds to a → b, b → c,
and c/2 → a). Specifically, a significant discrepancy (of
5%) occurs for the optimized b-axis lattice constant. Similar
difficulties in computing lattice constants associated with OH
bonds using DFT-LDA for structural relaxation have been
reported in the literature [23]. These observations motivated an
extension of our simulations beyond the static lattice treatment.

2. Quasiharmonic simulations

The static lattice simulations described above are based
on a purely classical treatment of the atomic nuclear po-
sitions. More realistically, the quantum mechanical physics
of lattice vibrations can have significant effects on the
structural properties of materials [24]. Within the context of a
canonical ensemble, the appropriate thermodynamic energy
is the Helmholtz free energy F (T ,a,b,c) as a function of
temperature T and volume, which depends on the lattice
parameters a, b, and c. (Note that in the present case, the
experimental evidence suggests that it is sufficient to restrict
consideration to orthorhombic structures, but in principle the
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analysis could be extended to consider variations in the lattice
angles α, β, and γ as well.) It is important to note that
it is the Helmholtz free energy that is appropriate for this
analysis (instead of the Gibbs free energy) because PV is
small (∼10−5 eV) at atmospheric pressures for these systems.

Within the Born-Oppenheimer approximation [25], the
static lattice simulations well approximate the internal energy
of the system due to the static nuclei and the corresponding
total electronic energy USL(a,b,c) for each set of lattice
parameters a, b, and c. In principle, for each set of lattice
parameters a, b, and c, the static lattice internal energy of
a system can have a temperature dependence through its
electronic degrees of freedom. However, for an ordered and
electronically insulating material, it is reasonable to assume
that the static lattice Helmholtz free energy is approximately
temperature independent and dominated by the internal energy
so that

FSL(T ,a,b,c) ≈ USL(a,b,c). (1)

Also within the framework of the Born-Oppenheimer ap-
proximation, the contributions of the lattice vibrations are
energetically additive so that a reasonable approximation to
the Helmholtz free energy can be determined from

FQH(T ,a,b,c) = USL(a,b,c) + Fvib(T ,a,b,c), (2)

where the subscript QH indicates the quasiharmonic approx-
imation [21,26,27] and the vibrational Helmholtz free energy
Fvib(T ,a,b,c) is evaluated at fixed lattice constants a,b,c

using the harmonic approximation. Since we are examining
ordered structures, it is not necessary to include effects of
configurational entropy.

The quasiharmonic approximation [26] is based on the
idea of calculating the vibrational Helmholtz free energy
Fvib(T ,a,b,c) on a grid of lattice constants. For each set of
lattice constants, the harmonic phonon spectrum is determined
in terms of the phonon density of states g(ω,a,b,c):

g(ω,a,b,c) = V

(2π )3

∫
d3q

3N∑
ν=1

δ(ω − ων(q,a,b,c)). (3)

Here, V denotes the volume of the unit cell which contains
N atoms. The integral over the phonon wave vectors q is
taken over the Brillouin zone. For each q, there are 3N normal
mode frequencies ων which contribute to the phonon density
of states. These normal mode frequencies are determined from
the eigenvalues of the dynamical matrix determined from the
harmonic perturbations of the atomic positions τi(R) = τ 0

i +
R + ui(R) for each atom i in each unit cell translated from
the central cell by lattice translation R. Here, τ 0

i denotes the
equilibrium position of the ith atom relative to the origin of
the unit cell and ui(R) denotes its harmonic displacement in
cell R.

Examples of the calculated phonon densities of states for
two different sets of lattice constants a, b, and c are given in
Fig. 2. The two sets of lattice constants were chosen as those
that optimize the Helmholtz free energy at the temperature
T = 61 and 301 K as will be explained later.

FIG. 2. Plots of g(ω,a,b,c) for two different sets of lattice
parameters for the orthorhombic phase of Li2OHCl. The sets of
lattice parameters chosen for these plots correspond to optimal
parameters found in this work. The inset shows the contributions
to g(ω,a,b,c) from the high-frequency contributions on an expanded
scale, corresponding to the stretching of the OH bonds.

For each set of lattice constants, a, b, and c, the static lattice
internal energy corresponds to

USL(a,b,c) ≡ USL
(
a,b,c,

{
τ 0
i

})
. (4)

The Hessian matrix of the static lattice internal energy
corresponds to the “analytic” part of the dynamical matrix
expressed in terms of atoms i and j (with masses Mi and Mj )
in the unit cell and displacement directions α and β [20,24]:

D̃an
iα,jβ(q,a,b,c) = 1√

MiMj

∑
R

eiq·R ∂2USL
(
a,b,c,

{
τ 0
i

})
∂uiα(0)∂ujβ(R)

.

(5)

Here, the summation over R represents the summation over
all lattice translations. The evaluation of the Hessian includes
both contributions from valence electron response and from the
ions (nuclei and frozen core electrons) of the system evaluated
within the QUANTUM ESPRESSO code [10]. For a phonon mode
having wave vector q, it can be assumed that the displacement
can be expressed in terms of a complex amplitude vector
according to

ui(R) = ũi(q)eiq·R. (6)

In terms of these amplitudes, the valence electron response
contributions are evaluated using density functional perturba-
tion theory [19–21]. In ionic materials, such as in this study,
the full dynamical matrix D̃iα,jβ(q,a,b,c) has an additional
“nonanalytic” term representing coupling of the phonon modes
near q ≈ 0 with an electromagnetic field [20,21], which is
also evaluated in the QUANTUM ESPRESSO code [10]. Once the
dynamical matrix is evaluated for each set of lattice parameters,
it can be diagonalized to find the normal mode frequencies
ων(q,a,b,c) and their corresponding amplitudes Aν

iα(q,a,b,c):

∑
jβ

D̃iα,jβ (q)Aν
jβ(q,a,b,c) = ω2

ν(q,a,b,c)Aν
iα(q,a,b,c). (7)
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From the phonon density of states, the vibrational
Helmholtz free energy is given by [24]

Fvib(T ,a,b,c) = kBT

∫ ∞

0
ln

[
2 sinh

(
h̄ω

2kBT

)]

× g(ω,a,b,c) dω, (8)

where kB denotes the Boltzmann constant. In order to ana-
lyze the various contributions, the corresponding vibrational
internal energy is given by

Uvib(T ,a,b,c) = h̄

2

∫ ∞

0
ω coth

(
h̄ω

2kBT

)
g(ω,a,b,c) dω,

(9)

and the vibrational entropy can be determined from

Svib(T ,a,b,c) = Uvib(T ,a,b,c) − Fvib(T ,a,b,c)

T
. (10)

At each temperature T it is possible to minimize the Helmholtz
free energy to determine the optimal lattice parameters
a(T ), b(T ), and c(T ) for each structure

Fmin(T ) = min
(a,b,c)

FQH(T ,a,b,c), (11)

by interpolating the values of FQH(T ,a,b,c) evaluated on the
lattice constant grid.

In practice, for each system, the grid of lattice constants
must be chosen to contain the minimum of the free energy. For
analyzing the tetragonal structure of Li2OHCl, a 4 × 4 × 4
grid was chosen with a uniform grid spacing of approximately
0.095 Å. The range of lattice constants in Å units was 3.720 �
a or c � 4.006, and 3.508 � b � 3.794. For the orthorhombic
structure of Li2OHCl, a 5 × 6 × 5 grid was chosen with
a uniform grid spacing of approximately 0.073 Å. For this
case, the range of lattice constants in Å units was 3.659 �
a � 3.952, 3.466 � b � 3.833, and 7.725 � c � 8.017. For
each grid point of the lattice constants, the static lattice
internal energy USL(a,b,c) was determined by optimizing the
internal atomic coordinates within the self-consistent density
functional formalism. In order to ensure that the optimized
structure corresponded to an equilibrium configuration, it
was helpful to repeat the optimization with initial atomic
coordinates differing slightly from the configurations shown in
Fig. 1 with the use of random noise. It was found that for the
orthorhombic structure, stable structures could be obtained
by adding the noise only along the b axis. With this added
precaution, it was possible to perform the harmonic phonon
calculations at each grid point of the lattice constants without
finding any imaginary (unstable) vibrational modes, indicating
the validity of the quasiharmonic approximation for these
systems and thus determining the phonon density of states
g(ω,a,b,c).

The results of these calculations proved to be interesting in
several aspects. First, in analyzing the optimized Helmholtz
free energies per formula unit for the tetragonal phase
and orthorhombic phase shown in Fig. 3, it is shown that
the tetragonal phase is predicted to be thermodynamically
favorable relative to the orthorhombic phase in the temperature
range from 0 to 425 K. It is important to note the sensitivity
to the crossing point of the free energies in Fig. 3 to a small

FIG. 3. Optimized Helmholtz free energy Fmin (eV/FU) as a
function of temperature T (K) computed for the tetragonal (red line)
and orthorhombic (black line) structures of Li2OHCl. The solid lines
were determined by interpolation of the grid values, while the symbols
represent values of Fmin(T ) recalculated at the minimum lattice
constants for the given temperature. The zero of energy (specifically
for USL) is arbitrary but consistent throughout this paper.

error in the calculation. A relative error of ±0.01 eV shifts
the crossing point of the relative free energies by ∼±100 K.
While there is a large error bar on the transition temperature,
the simulations suggest that the tetragonal phase should be
thermodynamically stable at low temperatures. In fact, to the
best of our knowledge, the tetragonal phase has not been
reported in the experimental literature nor in the experimental
x-ray analyses of this work. Since the tetragonal structure
requires all of the OH groups to be aligned in the same
direction, perhaps there are kinetic reasons which disfavor
the tetragonal structure.

It is also interesting to look at the temperature dependence
of the optimized lattice parameters a(T ), b(T ), and c(T )
for the tetragonal and orthorhombic phases as shown in
Fig. 4. The lattice parameters for the tetragonal phase are
continuous, and show a gentle increase in the lattice parameters
across the temperature range. The lattice parameters for the
orthorhombic phase are also continuous with a more rapid
increase in b(T ) and smaller rapid decrease in a(T ) at T 150 K.
Table III lists some typical values of the low-temperature
and room-temperature optimized lattice parameters for both
the tetragonal and orthorhombic phases. Comparing the
low-temperature results computed within the quasiharmonic
approximation with the corresponding static lattice results, we
see that effects of lattice vibrations are to generally increase
the lattice constants with largest increase occurring along
the b axis which is the axis along which the OH bonds are
aligned in these structures. The simulated lattice constants
for the orthorhombic structure at room temperature in the
quasiharmonic approximation are closer to the experimental
results compared with the static lattice simulations.

To compare the theoretical x-ray diffraction with experi-
ment, the atomic coordinates of orthorhombic structure were
relaxed at the predicted room-temperature lattice constants;
these atomic coordinates were used in a simulation cell with
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FIG. 4. Comparison of each of the lattice parameters as a function
of temperature, calculated by optimizing Fmin(T ) at each temperature
and by multiplying by 1.02 to account for the systematic LDA
error, comparing both the theoretical tetragonal and orthorhombic
structures.

the theoretical corrected lattice parameters from Table III
to produce theoretical x-ray diffraction patterns to compare
with experiment. A comparison is shown in Fig. 5 with the
orthorhombic structure before the quasiharmonic corrections,
the room-temperature x-ray diffraction for the theoretical
quasiharmonic corrected coordinates and lattice parameters
from Table III, theoretical coordinates with experimental
lattice parameters from Table III, and the experimental x-ray
diffraction in this work. It is apparent that the x-ray diffraction
for the theoretical atomic coordinates with experimental
lattice parameters from this work is in good agreement with
the experimental diffraction peaks measured in this work,
while the purely theoretical quasiharmonic peaks are in
reasonable agreement. It is noted that the quasiharmonic
correction does improve the comparison with experiment. Its
biggest effect is to increase the b lattice parameter by 0.1
Å relative to the static lattice value, while the experimental

TABLE III. Summary of low-temperature and room-temperature
lattice parameters (in Å units) for Li2OHCl calculated from the
quasiharmonic approach defined in Eq. (11), scaled by a factor of
1.02 to account for the systematic LDA error. Results for both the
tetragonal (tet) and orthorhombic (ortho) phases are tabulated at low
temperature and at room temperature and compared with static lattice
(SL) results. The simulation results are compared with experiment.

a (Å) b (Å) c (Å)

tet SL 3.79 3.58 3.79
tet at T = 106 K 3.92 3.69 3.92
tet at T = 271 K 3.93 3.71 3.93
ortho SL 3.83 3.62 7.98
ortho at T = 106 K 3.86 3.65 8.02
ortho at T = 271 K 3.86 3.73 8.02
Experimenta 3.8697(1) 3.8220(1) 7.9968(2)
Experimentb 3.8749(8) 3.8257(8) 7.999(1)

aFrom Schwering in Ref. [4], mapping the reported values for the
c/2, a, and b axes into the a, b, and c axes of this work.
bMeasured in this work at T = 294.25 K.

FIG. 5. Comparison of simulated and experimental x-ray diffrac-
tion (λ = 1.54056 Å) patterns for the orthorhombic structure of
Li2OHCl. Black (top) shows the simulated result corresponding to
the static lattice approximation. Red and green curves (upper middle)
show the simulated result corresponding to the quasiharmonic ap-
proximation at 106 and 271 K, respectively. Blue curve (lower middle)
was derived using the lattice parameters measured in this work and
the fractional coordinates of the quasiharmonic simulations at 271 K.
Orange (bottom) curve represents experimental measurements in this
work.

b-axis lattice parameter is 0.2 Å larger than the static lattice
value. The corresponding computed fractional coordinates for
the orthorhombic structure were found to be insensitive to
experiment, with the largest change occurring for the H site
and for one of the Li sites which vary by approximately 0.01
fractional units along the b axis between T = 106 and 271 K.

In order to get more information about these results, it is
helpful to look at separate contributions to the free energy.
Figure 6 shows the static lattice internal energy
USL(a(T ),b(T ),c(T )), the vibrational internal energy
in the quasiharmonic approximation [according to
Eq. (9)] Uvib(T ,a(T ),b(T ),c(T )), and the vibrational
entropy in the quasiharmonic approximation [according
to Eq. (10)] Svib(T ,a(T ),b(T ),c(T )) [as represented by
−T Svib(T ,a(T ),b(T ),c(T )), in parts (a), (b), and (c),
respectively]. In comparing the internal energies USL and
Uvib for the tetragonal and orthorhombic structures as
a function of temperature, it is seen that both of these
increase with increasing T . The static lattice internal energy
USL(a(T ),b(T ),c(T )) differs for the two structures by
0.02 eV or more throughout the temperature range. The
vibrational internal energy Uvib(T ,a(T ),b(T ),c(T )) for
the tetragonal structure is slightly larger than that of the
orthorhombic structure by 0.005 eV or less throughout the
temperature range. The difference in the vibrational entropies
Svib(T ,a(T ),b(T ),c(T )) for the two structures becomes larger
at higher temperatures, with the orthorhombic structure having
higher entropy. The orthorhombic structure has a steeper rise
in its static lattice internal energy but at higher temperatures,
the larger entropy means that eventually the −T S contribution
of the phonon free energy lowers the total free energy of the
orthorhombic structure below that of the tetragonal structure.
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FIG. 6. Plots of thermodynamic quantities for the theoretical tetragonal and orthorhombic structures. Black is orthorhombic and red is
tetragonal for all plots. Part (a) shows USL(a(T ),b(T ),c(T )) determined from the static lattice DFT total energies at the optimized lattice
constants for temperature T . The zero of energy for USL is arbitrary, but consistent throughout this paper. (b) Shows the vibrational internal
energy Uvib(T ,a(T ),b(T ),c(T )). (c) Shows the vibrational entropy contribution in terms of −T Svib(T ,a(T ),b(T ),c(T )).

For example, our calculations find that at T = 300 K,
−T [Svib(ortho) − Svib(tet)] = −0.02 eV. The increase in
entropy for the orthorhombic structure can be attributed to a
shift in the phonon density of states to lower frequencies in
the frequency range of 0 � ω/(2πc) � 1000 cm−1 as shown
in Fig. 2.

Having found a reasonable model for the orthorhombic
phase of Li2OHCl, it is useful to focus on some of the details
of the computational results for that system. One interesting
feature of the computed orthorhombic phase is a predicted
abrupt but continuous change of the b-axis parameter near
T = 150 K as shown in Fig. 4. To investigate this further,
contour plots of the free energy FQH(T ,a,b,c), with the c axis

fixed at the predicted value for that temperature and in the
entire plane of the interpolated results for the a and b axes, are
presented in Fig. 7. The results show that going from low to
high temperature, there is an expansion/elongation of the free
energy minimum at the transition followed by a recentering
and steepening of the minimum.

B. High-temperature structures of Li2OHCl

The phase transition of Li2OHCl has been observed [4] at
temperatures above 35 ◦C, changing between the orthorhombic
structure to cubic structure with heating. Hysteresis has been
observed during the heating and cooling cycles. Evidence from

FIG. 7. Contour plots of the computed Helmholtz free energy F (T ,a,b,c(T )) of the orthorhombic structure for four representative
temperatures T . For each T , the plot spans the full grid of points in the a-b plane at the optimized value of c(T ). The vertical axis corresponds
to the a axis which spans the range 3.659 � a � 3.952 Å, the horizontal to the b axis which spans the range between 3.466 � b � 3.833 Å.
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TABLE IV. Fractional coordinates and site occupancies for the
cubic Pm3̄m (#221) structure of Li2OHCl. The columns below list
the atomic species, the multiplicity and Wyckoff label, the fractional
coordinates, and their occupancy factors as determined by Ref. [3].
The H coordinates were not determined.

Atom Wyckoff x y z occ.

O 1a 0 0 0 1
Cl 1b 1

2
1
2

1
2 1

Li 3d 1
2 0 0 2

3

nuclear magnetic resonance (NMR) analysis [4] is consistent
with the cubic structure being disordered as is consistent
with the structure of the deuterated material, Li2ODCl, which
was analyzed by Eilbracht et al. [3] to have the space group
Pm3̄m (#221). The corresponding atomic positions and their
fractional occupancies are listed in Table IV. The lattice
parameter of cubic Li2OHCl was reported by Schwering et al.
[4] to be a = 3.9103(1) Å. A visualization of the unit cell
indicating the fractional occupancy is shown in Fig. 8(a), while
a model structure based on an optimized 5 × 5 × 5 supercell
is shown in Fig. 8(b).

In order to better understand the disordered system, several
models were investigated. Supercells were prepared with
lithium, oxygen, and chlorine at their ideal positions from
Table IV, choosing two-thirds occupation of the lithium sites
at random. The hydrogen sites were placed randomly on 4π

FIG. 8. (a) Shows a possible structure for a unit cell of cubic
Li2OHCl with shaded white and gray balls indicating the partially
occupied Li sites. (b) Shows an optimized structure for a 5 × 5 × 5
supercell of the disorder structure. The Li, O, H, and Cl sites are
indicated with silver, red, blue, and green balls, respectively.

solid angles corresponding to the surfaces of spheres about
each oxygen site having radii equal to 1 Å, representing the
bond length of OH. These supercells were initialized at the
cubic lattice parameters reported by Schwering et al. [4] and
then all cell dimensions and atomic positions allowed to relax.
This was done for 20 examples of 2 × 2 × 2, 10 examples
of 3 × 3 × 3, 3 examples of 4 × 4 × 4, and 2 examples of
5 × 5 × 5 supercells. A visualization of one of the relaxed
5 × 5 × 5 supercells is shown in Fig. 8(b). All of the relaxed
configurations show deviation from cubic symmetry; one
expects that a typical small piece of disordered material will
produce a noncubic strain. In the limit of large bulk these
strains should average out giving the cubic structure. The
average of the axis lengths and axis angles for the progressively
larger supercells is shown in Figs. 9(a) and 9(b), respectively,
with error bars indicating the standard deviation (as distinct
from the standard deviation of the mean). The results show that
the standard deviation of the results gets smaller as the cell size
increases; this is is indicative of the disordered model going to
cubic in the large supercell limit. The average of the axes for
the 5 × 5 × 5 supercell calculations is taken as the estimate
for the theoretical disordered cubic lattice parameter, which is
3.87 Å compared to the 3.91 Å reported by Schwering et al.
[4].

As a further check on the simulated structure, the diffraction
pattern for the the 5 × 5 × 5 optimized supercell model shown
Fig. 8(b) is compared with simulated x-ray pattern generated
using the lattice parameters given by Schwering et al. [4]
and with the experimental x-ray pattern measured in this
work. Note that the lattice constant measured in this work
is a = 3.9083(1) Å at T = 323.15 K and a = 3.9345(1) Å
at T = 473.15 K which compares well with the value a =
3.9103(1) Å reported by Schwering et al. [4]. The results are
presented in Fig. 10. The agreement between the diffraction
patterns is very good and shows that even with the large atomic
relaxations relative to the ideal structure, the diffraction peaks
are very sharp. In this case, the mobile species, Li+ ions and
H associated with OH groups, slightly perturb the less mobile
diffracting species and have themselves very small diffraction
cross sections.

IV. IONIC CONDUCTIVITY AND MOLECULAR
DYNAMICS SIMULATIONS

The ionic conductivity versus temperature behavior of
samples of Li2OHCl for “slow-cooled” samples prepared in
this study are presented as the red circles shown in Fig. 11.
The results are similar to those presented in Ref. [1] for
fast-cooled samples. The jump by more than a factor of 10 in
the conductivity for temperatures near T ≈ 310 K corresponds
to the orthorhombic ↔ cubic structural change. A similar but
larger conductivity jump for samples of Li2OHCl was reported
by Schwering et al. [4].

Molecular dynamics simulations were carried out to better
understand both the lithium ion diffusion and conductivity and
the structural properties of the cubic phase of Li2OHCl. The
simulations were carried out for two unique starting config-
urations constructed as described in Sec. III B for 3 × 3 × 3
supercells. For these simulations, the cubic lattice parameters
were taken from the experimental parameters [4], reduced
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FIG. 9. Summary of results for optimized models of Li2OHCl in its disordered cubic structures plotted as a function of n used to construct
n × n × n supercells in each case. The average value is indicated with a filled symbol and the error bars in the plots indicate the standard
deviation. (a) 〈�USL〉 denotes the average static lattice internal energy per cubic unit cell of the model configuration relative to the corresponding
internal energy in the tetragonal phase. (b) 〈a〉 denotes the average cubic lattice parameter. (c) 〈α〉 denotes the average lattice angle.

by 2% to approximate the LDA correction. The molecular
dynamics simulations were carried out at constant volume
in the manner described in the Methods section (Sec. II A)
for the target temperatures in the range of T = 300–600 K
which resulted in 14 molecular dynamics samples at computed
temperatures in the range of T = 350–700 K. As discussed
in further detail below, the simulations for one of the initial
configurations configurations was carried out for approxi-
mately 120 ps, while the other configuration was carried out
for approximately 60 ps. The similarity of analyzed results
from the two initial configurations at equivalent temperatures
suggest some degree of sampling convergence. Of course, it
is always the case that the molecular dynamics results would
benefit from longer simulation times. On the other hand, the
analysis shows that during the simulation runs at even for the
lowest-temperature simulations, 354 and 396 K, there are 5 and
17 hopping events, respectively. This indicates the presence of

FIG. 10. X-ray diffraction (λ = 1.54056 Å) results of the cubic
phase of Li2OHCl, comparing simulated and measured intensities as
a function of 2
 (deg). The top plot was generated using the lattice
parameters given by Schwering et al. [4] and fractional coordinates
of the ideal disordered lattice. The second plot is the diffraction
pattern generated from the 5 × 5 × 5 optimized supercell model
shown Fig. 8(b) and the bottom plot is an experimental x-ray pattern
measured at T = 323.15 K for a slow-cooled sample synthesized in
this work.

low-energy activation barriers for hopping in this disordered
system. These events were counted by assigning each Li to
its nearest lattice site according to the simulation data of each
run and then counting the number of discrete site transitions
during the simulation.

Based on Kubo’s analysis of the fluctuation-dissipation
theorem in the context of evaluating transport properties of
materials, the conductivity σ of a system is related to the
averaged correlation function of current density J(t) of the
system [28,29]

σ = V

3kBT

∫ ∞

0
〈J(t) · J(0)〉dt. (12)

In this expression, V represents the volume of the simulation
cell, kB is the Boltzmann constant, and T is the temperature.
The angular brackets indicate ensemble averaging over initial
configurations and the evaluation averages the diagonal of the
conductivity tensor. For a system having ions of charge eQi

FIG. 11. Red circles correspond to the measured relationship
between ionic conductivity σ (S/cm) and temperature T (in K)
for slow-cooled samples of Li2OHCl plotted as log10(T σ ) versus
1000/T . The black squares correspond to the simulated conductivity
inferred from tracer diffusion values according to Eq. (20) in terms
of log10(T σHr ) versus 1000/T .
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and instantaneous particle velocities Ṙi(t), the current density
is given by

J(t) = e

V

N∑
i=1

QiṘi(t), (13)

where the summation over particles i includes all N ions in
the simulation cell. By integrating Eq. (12) over time, the
conductivity can be expressed in terms of the instantaneous
particle positions Ri(t) in the form [29,30]

σ = e2

6V kBT
lim
t→∞

1

t
〈|p(t)|2〉, (14)

where the charge moment vector is given by

p(t) ≡
N∑

i=1

Qi[Ri(t) − Ri(0)]. (15)

Here, the angular brackets indicate ensemble averaging over
initial configurations. In practice, it is expected that only the
motions of the Li ions (with charge eQLi) make significant
contributions to the current density, while the current density
contributions from the other ions of the system are expected
to average to 0. Including only the Li ion contributions to the
squared moment vector using Li ion labels (i = 1,2, . . . ,M),
we can approximate

|p(t)|2 ≈ Q2
Li[�self (t) + �cross(t)], (16)

where

�self (t) ≡
M∑
i=1

|[Ri(t) − Ri(0)]|2 (17)

and

�cross(t) ≡
M∑
i=1

M∑
j �=i=1

[Ri(t) − Ri(0)] · [Rj (t) − Rj (0)].

(18)

The independent ion contribution 〈�self (t)〉 determines the
tracer diffusion coefficient D∗ according to [29]

D∗ = 1

6M
lim
t→∞

1

t
〈�self (t)〉. (19)

In practice, D∗ is estimated from linear fits of computed values
of �self (t) or, equivalently, to the mean-squared displacements
(MSD) in the molecular dynamics simulations. The tracer
diffusion coefficient D∗ can also be measured experimentally
[31–33]. In order to relate the Li ion tracer diffusion to the Li
ion conductivity, it is convenient to define [29]

σ = M

V

e2Q2
LiD

∗

kBT Hr

. (20)

Here, the Haven ratio (Hr ) [31,34] is a measure of the
correlation of the conducting ions which also measures the
discrepancy between the measured ionic conductivity and
the one that would be estimated from the tracer diffusion
coefficient used in the Nernst-Einstein relation. If the long
time limit of the ensemble average of the ion cross correlation
term in the squared charge moment vector 〈�cross(t)〉 is zero,

Hr = 1. The molecular dynamics runs in this study were
analyzed for their tracer diffusion coefficients D∗(T ) and using
Eq. (20) assuming Hr = 1. The results are plotted together
with the experimental conductivity in terms of log10(T σ ) in
Fig. 11. In evaluating Eq. (20), we have assumed that QLi = 1
which is consistent with the calculated Born effective charge
[20] on a Li site.

The comparison in Fig. 11 between the calculated results
from calculated tracer diffusion coefficients and the experi-
mental measurements of ionic conductivity suggest that this
system has a very large value of the Haven ratio Hr � 1.
As mentioned above, the molecular dynamics simulations
may have some statistical errors, particularly at the lower
temperatures. However, our analysis suggests that longer
simulation times would not change the qualitative evidence for
the large Haven ratio. The results also suggest that the Haven
ratio is temperature dependent, varying between Hr (T =
470 K) ≈ 1 × 102 and Hr (T = 310 K) ≈ 2 × 105. According
to the analysis derived from the Kubo formalism, we see
that in order to achieve Hr > 1 the long time ensemble
average of 〈�cross(t)〉 must be less than zero, which can occur
when correlated ions hop in opposite directions. Analyzing
our molecular dynamics simulations at the lower-temperature
runs, we see evidence of 〈�cross(t)〉 < 0, however, we do
not have enough statistics within the current simulations to
make a quantitative analysis of this term. It is documented
[35] that while the independent ion contribution 〈�self (t)〉 is
accessible within molecular dynamics simulations, the ion pair
correlation contribution 〈�cross(t)〉 is very difficult to converge.
Typically, Haven ratios for lattice systems are less than 1
[29]. A few recent reports of computed Haven ratios in other
electrolytes find Hr < 1 [36,37]. On the other hand, there have
been a few reports of large Haven ratios for proton diffusion
[38] and for simulations of Ag migration in phases of AgI [39].
In both of these cases, correlated motions of the active ion
could be proposed. In cubic Li2OHCl, we expect that the Li
ion motions are correlated through their interaction with the
neighboring OH orientations. For example, we find that there
seems to be a preference for the OH groups to be oriented
toward the Li vacancy sites, as discussed further below.

The diffusion coefficient and conductivity are temperature
dependent. It is often the case that the tracer diffusion coeffi-
cient has an Arrhenius form for the temperature dependence:

D∗(T ) = D∗
0e

−Ea/(kBT ), (21)

where Ea measures the activation energy for the process.
Fitting the simulated tracer diffusion results to Eq. (21), we es-
timate Etracer

a = 0.12 ± 0.02 eV. Fitting the measured log(T σ )
versus 1/T results in the temperature range 330–500 K,
we estimate that the corresponding conductivity activation
energy for the cubic phase is Eσ

a = 0.70 ± 0.02 eV. A closer
examination of the measured log(T σ ) plots shows a small
deviation from pure Arrhenius behavior similar to a system
reported in the literature which was modeled as having
a distribution of activation barriers due to configurational
disorder [40]. For cubic Li2OHCl, due to the disorder in Li ion
sites and OH orientations, it seems reasonable that there would
be a distribution of local activation barriers for site hopping.
The large difference between the calculated Etracer

a and Eσ
a
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FIG. 12. Plots of the probability densities for OH angles A(θ,φ) at three representative temperatures evaluated from histograms of the
molecular dynamics simulations.

implies that the mechanisms involved in the two processes are
quite different, as is consistent with the notion that the Li ion
motions are correlated during conductivity measurements.

One important characteristic of the cubic structure of
Li2OHCl compared with the orthorhombic phase is the
variation in the OH bond directions. Our analysis of the
quantum effects of H from the quasiharmonic treatment of
lattice vibrations suggests that the rotations of OH bonds
may have significant quantum contributions, which is beyond
the purview of this study. However, the molecular dynamics
simulations do provide a classical treatment of the OH
orientations within the various ensembles studied as a function
of temperature. For one of the prepared 3 × 3 × 3 supercells
of the cubic structure and a set of simulations at three
representative temperatures, the atomic configurations at each
time step were used to make histograms of the OH bond angles,
A(θ,φ), in terms of θ , measured with respect to the lattice c
axis, and φ, measured with respect to the lattice a axis. In order
to interpret A(θ,φ) as a probability density of finding the OH
bonds at each θ and φ orientation, it has been normalized over
the unit sphere. In Fig. 12, plots of A(θ,φ) are presented, in
terms of their projection onto the unit sphere, for simulations
at T = 385, 550, and 700 K in Figs. 12(a), 12(b), and 12(c),
respectively. In principle, these plots should exhibit the cubic
symmetry of the system in the ergodic limit of the simula-
tion. For the lowest-temperature simulation of T = 385 K,
we expect the asymmetry shown in the plot is due to the fact
that the system is moving more slowly and sampling fewer
configurations. The results for A(θ,φ) evaluated at T = 385
and at 550 K suggest that OH bonds are equally likely to be
oriented along the 〈100〉 and 〈110〉 directions. At the highest
temperature analyzed, the probability density is more diffuse,
but suggests that the OH bonds are likely to be concentrated
within {110} planes; there is a minimum probability of the
bond to oriented along the 〈111〉 directions.

Comparing the structural diagrams for the tetragonal and
orthorhombic phases (Fig. 1) and the cubic phase (Fig. 8), it
is apparent that the orientation of the OH bonds in Li2OHCl
affects the Li ion positions. One way to visualize the motion
of the Li ions and the H orientations is to construct a
time superposed structural diagram as shown in Fig. 13.
These figures were constructed from a molecular dynamics
simulation at T = 640 K by keeping the Cl and O sites at their
initial positions while snapshots of the Li and H positions were
superposed for time intervals of 15 fs during 3.5 ps. Figure 13

shows this time superposed diagram from two vantage points:
the first in Fig. 13(a) shows the entire simulation cell, and
the second in Fig. 13(b) shows the slice made by the black
rectangular box in Fig. 13(a) turned about the a axis to face
the viewer. In both Figs. 13(a) and 13(b), the black oval
encloses a lithium hopping event. The hopping event observed
is consistent with the direct site hopping mechanism that was
proposed by Li, Zhou, et al. [2] in their study of similar
systems. While in this time superposed diagram, the time
sequence of motions is lost, the concentration of hydrogen
positions (blue) near the sites corresponding to Li ion vacancies
(represented by black boxes) shown in Fig. 13(b) suggests
correlation between the two. The time sequence arrows in
the diagram also lend further support to the notion that OH
orientations act to “gate” the Li ion hops.

In order to get further insight into the Li ion dynamics
in the cubic phase of Li2OHCl, it is convenient to define a
quantitative parameter to gain insight into the time dependence
of the occupation of the available Li sites. In the structure
section, it was shown how the Li site disorder implies
the lithiums being randomly distributed in space across the
available sites, giving a 2

3 spatial average of the lithium site
occupancy. For each site i, it is convenient to define an average
occupancy parameter:

〈Si(t)〉time ≡ 1

t

∫ t

0
Si(t

′)dt ′, (22)

where

Si(t) ≡
{

1 if site i is occupied at time t,

0 if site i is not occupied at time t .
(23)

For this purpose, each Li was assigned to the closest lattice
site. In time, as the Li ion hops between all sites with equal
probability, we expect that the asymptotic value of the average
occupancy parameter is

lim
t→∞(〈Si(t)〉time) = 2

3 . (24)

In order to monitor the Li ion hopping as a function of time t ,
it is convenient to define the following ergodicity measure:

Em(t) = 〈∣∣ 2
3 − 〈Si(t)〉time

∣∣〉
sites. (25)

For our system, initialized with random occupation of the
fractionally occupied Li sites, Em(t = 0) = 4

9 . As the sim-
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FIG. 13. Time superposed structural diagram of molecular dynamics simulation at T = 640 K using the same ball conventions as used in
Fig. 8. Cl and O sites are represented at their initial positions and no OH bonds are drawn. Small black boxes indicate Li vacancy positions.
Snapshots of the Li and H positions at 15-fs time intervals within the 3.5-ps simulations are superposed in the diagram. A black oval encloses
Li site hops which have been completed during the simulation. The curved black arrows indicate the time sequence of the Li motion with the
arrow tip corresponding to the latest time. The curved yellow arrows similarly indicate the time sequence of the H motions. (a) Shows the entire
simulation cell projected on to the a-c plane. (b) Shows a slice of the simulation indicated by the black rectangle in (a), projected onto the a-b
plane.

ulation proceeds with Li hopping events, we expect that
Em(t) will decrease in time. Because of the asymptotic
value of the average occupancy parameter noted in Eq. (24),
the asymptotic value of the ergodicity measure must be
Em(t → ∞) = 0. The behavior of Em(t) for the molecular
dynamics simulations gives information about the Li ion
hopping events and a measure of their ergodicity, as illustrated
in Fig. 14 for the molecular dynamics simulations with two
initial configurations. For our simulations, Em(t) does decrease
with time, but within the simulation times of the current work,
the asymptotic limit has not been reached even at the highest
simulation temperatures. The values of Em(t) were averaged
over initial times, so that the early times in the plot have
better statistics. The results show that the higher-temperature
simulations have increased ion hopping as expected, but the
lower-temperature simulations need much longer times to
achieve equivalent values of Em(t).

V. SUMMARY AND CONCLUSIONS

In this work, the structural and electrolyte properties of
Li2OHCl are examined. By comparing theoretical results
to slow-cooled pristine samples of Li2OHCl, a reasonable
model of the low-temperature orthorhombic structure is found.
The quasiharmonic approximation is found to improve the
agreement of the simulations with experiment. A theoretical
ground-state tetragonal structure is also found that has not been
experimentally observed.

Structural calculations of the disordered cubic phase are
in good agreement with experiment, particularly for large
(5 × 5 × 5) supercells. Moreover, the comparison of models of
the ordered structures to the cubic structure can be described
in terms of the availability of new sites for Li ion motion
related to the OH bond directions. This is consistent to the
abrupt change in ionic conductivity observed at the phase
transition. Molecular dynamics simulations of tracer diffusion

FIG. 14. (a), (b) Show plots of Em(t) as defined in Eq. (25) for two different initial configurations of cubic Li2OHCl modeled in 3 × 3 × 3
simulation cells. The legends list the average temperature of each simulation.
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in the cubic phase are used to estimate ionic conductivity
assuming no correlations among the mobile ion motions. The
results show a large discrepancy with the experimental ionic
conductivity measurement. The discrepancy gives evidence of
a large temperature-dependent Haven ratio, indicating highly
correlated Li ion motion. Molecular dynamics simulations also
give evidence of a relationship between the OH orientations
toward vacant Li sites. The OH bond orientations are suggested
to participate in a gating mechanism for Li ion conduction. For
analyzing the results, an ergodicity measure has been defined
which goes to zero when all of the available Li sites have
achieved their average occupation.

The combined experimental and computational study of
well-formed Li2OHCl structures should help inform the fur-
ther development of this material as an electrolyte for all solid-
state Li ion batteries as discussed in the recent literature [1,2].
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The challenge of computing ionic transport coefficients from first principles is to achieve the
necessary convergence with respect to system size, simulation time, and configurational sampling.
Unfortunately current computer resources are not yet available for such convergence studies at the
fully first principles level. In this work, a lattice kinetic Monte Carlo is used to study the convergence
properties of transport coefficients, using the Li sub-lattice of the Li ion electrolyte Li2OHCl as an
example system. The specific transport coefficients representing tracer diffusion, effective diffusion,
and mobility are carefully studied for their convergence properties. The ion pair correlations of the
effective diffusion is also recast as a sum over events which allows for a detailed study of the nature
of the correlation in terms of time and spatial separation which may be used to reduce the standard
deviation. As an example, the analysis of the statistical properties of the tracer and effective diffusion
are used to perform informed first principles simulations of Li2OHCl. These simulations provide
further evidence for anti-correlated Li-ion motion as predicted in a previous study.

I. INTRODUCTION

Renewed technological interest in discovering crys-
talline solid electrolytes,1 has inspired the use of first
principles computational methods for studying the prop-
erties of these materials, especially in simulating their
ionic transport.2,3 For ionic conductors whose conduc-
tivity mechanisms involve significant correlations among
the mobile ions, it is computationally challenging to ac-
curately simulate the transport properties. One such sys-
tem that has received attention from several research ef-
forts is Li2OHCl and related compounds.4–8 For this ma-
terial in its disordered cubic phase, it has been suggested7

that the mobile Li ions have correlated motion.

In fact, the notion of correlations affecting ionic con-
ductivity is not new. Fifty years ago, the study of ionic
conductivity for simple mechanisms and structures in-
cluded corresponding estimates of correlation effects in
terms of the Haven ratios.9–12 More recently, the devel-
opment of solid electrolyte materials for all-solid-state-
battery technology has inspired new interest in accurate
analysis and simulation of ionic conductivity with more
complicated mechanisms and structures,13,14 for which
the estimate of the Haven ratio is much more challeng-
ing. In order to gain insight into the convergence issues
associated with evaluating ionic conductivity, we have
analyzed an efficient and simple model based on a lattice
kinetic Monte Carlo approach.15

The remainder of the paper is organized as follows.
The general formalism for evaluating ionic transport co-
efficients is reviewed in Sec. II. The details of the lattice
kinetic Monte Carlo method are presented in Sec. III.
The specific results of this work are based on the lattice
structure appropriate to describing the disordered cubic
phase of Li2OHCl, but can be adapted to disordered lat-
tice models more generally. Sec. IV presents the detailed
results of statistical and convergence properties of the
lattice kinetic Monte Carlo simulations of the ionic trans-

port parameters. In Sec. V A the lattice kinetic Monte
Carlo results are further analyzed in terms of temporal
and spatial correlations. First principles simulations of
this system are contrasted with the lattice kinetic Monte
Carlo results in Sec. V B. Sec. VI contains the summary
and conclusions.

II. FORMALISM

There are several alternative methods of simulat-
ing ionic conductivity in solids.12 For example, Kubo16

showed that the fluctuation-dissipation theorem can be
used in the absence of an explicit electrical field to evalu-
ate transport properties of materials. The diagonal com-
ponents of the conductivity tensor, σαα, (where α de-
notes the cartesian components x, y, or z) is related to
the time integral of the time auto correlation function of
the current density J(t) vector components

σKubo
αα =

V

kBT

∫ ∞

0

〈Jα(t0 + τ)Jα(t0)〉t0dτ. (1)

In this expression, V represents the volume of the simu-
lation cell, kB is the Boltzmann constant, and T is the
temperature. The 〈〉t0 brackets indicate ensemble aver-
aging over initial configurations at time t0 and the eval-
uation averages the αα component of the conductivity
tensor. For a system having ions of charge eQi and in-
stantaneous particle velocities Ṙi(t), the current density
vector is given by

J(t) =
e

V

N∑

i=1

QiṘi(t), (2)

where, in principle, the summation over particles i should
include all ions in the simulation cell. However, in the
following we will assume that it is a reasonable approxi-
mation that only the mobile ions need be included. We
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will further simplify the analysis to assume that there are
N mobile ions within the simulation cell, each with the
same charge Qi = Q. With these approximations and
by evaluating the time integral in Eq. (1), the diago-
nal conductivity tensor components can be expressed in
terms of the instantaneous particle positions {Ri(t)} in
the form12,17

σKubo
αα =

e2

2V kBT
lim
τ→∞

1

τ
〈pα(t0, τ)pα(t0, τ)〉t0 , (3)

expressed in terms of components of the charge moment
vector which has the expression

p(t0, τ) ≡ Q
N∑

i=1

(δRi(t0, τ)) , (4)

using the shorthand notation

δRi(t0, τ) ≡ Ri(t0 + τ)−Ri(t0). (5)

In this work, we focus our attention on the diagonal x-
components of the conductivity tensor. It is convenient
to evaluate the square of the x-component of the moment
vector as a sum of two types of contributions.

(px(t0, τ))2 = Q2(∆sf(t0, τ) + ∆cr(t0, τ)), (6)

Here the first “self-interaction” term includes the sum of
the squares of the x-components of the displacements of
each of the individual ions:

∆sf(t0, τ) ≡ ∆x
sf(t0, τ) ≡

N∑

i=1

(δXi(t0, τ))
2
. (7)

The second “cross-interaction” term includes the sum of
products of x-component displacements of all pairs of
ions:

∆cr(t0, τ) ≡ ∆x
cr(t0, τ) ≡

N∑

i( 6=j)=1

N∑

j=1

(δXi(t0, τ)δXj(t0, τ)) .

(8)
The configuration average of the independent ion con-

tribution 〈∆sf(t)〉t0 determines the tracer diffusion coef-
ficient Dtracer according to12

Dtracer = lim
τ→∞

Dtracer(τ), where

Dtracer(τ) ≡ 1

2N

1

τ
〈∆sf(t0, τ)〉t0 .

(9)

Analogously, we can define a “cross” diffusion coefficient
according to

Dcross = lim
τ→∞

Dcross(τ), where

Dcross(τ) ≡ 1

2N

1

τ
〈∆cr(t0, τ)〉t0 .

(10)

The configuration average of the sum of “self” and
“cross” interaction terms determines the effective diffu-
sion coefficient according to12

Deffective = lim
τ→∞

Deffective(τ) where

Deffective(τ) ≡ Dtracer(τ) +Dcross(τ)
(11)

The ratio of the tracer and effective diffusion coefficients
is known as the Haven ratio (Hr)

9–11,18 which provides
a measure of the correlation of the conducting ions in
terms of

1

Hr
≡ Deffective

Dtracer
= 1 + lim

τ→∞

〈∆cr(t0, τ)〉t0
〈∆sf(t0, τ)〉t0

. (12)

The diffusion coefficients are related to diagonal com-
ponents of the ionic conductivity tensor through the
Nernst-Einstein relationship as well as following from the
Kubo formalism of Eq. (1):

σKubo
xx =

N

V

e2Q2Deffective

kBT
=
N

V

e2Q2Dtracer

kBTHr
. (13)

An alternative analysis of ionic conductivity follows from
the inverse Ohm’s law as the response of the time aver-
aged current density in the α direction to an electric field
Fα.

〈Jα(t)〉t = σOhm
αα Fα. (14)

Using Eq. (2) in the the presence of an electric field in the
x-direction within the linear response regime, the Ohmic
conductivity can be estimated from

σOhm
xx =

eQN

V
〈µx(t0)〉t0 , (15)

where the ion mobility for a given initial configurations
{Ri(t0)} is given by

µx(t0) ≡ lim
Fx→0

(
1

Fx
lim
τ→∞

(
1

τ

(
1

N

N∑

i=1

δXFx
i (t0, τ)

)))
.

(16)
Here the Fx superscript on the ion displacement is used
to indicate the field dependence of the trajectory for this
case. The corresponding effective diffusion coefficient as-
sociated with the ion mobility can be defined by

Deffective
µ =

kBT 〈µx(t0)〉t0
eQ

. (17)

In order to accurately simulate ionic conductivity for
a system using Eqs. (13) or (15), several numeri-
cal and physical approximations must be made. At
the present time, the “state of the art” for simulating
ionic conductivity3,7,8,13,14 uses first-principles methods
to evaluate forces between ions. However, while the
physics of the particle interactions is well represented,
convergence of the results with respect to simulation size
and time may not be as well under control. In this
work we focus on these convergence issues for a simplified
model of the ionic forces.

III. CALCULATIONAL DETAILS

In order to to efficiently evaluate the expressions dis-
cussed in Sec. II, we used a lattice based kinetic
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Monte Carlo approach.19–21 The N mobile ion positions
{Ri(t)} are calculated within a supercell lattice having
NT available sites, each with an average occupancy of
o = N/NT < 1 and each with ν nearest neighbor sites,
at a series of “times” ts. Here, we enumerate the steps
s = 1, 2, ...S with fixed time intervals δτ according to

ts = t0 + sδτ. (18)

Here, δτ is an arbitrary time increment which does not
affect the simulation. It can be related to a physical time
with additional model considerations. The Monte Carlo
algorithm used in this work is as follows.

1. At the initial time t0, the sites are occupied using
a random number generator to produce {Ri(t0)}.

2. For subsequent time steps, s ≥ 1, the following
procedure updates the positions to {Ri(ts)}.
(a) A random number generator chooses one of

the occupied sites 1 ≤ j ≤ N .

(b) A random number generator chooses a near-
est neighbor to Rj(ts−1) among the ν possible
choices.

(c) If the chosen nearest neighbor is unoccupied,
then site Rj(ts−1) is moved to that site to
form a new position Rj(ts) and the configura-
tion is updated accordingly to form {Ri(ts)}.

(d) Otherwise the configuration {Ri(ts)} remains
the same as for the previous time step.

Some practical details are noted as follows.

3. The algorithm can be modified on Step #2(c) by
introducing an activation energy EA so that for a
system temperature of T , the update of Rj(ts) the
chosen and available site is made with a probability
exp(−EA/(kBT )).

4. Assuming ergodicity in the simulation, the data
in the simulation can be used for analyzing mul-
tiple time sequences by shifting configurations at
time ts to the initial time t0 by setting {Ri(ts)} →
{Ri(t0)}.

5. In order to relate the results for various simula-
tion times and supercell sizes, the time counter s
is related to a scaled time counter s̄ as the average
number of hops per ion in the simulation. While
the time counter s is used within each simulation,
the results are reported in terms of the scaled time
counter s̄. Explicitly, the scaled time counter is
defined according to

s̄ =
s(1− o)
N

e−EA/kT . (19)

For this simple model, the activation energy EA is
isotropic and configuration independent and there-
fore the temperature does not contribute to the

FIG. 1. Cubic unit cell for simulations in this study with
the origin at lower back left corner is shown together with
available Li sites indicated with two-thirds shaded volumes
corresponding to their average occupancy. The fractional co-
ordinates of the unique sites are Li(1) at ( 1

2
, 0, 0), Li(2) at

(0, 1
2
, 0), and Li(3) at (0, 0, 1

2
).

statistical and convergence properties of the sim-
ulations. In practice, simulations in the absence of
a biasing electric field F are carried out in the limit
of infinite temperature.

6. In order to model the mobility in the presence of an
electric field F according to Eq. 15, the algorithm
must be modified in the following way.20 On a given
time step ts for Step #2c involving ion j, for a
possible hop from nearest neighbor sites Rj(ts−1)
to Rj(ts), it assumed that the activation energy EA
is modified by

ε ≡ −1

2
eQF · (Rj(ts)−Rj(ts−1)) . (20)

The definition of ε is such that for Q > 0, when
the hop is along the field, the activation energy
is slightly lowered. Now the update of Rj(ts) is
made with a probability exp(−(EA + ε)/(kBT ));
otherwise the ion position is kept at its earlier po-
sition Rj(ts) = Rj(ts−1). In practice, the val-
ues were chosen such that ε/(kBT ) = 0.04 and
EA/(kBT ) = 1.45 so that the linear approximation

e−(EA−ε)/(kBT )−e−(EA+ε)/(kBT )

≈ 2ε

kBT
e−EA/(kBT ),

(21)

was sufficiently accurate and the Monte Carlo ac-
ceptance rate was efficient.

The lattice for this study is based on the Li sites avail-
able for the disordered cubic phase of Li2OHCl which is
a member of a family of promising solid electrolytes re-
cently studied by our group and others,4–8 as shown in
Fig. 1. The three unique lattice sites within the cubic
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unit cell are listed in the figure caption. In this case,
each site has a probability of occupancy of o = 2

3 and has
8 nearest-neighbors (ν = 8). Missing from this model are
the effects of the Cl− ion located at fractional coordinate
( 1

2 ,
1
2 ,

1
2 ) and the effects of O located at the origin and

associated with an OH− ion. In practice, scaled units
are used to measure displacement and time.

δXi(t0, τ)→ δXi(t0, s̄)/(a/2) ≡ δXi(t0, s̄), (22)

where a/2 is the hop length along the x-axis for a cubic
unit cell of lattice constant a. For convenience, a was
taken to be 2 within the Monte Carlo simulations. In the
remainder of this paper, all diffusion constants are given
in units of the square of the one-dimensional hop length
per hop/ion.

IV. RESULTS

A. Statistical analysis of Monte Carlo simulations

There are several competing variables which effect
the simulation results, including configuration sampling,
number of simulation steps, and sample size. Because
of the computational accessibility of the model, we can
study each of these separately.

First we consider effects of the initial configurations
{Ri(t0)}. In order to illustrate the sensitivity of the
“self” ∆sf(t0, s̄) and “cross” ∆cr(t0, s̄) terms to the initial
configurations, examples are shown in Fig. 2. These ex-
amples were generated using supercells of size 12×12×12
units (N = 3456) for two different initial configurations
{Ri(t

l
0)}, plotted as a function of the scaled step counter

s̄. From this plot it is apparent that both initial config-
urations give the same result for ∆sf(t

l
0, s̄) which tends

to increase monotonically with time. By contrast, the
∆cr(t0, s̄) term varies widely as a function of the step
counter s̄ and very differently for the two different initial
configurations. In order to highlight its sensitive behav-
ior, the plots of ∆cr(t0, s̄) shown in Fig. 2 illustrates
some of the extreme variations. For ∆cr(t

1
0, s̄), the values

are generally positive, while for ∆cr(t
2
0, s̄) the values are

generally negative.
In order to take advantage of statistical analyses of a

general result Yl from this study, it will be convenient
to define a mean value and standard deviation according
to22

〈Y 〉 ≡MY ≡
1

L

L∑

l=1

Yl and ΣY ≡

√√√√ 1

L

L∑

l=1

(Yl −MY )2,

(23)
where L denotes the number of samples. From these
values, it is often of practical interest to estimate the
number of samples Lf needed to to ensure a fractional
error of f . Assuming that the fractional error is well
estimated by the ratio of the standard deviation of the

FIG. 2. Comparison of the squared displacement results for a
supercell composed of 12× 12× 12 units and two initial con-
figurations {Ri(t

1
0)} and {Ri(t

2
0)}. Plots illustrate the “self”

term ∆sf(t
l
0, s̄)/N and “cross” term ∆cr(t

l
0, s̄)/N (l = 1, 2)

contributions as functions of the scaled step counter s̄. For the
samples shown, the curves for ∆sf(t

1
0, s̄)/N and ∆sf(t

2
0, s̄)/N

coincide, while the curves for ∆cr(t
1
0, s̄)/N and ∆cr(t

2
0, s̄)/N

illustrate two extremes.

mean to the mean value, we can infer that

Lf ≈
(

ΣY /MY

f

)2

, (24)

which follows from the statistical relationship22 ΣMY
=

ΣY /
√
Lf .

In order to visualize the statistical properties of the
squared displacement functions, it is useful to consider
histogram plots of their distributions. The simulations
were carried out for a supercell composed of 12× 12× 12
units (N = 3456) fixing the time interval of the sim-
ulation corresponding to s̄=15 hops/ion. These distri-
butions were generated from L = 8× 105 samples of the
initial configurations {Ri(t

l
0)}. Figures 3 and 4 show his-

tograpms of ∆sf(t
l
0, s̄)/(2Ns̄) and ∆cr(t

l
0, s̄)/(2Ns̄), re-

spectively. These plots show that the distribution for
∆sf has a Gaussian like shape, while the distribution for
∆cr is highly asymmetric. While not presented in a plot,
we find that the histogram plot for the corresponding
ion mobility µx(tl0) given by Eq. 16 also has a Gaussian
shaped distribution.

The probability distribution for Yl = ∆sf(t
l
0, s̄)/(2Ns̄)

is highly localized with Gaussian shape with a mean value
of MY = 0.275 and standard deviation of ΣY = 0.007.
The probability distribution for Yl = ∆cr(t

l
0, s̄)/(2Ns̄)

shows a very asymmetric distribution with average value
of MY = 0.055 and a large standard deviation of ΣY =
0.452. It is apparent from the shape of this probability
distribution, that the difficulty in converging ∆cr(t0, s̄)
comes from the non trivial number of large value con-
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FIG. 3. Distribution of values of ∆sf(t0, s̄)/(2Ns̄) at a fixed
time interval s̄ corresponding to s̄ = 15 hops/ion for a 12×12×
12 supercell (N = 3456). The probability distribution was
constructed with 8×105 initial configurations and normalized
to unity.

FIG. 4. Distribution of values of ∆cr(t0, s̄)/(2Ns̄) at a fixed
interval s̄ corresponding to s̄ = 15 hops/ion for 12 × 12 × 12
supercell (N = 3456). The probability distribution was con-
structed with 8× 105 initial configurations and normalized to
unity presented with filled black bars. The equivalent distri-
bution for a one-dimensional random walk is represented with
red-outlined bars for comparison.

tributions. While the probability density of these large
value contributions is small, their contribution is signif-
icant. The range of values of ∆cr can be estimated as
follows. At the lower bound,

∆cr ≥ −∆sf , (25)

which follows from the fact that the sum of ∆sf +∆cr ≥ 0,
because of its proportionality to the squared length of the

moment component px as defined in Eq. (6). The upper
bound can be estimated from the value obtained when all
of the hops are in the same direction which would result
in the very rare upper bound value value of

∆cr ≤ N(N − 1)s̄2. (26)

To better understand the shapes of the probability curves
for the self and cross correlation terms, it is useful to
consider the analogous quantities that can be derived
from a one dimensional random walk. The trajectories of
N independent random walkers {XRW

i (ts)} can be used
to compute ∆RW

sf and ∆RW
cr according to Eqs. (7) and

(8), respectively. In order to ensure correspondence with
our cubic model with s̄ = 15 hops per ion, the random
walk simulations were performed for 10 steps, represent-
ing two-thirds of the hops along the x-axis. In calculating
these numbers, care was taken to make sure that the their
scaling is consistent with the corresponding cubic lattice
model. The normalized probability distribution is pre-
sented in Fig. 4. For this one dimensional random walk,
with Y = ∆RW

cr /(2Ns̄), the mean value and standard de-
viations are given by MY = −4× 10−5 and ΣY = 0.470.
The corresponding self term Y = ∆RW

sf /(2Ns̄) for this
random walk have the mean value and standard devia-
tion of MY = 0.333 and ΣY = 0.008, respectively. The
numerical values for this one-dimensional random walk
system are consistent with the textbook results. They
differ from our three-dimensional cubic model system re-
flecting the effects of geometry and the effects of particle
interactions due to site occupations.

Another important consideration is the behavior of the
standard deviations of ∆sf , ∆cr and µx as a function of
simulation size. We have considered supercell sizes of
n× n× n multiples of the unit cell for 2 ≤ n ≤ 16. The
ratios of standard deviations to mean values of ∆sf , ∆cr

and µx are given in Fig. 5. These calculations were all
performed at a fixed value of the effective hops s̄ and
are all well converged with respect to the number of ini-
tial configurations {Ri(t

l
0)}. These plots show that the

ΣY /〈Y 〉 ratios converge to 0 with increasing simulation
cell size for both ∆sf and µx. However, for ∆cr, the
ΣY /〈Y 〉 ratio seems to asymptote to a non-zero value for
very large simulation cell sizes.

Finally we consider the behavior of the standard devi-
ations of ∆sf , ∆cr and µx as a function of simulation time
as measured by the scaled parameter s̄. In order to carry
out very long simulations, we consider small supercells
composed of 2× 2× 2 units with 0 < s̄ < 500. Figure 6
shows that the ratio of ΣY /〈Y 〉 for Y = ∆cr asymptotes
to a value which is more than 20 times larger than that
of Y = ∆sf . According to Eq. (24), this means that more
than 400 times as many samples are needed to converge
∆cr compared with ∆sf .

We also examined the convergence of the standard de-
viation in simulating the mobility at different electric
field strengths as shown in Fig. 7. This plot shows
that the standard deviation ratio asymptotes to zero for
s̄→∞, although a larger field strength (within the linear
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FIG. 5. Ratios of standard deviations to mean values of ∆sf

and µx (left scale) and ∆cr (right scale) as a function of the
supercell size parameter n. For ∆sf and ∆cr, the calculations
were performed at s̄ = 15 hops/ion. For µx the calculations
were performed with 6 hops/ion on average along the field
direction, corresponding approximately to s̄ = 880 hops/ion.
The parameters EA/(kBT ) and ε/(kBT ) were taken as de-
scribed in Sec. III.

FIG. 6. Values of ΣY /〈Y 〉 for Y = ∆sf (left scale) and for Y =
∆cr (right scale) as a function of s̄ for very long simulations.
Simulations were performed in 2× 2× 2 supercells (N = 16).

range) converges more rapidly.

B. Convergence of the transport coefficients

For evaluating the diffusion constants Dtracer,
Deffective, and Deffective

µ , it is necessary to carry out the
simulations in the s̄ → ∞ limit. These quantities are

FIG. 7. Values of ΣY /〈Y 〉 for Y = µx as a function of s̄
for very long simulations performed for 2 × 2 × 2 supercells
(N = 16). Results for two different values of field strength as
measured by ε/(kBT ) are presented. For both cases the same
activation energy of EA/(kBT ) = 1.45 was used.

FIG. 8. Comparison of diffusion constants Dtracer, Deffective,
and Deffective

µ calculated using Eqs. (9), (11), and (17), respec-
tively as a function n representing the supercell multiplicity
of n × n × n. All calculations were performed in the s̄ → ∞
limit and are also well converged with respect to initial con-
figurations {Ri(t0)}.

shown in Fig. 8 as a function of of simulation cell size.
Results also show that the results calculated using the
Kubo formalism and the using the Ohm’s law formalism
are in very good agreement. The standard deviation of
the results due to the averaging over initial configurations
{Ri(t0)} is too small to be seen on this scale.

In order to see the results in a little more detail, Fig. 9
shows the Haven ratio as defined in Eq. (12) as a function
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FIG. 9. Simulated values of the Haven ratio Hr as defined
by Eq. (12) as a function of the simulation cell parameter
n, comparing results calculated using the Kubo and Ohm’s
law methods. The error bars on the graph indicate the stan-
dard deviation of the mean of the value. The calculations
were performed with s̄ → ∞ and a large number of initial
configurations.

of simulation cell size. These results show that very good
convergence at a value of Hr = 0.819 is achieved for
a supercell size of 6 × 6 × 6. On this scale, the error
bars (representing the standard deviation of the mean)
are visible, but small for both the Kubo and Ohm’s law
simulations.

Finally, in Fig. 10, a more realistic estimate of the
time convergence of the diffusion constant is presented
for simulations on 6× 6× 6 unit supercells. These calcu-
lations were performed on a very large number of initial
configurations so that the values are converged with their
standard deviation of the mean values smaller than the
line width of the plot. For these highly sampled simu-
lations, the time convergence of Dtracer mirrors that of
Dcross such that their time convergence for the individual
terms is seen to be quite good at s̄ = 2 hops/ion. Inter-
estingly, the total diffusion Deffective converges at short
times for this model.

For the highly sampled simulations in cubic simulation
cells, the time convergence of the diffusion coefficients can
be can be well interpolated by a simple analytic form
based on a single exponential:

Dcross
model(s̄) ≈ D∞e−w/s̄, (27)

where D∞ and w are fitting parameters. For the 6×6×6
supercell shown in Fig. 10. Some typical values of the
fitting parameters are given in Table I. For asymmetric
simulation cells, it is found that typically more than one
exponential function is needed to achieve an accurate fit.

TABLE I. Values of fitting parameters defined in Eq. (27)
used for diffusion coefficients simulated with the kinetic Monte
Carlo model for n× n× n supercells.

n D∞ w
2 0.054 0.344
6 0.060 0.472

FIG. 10. Convergence of Deffective(s̄), Dtracer(s̄) and Dcross(s̄)
as defined in Eqs. (11), (9) and (10), before taking the asymp-
totic limit, as a function of s̄. Simulations were performed on
a 6× 6× 6 supercell.

V. ANALYSIS

A. Properties of the cross particle displacement
contributions

The simulations presented in Sec. IV A document how
sensitive the calculations are to the cross particle con-
tributions given by ∆cr(t0, τ) as defined in Eq. (8).
In this section, the term is analyzed further in order
to detail its properties. An important point to make
about Eq. (8) is that for a collection of truly random
and independent hoping events, the ensemble average
〈δXi(t0, τ)δXj(t0, τ)〉t0 is equal to zero. Consequently,

the extent to which 〈∆cr(t0, τ)〉t0 differs from zero is a
measure of correlations in the system. Ideally, one could
reformulate Eq. (8) into correlated contributions to in-
clude in the evaluation in such a way that they well ap-
proximate 〈∆cr(t0, τ)〉t0 . Denoting this correlated cross
particle displacement contribution by 〈∆corr

cr (t0, τ)〉t0 , we
expect that it should well approximate the full contribu-
tion in the sense that

∣∣〈∆corr
cr (t0, τ)〉t0 − 〈∆cr(t0, τ)〉t0

∣∣ < ε. (28)

where ε is some small number within the desired conver-
gence criteria.

In order formulate the correlated contributions, we first
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partition the particle displacement defined in Eq. (5)
into a sum over sequential displacements. For displace-
ment along the x-axis, we define a displacement “event”
Λiλ(t0) such that

δXi(t0, τ) ≡ Xi(t0 + τ)−Xi(t0) =
ŝ∑

λ=1

Λiλ(t0). (29)

Here λ is an index for the time sequence similar to that
defined in Eq. (18)

tλ = t0 + λδτ̂ , (30)

where it is computationally efficient to define the time
increment δτ̂ to be an integer multiple of δτ used in sim-
ulation so that δτ̂ > δτ . In this work, a δτ̂ equivalent to
the incremental scaled step counter ∆s̄ =0.25 hops/ion
was used. The displacement event for particle i is then
defined according to

Λiλ(t0) ≡ Xi(t0 + λδτ̂)−Xi(t0 + (λ− 1)δτ̂). (31)

Accordingly, the maximum step counter, ŝ, for the coarse
grained evaluation is chosen such that ŝδτ̂ = τ . Now the
cross interaction term of Eq. (8) can be equivalently
rewritten in the form

∆cr(t0, τ) =
N∑

i(6=j)=1

N∑

j=1

ŝ∑

λ=1

ŝ∑

λ′=1

(Λiλ(t0)Λjλ′(t0)) . (32)

In this formulation, the idea is to choose from all of the
cross event products Λiλ(t0)Λjλ′(t0), only those which
are “correlated”. The expectation is that the correlation
is limited in time and space, so that it should be possible
choose cutoff parameters tcut and Rcut to limit the full
summation in Eq. (32) in the form

∆corr
cr (t0, τ) =

N∑

i(6=j)=1

N∑

j=1

ŝ∑

λ=1

ŝ∑

λ′=1

(Λiλ(t0)Λjλ′(t0))×

fijλλ′(tcut, Rcut),
(33)

where fijλλ′(tcut, Rcut), represents a function designed
to model the correlations of the system. For example,
a simple functional form can be written in terms of the
Heaviside step functions Θ(x),

fijλλ′(tcut, Rcut) ≡ Θ (tcut − |λ′ − λ|δτ̂)×
Θ (Rcut − |Rj(t0 + λ′δτ̂)−Ri(t0 + λδτ̂)|) . (34)

We first examine the effects of choosing a time correla-
tion in terms of tcut while setting Rcut such that the sum-
mation includes all events on the basis of their separation,
using a 2×2×2 supercell. For this case we find that choos-
ing tcut corresponding to the scaled time counter s̄cut =
2 hops/ion, results in a convergence parameter defined
in Eq. (28) to be ε/

∣∣〈∆corr
cr (t0, τ)〉t0

∣∣ ≤ 1%. This result

FIG. 11. Comparison of fractional standard deviations
ΣY /〈Y 〉 for correlated and non-correlated evaluations of
cross-interaction displacements evaluated for 2 × 2 × 2 su-
percells. For 〈∆corr

cr (t0, τ)〉t0 , the time correlation was chosen

corresponding to s̄cut = 2 hops/ion, while the spatial corre-
lations were unrestricted. The plus symbols denote results
derived from the full calculations of 〈∆cr(t0, τ)〉t0 scaled as
explained in the text.

illustrates how the time correlation of “event products”
differs from time convergence of cross-interaction diffu-
sion. For this system, the interpolation model defined
in Eq. (27) fits the simulation with D∞ = 0.054 and
w = 0.344. This means that any simulation which is
well converged with respect to initial configurations car-
ried out to a time interval equivalent to s̄ = 2 hops/ion,
has an error of 16% relative to the time converged value
because Dcross(s̄ = 2)/Dcross = 0.84. In order to re-
duce the convergence error to 1%, one needs to carry
out the simulations out to a time interval equivalent to
s̄ = 34 hops/ion. Nevertheless, in the formulation of the
cross interaction diffusion in terms of event products as
given in Eq. (33), we see that keeping only product pairs
whose time differences are within tcut corresponding to
s̄cut = 2 hops/ion gives good results. To examine this
further, we consider the fractional variances ΣY /〈Y 〉 for
〈Y 〉 = 〈∆cr(s̄)〉t0 and 〈∆corr

cr (s̄)〉t0 as shown in Fig. 11.
Here we see that the fractional standard deviation com-
puted using the correlated events converges toward zero
while the fractional standard deviation computed using
the full cross displacement asymptotes to constant value,
consistent with the notion that keeping only the corre-
lated events reduces the noise of the calculation. It is
also interesting to note an empirical scaling relationship
between the fractional variance is found to be

Σ∆coor
cr (s̄)

〈∆coor
cr (s̄)〉 ≈

Σ∆cr(s̄)

〈∆cr(s̄)〉
1√

s̄/(2s̄cut)
, (35)

where in this case s̄/(2s̄cut) represents a multiplier for the
data sampling made possible by including the correlated
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FIG. 12. Plots of Dcross(s̄f ) evaluated for a 80×2×2 supercell
for s̄f = 62 hops/ion. The blue line shows the value calculated
using Eq. (8). The black circles show the results obtained
from using Eq. (33) to calculate 〈∆corr

cr (t0, τ)〉t0 with s̄cut as
indicated on the horizontal axis (in units of hops/ion) and no
spatial correlation. The red crosses show the results obtained
from using Eq. (33) to calculate 〈∆corr

cr (t0, τ)〉t0 with Rcut as
indicated on the horizontal axis (in units of a/2) and no time
correlation.

terms in Eq. (33) with tcut. This scaling is shown in Fig.
11.

In investigating spatial correlations in evaluating Eq.
(33), it was found that a large value of Rcut is needed
to converge the cross interaction diffusion. For example,
for cubic n × n × n supercells, for all 1 ≤ n ≤ 16, we
found it necessary to include all events in the simulation
according to their spatial separation in order to achieve
converged results for ∆corr

cr . Because the restricted sum
in Eq. (33) for our model scales as 2n6ŝ2, it is com-
putationally difficult to examine cubic simulation cells
with n > 16. However, it is feasible to study the nature
of the long spatial range correlations, within an asym-
metric supercell. For example, we performed a series of
simulations for the 80×2×2 supercell system, separately
studying the effects of time and space correlations. The
results are presented in Fig. 12. For this system, we
found that Dcross(s̄f )/Dcross(s̄ → ∞)=95% for s̄f = 62
hops/ion and that value was used in the evaluations pre-
sented in the figure. The results show that for this system
the time correlation is well converged for s̄cut ≥ 8 hops
for ions, but the spatial correlation is only well converged
at a distance of Rcut ≥ 20a/2.

B. Statistical analysis of first principles simulations

The inspiration for this detailed study of the statistical
properties of transport coefficients came from our recent

FIG. 13. Results of combined first principles and Monte Carlo
study of the Haven ratio for the disordered cubic phase of
Li2OHCl simulated at a target temperature of 750 K (filled
symbols) and a target temperature of 1000 K (open symbols).
For each target temperature, the blue symbols indicate the
first principles results calculated for 20 initial configurations
at the indicated average temperatures. The orange symbols
indicate the Monte Carlo results calculated for 20 initial con-
figurations with comparable statistics to the first principles
runs as explained in the text. For the Monte Carlo results the
horizontal axis placement is arbitrarily assigned for visualiza-
tion. The averaged first principles results are indicated with
black symbols and variance error bars. The averaged Monte
Carlo results are indicated with red symbols and variance er-
ror bars. The black and red arrows highlight the averaged
first principles and Monte Carlo values of Hr.

first principles investigation7 of the solid state electrolyte
Li2OHCl. In the disordered cubic phase of this mate-
rial, the Li sublattice is the same as that shown in Fig.
1. While the first principles simulations are able to in-
corporate much more physically realistic interactions of
the material into the simulations, the increased physical
accuracy reduces the number of hops/ion possible com-
pared to the results obtained with the same computer re-
sources using the kinetic Monte Carlo model. The hope is
that our kinetic Monte Carlo simulations for this system
can be used together with the first principles simulations
to obtain a more complete understanding of its ionic dif-
fusion. Of particular interest is the result suggested by
comparing simulations for Dtracer with experimental re-
sults for the ionic conductivity using Eq. 13, that at
experimentally accessible temperatures, the Haven ratio
Hr for this system is greater than 1 and increases with
decreasing temperature.

In the present work, we performed both first principles
simulations and kinetic Monte Carlo simulations using
2×2×2 supercells. Apart from using a smaller simulation
cell in order to improve the computational statistics, the
computational methods used for the first principles simu-
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lations were the same as those used in our previous work.7

In particular, the first principles formalism is based on
density functional theory (DFT)23,24 implemented using
the projector augmented wave (PAW) method25 using
the Quantum Espresso software package.26 The calcula-
tional parameters were similar to those specified in the
previous publication7 except that the plane wave expan-
sion of the wavefunctions included reciprocal lattice vec-
tors |k + G|2 ≤ 35 Ry and the wave vector sampling of
the Brillouin zone included a 2× 2× 2 grid.

For this study, twenty randomly generated configura-
tions were prepared for 2× 2× 2 supercells representing
the disordered cubic phase of Li2OHCl. The cubic lat-
tice constant was fixed at a = 3.91 Å. The eight O and
eight Cl positions were fixed at their ideal lattice posi-
tions. The 16 Li positions were randomly selected based
on the unit cell shown in Fig. 1 and hydrogen locations
were placed with the OH bond length assumed to be 1.0
Å and a randomly chosen bond angle within all possi-
ble 4π radians. For each of the twenty initial structures,
the static lattice internal energies were optimized at con-
stant volume. Subsequently, first principles molecular
dynamics simulations for these twenty optimized struc-
tures were performed at constant volume for two different
target temperatures of T = 750 K and T = 1000 K. The
simulations were performed in a microcanonical ensem-
ble, at constant energy in terms of the kinetic energy
associated with nuclear motion and electronic total DFT
energy. The approximate simulation temperatures were
controlled by initiating the calculations with velocity dis-
tributions corresponding to twice the target temperature
values. While the first principles simulation times ex-
tended to τ = 180-250 ps for the simulations at target
temperature T = 750K and to τ = 90-170 ps for the
simulations at target temperature T = 1000K, it is clear
that the results are not converged with respect to con-
figuration averaging and with simulation time. Never-
theless, by pairing the first principles results with anal-
ogous kinetic Monte Carlo simulations, taking care to
use equivalent levels of statistics, it is possible to make a
statistically significant differentiation of the two models.
In this case, the first principles simulations include, in
addition to the realistic treatment of interparticle inter-
actions, the effects of lattice vibrations, and a possible
“gating” mechanism of the OH bond orientation. On the
other hand, the kinetic Monte Carlo model includes only
the geometric features of the Li sublattice.

In order to align the two calculations, we noted that
for the kinetic Monte Carlo simulations, the parameter
s̄ represents the hops/ion. According to the extension of
Eq. 7 for three dimensional diffusion, the hops/ion can
be estimated for a first principles simulation at a time
duration τ according to

s̄τ ≈
∆x

sf(t0, τ) + ∆y
sf(t0, τ) + ∆z

sf(t0, τ)

N(a2/2)
. (36)

In this case a2/2 approximates the three dimensional hop
length for this system, and s̄τ approximates the number

of hops for the simulation time τ . It is reasonable to as-
sume that the hop counter s̄τ determined from each first
principles simulation run is analogous to the scaled hop
counter s̄ used in the Monte Carlo simulations. In this
way, we could deduce that on average the two sets of tem-
perature simulations corresponded to s̄ = 11 hops/ion
and s̄ = 3.5 hops/ion for the 1000 K and 750 K simu-
lations respectively. The corresponding ranges of s̄ were
4.75-21.25 and 1.5-5.6, respectively. In order to improve
the statistical sampling, each of the first principles sim-
ulations were analyzed separately, averaging the results
for the entire runs into s̄ = 1 hop/ion segments and de-
termining the average temperature of each run. Corre-
spondingly, for both the T = 1000 K and T = 750 K
temperature ranges, sets of 20 Monte Carlo simulations
were performed using similar sampling statistics. That is
for each Monte Carlo run, the total simulation was fixed
at s̄ = 11 (3.5) hops/ion for the T = 1000 K (750 K)
cases and the results for the entire run was averaged by
analyzing s̄ = 1 hop/ion segments. While physical tem-
perature effects are not explicitly included in the Monte
Carlo runs, their effects on the statistical sampling was
modeled as closely as possible in this way. The results
were analyzed in terms of the Haven ratios, calculated
from Eq. (12) at finite simulation time corresponding to
s̄ = 1 hop/ion and the results are presented in Fig. 13.

The results for Hr shown in Fig. 13 show substantial
statistical noise as well as systematic error, however a
clear distinction of the behavior of ion diffusion in the
realistic “first principles” model relative to that of the
kinetic Monte Carlo results is demonstrated. Knowledge
of systematic errors comes from the Monte Carlo stud-
ies for which it was shown previously that at this level
of statistical time, that the simulations were still not at
their asymptotic limit. The value of the Haven ratio from
the Monte Carlo model for a 2×2×2 supercell converged
with time intervals of s̄ =1 hop/ion isHr ≈0.92, while the
converged value is Hr = 0.84. Nevertheless, the results
for the first principles simulations suggest that Hr > 1
in the temperature range of T = 750 K and T = 1000 K
and also suggest a temperature dependence of Hr such
that Hr(750 K) > Hr(1000 K). The simulations at T =
750 and 1000 K were performed in order to improve the
statistics, but in reality the material is not expected to
exist in its crystalline form at such high temperatures.
In our previous work,7 the suggestion was made that Hr

is significantly larger than 1 in the temperature range
of 315 < T < 470 K based on simulations with infe-
rior statistics and comparing to experimental conductiv-
ity measurements at those temperatures.

It is also interesting to consider possible mechanisms
that cause Hr > 1 for this system. A possible physical
mechanism comes from observing the short time behav-
ior of Dcross(τ) which is shown in Fig. 14. In Fig. 14, the
value of Dcross(τ) is shown for a simulation with average
temperature 1074K simulated to 140ps and final value of
∆sf/N = 89Å2. In this calculation, the averaging over
initial configurations was achieved by averaging the full
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FIG. 14. Results of first-principles molecular dynamics simu-
lation of 2 × 2 × 2 supercell of Li2OHCl at a temperature of
T = 1074K to determine Dcross(τ) for 0 ≤ τ ≤ 2 ps.

simulations in terms of τ = 7ps segments; the first 2ps
of the resultant Dcross(τ) are presented. It is interest-
ing that Dcross(τ) < 0 throughout this time range and
that within the first 0.2 ps there is a negative dip indi-
cating the short time motions (vibrations) of the lithium
atoms are anti-correlated. It can be argued that this
anti-correlated property of the short time motion of the
lithium ions contributes to the net bias for anti-correlated
hopping which leads to a Haven ratio greater than 1.

VI. SUMMARY AND CONCLUSIONS

The results of this study both provides insight into the
transport properties of a specific system, the disordered
cubic phase of Li2OHCl, and also provides detailed anal-
ysis of the statistical and convergence properties of trans-
port simulations more generally. The work in this paper
was motivated by the challenge of reaching the large sta-
tistical time scales (hops/ion) necessary to study these
convergence properties. With the help of a lattice ki-
netic Monte Carlo model, it is possible to explore aspects
of the transport simulations which rely on long simula-
tion times, large simulation cells, and sampling over large
numbers of initial configurations. For the Li2OHCl sys-
tem, we have been able to use the lattice kinetic Monte
Carlo model together with first principles simulations to
improve the prediction of the ionic correlations. While
the lattice kinetic Monte Carlo model used in this work
was based on the Li sublattice of the disordered cubic
phase of Li2OHCl, we expect that the qualitative sta-
tistical and convergence properties of the results can be
generalized to other lattices.

In this work, we considered both transport coefficients
calculated in absence and presence of an applied electric

field. Evaluated for a fixed supercell and fixed simula-
tion time, the distribution of values obtained for differ-
ent initial configurations was determined. We found that
the distributions for ∆sf(t0, s̄)/2Ns̄ and correspondingly
µx(t0, s̄) have a Gaussian shape and standard deviation
that approaches zero in the limit of large sample size as
represented by large supercells in the periodic boundary
formulation. By contrast, the distribution of values of
∆cr(t0, s̄)/2Ns̄ is found to have a very asymmetric dis-
tribution with a standard deviation that limits to a non-
zero constant in the large supercell limit. The ratio of
the standard deviation to mean value is found to limit
to a non-zero constant in time for both the ∆sf and ∆cr

terms. However, the ratio of the standard deviation to
mean value of µx tends to zero in the long time limit at a
rate that depends on the applied field strength used in the
calculations. The statistical results indicate that for the
Kubo formalism, the primary difficulty of convergence is
due to the ∆cr term which requires a large number of ini-
tial configurations. For the Ohm’s law formulation of the
transport simulations, the statistical results indicate that
calculation of ionic conductivity would benefit from use
of a field strength adjusted to the largest magnitude pos-
sible while still remaining in the linear response regime.
Adapting the Ohm’s law formulation to first principles
simulations would need additional considerations.

The lattice kinetic Monte Carlo simulations also were
used to assess the convergence of the transport param-
eters with respect to simulation time and system size
given high convergence with respect to initial configura-
tions. In terms of supercell size, the results show that for
this lattice geometry the properties of interest are well
converged for a cubic supercell composed of 6 × 6 × 6
unit cells. In terms of simulation time, the results for cu-
bic supercells, both Dtracer(s̄) and Dcross(s̄) can be rep-
resented by a simple interpolation form from which the
asymptotic form can be determined. For the lattice con-
sidered in this work, Deffective(s̄) converged at very short
time. It is not clear whether or not this feature is more
generally true for other lattice geometries.

This work also introduces an alternate formulation of
∆cr in terms of a sum over event products for the purpose
of considering temporal and/or spatial correlations. For
an example system, we found that including only event
pairs separated in time by s̄cut=2 hops/ion or less in the
calculation of ∆corr

cr reduced the fractional standard de-
viation substantially. This suggests that correlations can
be used to reduce the noise in the calculation and there-
fore improving the calculational efficiency. Translating
this idea into a practical computational scheme is not
trivial, since it is generally difficult to estimate s̄cut, but
probably worth further consideration. This study also
showed that spatial correlations in this system are long
range.

The lattice kinetic Monte Carlo simulations were used
to closely analyze the statistics of analogous first prin-
ciples simulations of ∆cr(t0, τ) the full Li2OHCl lattice.
We were able to improve the statistical analysis to pro-
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vide further evidence about the Haven ratio, showing
that Hr > 1 at the simulation temperatures. Interest-
ingly, a plot of Dcross(τ) from the first principles simu-
lations, shows negative values for 0 ≤ τ ≤ 2 ps with a
negative peak at approximately τ = 0.2 ps. This time
generally corresponds to vibrational modes in the lat-
tice and suggests that these vibrations may lead to short
time anti-correlated motions. The first principles result
for Dcross(τ) shown in Fig. 14 can be contrasted with
the corresponding result for the lattice kinetic Monte
Carlo model which has a shape similar to that shown
in Fig. 10, monotonically increasing above zero. This
example shows how the lattice kinetic Monte Carlo sim-

ulations can be used to estimate the level of statistics
necessary to converge the more accurate simulations of
the the transport parameters. The lattice kinetic Monte
Carlo results for the transport parameters can also serve
as a well defined reference which captures the geometric
and site blocking effects.
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