
Midterm 1 Review



Solid State Physics

•
 

Solid matter forms can form in random 
(amorphous) or orderly (crystalline) 
fashion.

•
 

Crystalline matter can be classified by the 
types of bonds they form.
–

 
Metallic, ionic, covalent, atomic, molecular.

•
 

The bonds determine the electronic 
energy structure of the crystal.



Band Structure
•

 
As individual atoms or molecules form bonds and larger 
crystals, their discrete energy levels split finer and finer 
until they form virtual continuums (energy bands) 
separated by prohibited levels (energy gaps).

•
 

The available electrons of the atom fill these bands with 
the ones tightest bound to the nucleus having the lowest 
energy.

•
 

The electrical and optical properties of the material is 
determined by the higher energy electrons and whether 
they fill the highest occupied band (valence band) 
completely or partially.



Semiconductors
•

 
If the valence band is only partially filled we have 
a conductor.

•
 

If it is completely filled we have an insulator or a 
semiconductor.

•
 

Semiconductors are insulators with smaller band 
gaps and can be controllably doped with an 
acceptor (p-type) or donor (n-type) to change 
their conduction and the type of carriers.

•
 

p-
 

and n-type semiconductors can be put 
together to form diodes, LEDs, transistors or 
solar cells.



Defects

•
 

Many electrical, optical, mechanical and 
thermal properties of materials are 
determined by the defects they have.
–

 
Vacancies (point defects) are thermal in 
nature.

–
 

Edge dislocations (line defects) arise from film 
growth problems.

–
 

Grain boundaries (surface defects) are seen 
in polycrystalline films.



Thermodynamics
•

 
The possibility of a chemical reaction is determined by 
thermodynamics.

–

 

If ΔG > 0, the process is forbidden.
–

 

If ΔG < 0, it is allowed.
–

 

If ΔG = 0, there is equilibrium.
•

 
In a chemical reaction involving three substances, in 
most cases, the Gibbs Free Energy can be taken as,

STHG Δ−Δ=Δ
where ΔG is the change in the Gibbs Free Energy, 
ΔH is the change in the enthalpy, ΔS is the 
change in entropy
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where where

 

the ai ’s

 

are the activities 
(kind of a thermodynamic 
concentration) and ΔG0 is the standard 
state value of ΔG.



Example –
 

Ellingham Diagrams
•

 

Plots of ΔG0 vs. T can be used to determine a preferred reaction.
•

 

Consider the choice of depositing either Al or Cu on SiO2

 

at 400 K.
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To get the relevant reduction equations for 
Si, add either the Al or Cu equation to the Si 
equation and algebraically eliminate O2

 

.
Apply the same factor to the free energy. 
Then you’ll get:
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Since the Al reaction has a lower free 
energy and will reduce SiO2

 

, Cu would 
be the better choice for metallization.



Phase Diagrams

•
 

Phase diagrams represent the equilibrium 
conditions for inorganic systems as a 
function of pressure, temperature and 
composition.



Kinetics -
 

Diffusion

•
 

Fick’s
 

first law governs one dimensional 
diffusion:

•
 

The diffusion constant is temperature 
dependent.

•
 

Point defects promote diffusion as neighboring 
site vacancies increase atomic movement.

dx
dCDJ −= where J is the mass flux, D is the diffusion constant 

and C is the concentration
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Nucleation
•

 
If the formed nuclei are larger than a critical radius, then 
nucleation is possible.

•
 

The volume transition free energy has to be negative 
and overcome the surface transition free energy.

•
 

The kinetics of nucleation depend on the following:

ω**ANN =
• where N* is the equilibrium concentration of the 

stable nuclei, ω is the rate at which atoms 
impinge on to the nuclei of critical area A*.
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Example –
 

SiO2

•

 

During SiO2

 

formation, soot particles 250 Ǻ

 

in radius nucleate 
homogeneously in the vapor phase at 1200 °C. If the surface free energy of 
SiO2

 

is 1 J/m2, estimate the supersaturation

 

(PV

 

/PS

 

). The density of SiO2

 

is 
2.63 g/cm3.

Nucleation will start at the equilibrium radius (r*)
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Pressure

•
 

Pressure arises from the momentum 
transfer from the gas molecules to the 
walls of the container.

•
 

For an ideal gas,

•
 

1 bar = 750 Torr = 105

 
Pa = 0.987 atm

•
 

1 atm
 

= 760 Torr = 10100 Pa

RTNPV m= TNkPV B= where Nm is the total number of moles of 
the gas and N is the number of moleculesor



Mean Free Path

•
 

The average distance a molecule can 
move between collisions is called the 
mean free path.

•
 

The flow of gas is characterized by the 
Knudsen number (Kn).

Pd
TkMFP B

22
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π

=

L
MFPKn = If Kn < 0.01, the flow is viscous

 

(like a fluid).
If Kn > 1, the flow is molecular and ballistic.

where T is in °C, P is in Torrs

 

and d is the 
molecule diameter



Example
•

 
What is the mean free path of Argon (dAr

 

= 3.76 Ǻ) at 
100°K and 10-2

 

Torr if at room temperature (298°K) and 
pressure (760 Torr) it is 650 nm?

•
 

What pressure should a 30 cm diameter chamber be 
pumped down at room temperature to in order to be 
safely in the ballistic regime?
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Gas Flow and Pumping
•

 

Gas will flow when there is a pressure 
difference between different sections 
of a chamber.

•

 

In a system with multiple components, 
the overall conductance is determined 
by how the components are hooked 
up.

–

 

Series connections: 

–

 

Parallel connections:

•

 

The pumping speed Sp , is defined as 
the volume of gas passing the plane 
of the inlet port per unit time when the 
pressure at the pump inlet is Pp .
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Flux and Deposition Rate
•

 
The flux is the number of 
molecules that strike an 
element of a surface 
perpendicular to a 
coordinate direction, per 
unit time and area.

•
 

The flux of molecules on 
the surface leads to 
deposition where the rate 
of film growth depends on 
the flux.
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where Mfilm

 

is the molar molecular 
mass (g/mol) and ρfilm

 

is the film 
density (g/m3)



Vacuum Pumps

•
 

Two general classes exist:
•

 
Gas transfer –

 
physical removal of matter

–
 

Mechanical, diffusion, turbomolecular
•

 
Adsorption –

 
entrapment of matter

–
 

Cryo, sublimation, ion



Diffusion Pumps
•

 

Si oil is boiled and vaporized in a 
multistage jet assembly.

•

 

Oil vapors emerging from the 
nozzles impart momentum on the 
residual gas molecules and drive 
them towards the bottom of the 
pump.

•

 

The molecules are compressed and 
exhausted.

•

 

No vibrations.
•

 

From 1 mT

 

to 10-10

 

T with LN cooling 
(works in the molecular flow regime).

•

 

Wide range of flow rates.
•

 

Requires mechanical pump.
•

 

Backstreaming

 

of the vapors are a 
problem and can be minimized with 
cooling coils are used to condense 
the oil before it enters the vacuum 
chamber.



Ion Pumps
•

 

A cold cathode electrical discharge 
creates an electron gas which is 
trapped by a small magnetic field.

•

 

The electron gas ionizes residual gas 
particles in the chamber which are 
attracted to the cathode made of 
titanium.

•

 

The incident ions sputter off titanium 
which forms a thin film on 
neighboring surfaces and form stable 
compounds with the residual gases 
in the chamber.

•

 

Wide range of flow rate and pressure 
(still need mechanical pump)

•

 

No moving parts or oil
•

 

Need high voltage and magnetic 
fields.



Ion Gauge
•

 
A filament is used to emit 
electrons which are attracted to a 
positively charged grid.

•
 

Inside the grid is a negatively 
charged collector.

•
 

The electrons collide with gas 
molecules around the grid and 
ionize them.

•
 

The positively charged ions are 
attracted to the collector and 
create an ionic current.

•
 

Works between 10-3

 

– 10-10

 

Torr



Crystal Monitor

•
 

Monitors thin film deposition rate and calculates 
thickness

•
 

Quartz crystal has an oscillating electrical 
current, oscillates at a fixed frequency

•
 

Oscillation frequency changes with changing 
mass

•
 

Must input material density for each material
•

 
Quartz crystal must be changed frequently

•
 

Position needs to be calibrated



Vacuum Evaporation
•

 

The objective is to controllably 
transfer atoms from a heated 
source (which can be a liquid or a 
solid) to a substrate located a 
distance away to grow a film.

•

 

The source is heated directly or 
indirectly until the point is reached 
where it efficiently sublimes or 
evaporates.

•

 

When analyzing this method, we 
need to start from evaporation 
rates and vapor pressure.

•

 

Evaporation is normally done in the 
ballistic regime (Kn > 1).

•

 

Other than pressure and 
temperature, the placement of the 
heater, source and substrate are 
important factors.
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Vapor Pressure
•

 

Vapor pressure is the pressure 
at which the vapor phase is in 
equilibrium with the solid or the 
liquid phase at a given 
temperature.

•

 

It has an important role in 
determining the deposition rate 
for a given source temperature.

•

 

In reality, empirical formulas and 
experimental data are used to 
find the vapor pressure of an 
element which mostly follows a 
log(P) ∝-1/T dependence.
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Evaporation and Deposition Rates

•
 

Evaporation flux from the source is given by:

•
 

The total mass evaporated from the source is:

•
 

The deposited mass per substrate area is:
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Film Uniformity
•

 
Film thickness varies over the length of the substrate 
due to varying distance from the source.

•
 

A constellation arrangement of substrates arranged 
around a sphere as well as the source would eliminate 
this problem and result in uniform films.
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Example
•

 

If we want to deposit Al at a 50 Ǻ/s rate on a 1 cm2

 

substrate 10 cm away 
from the source directly below it using a 3 mm radius ball of pure Al 
(MAl

 

=27, ρAl

 

=2.7g/cm3), what should be the substrate temperature? Assume 
uniform deposition and the following Pv

 

vs. T relationship:
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Example (cont.)
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Evaporating Multielement
 

Materials

•
 

Due to the varying vapor pressures, and 
possible dissociation/decomposition, 
maintaining stochiometric

 
ratios in 

compounds and alloys is difficult.
•

 
Using separate sources or depositing 
under partial gas pressures are possible 
solutions.
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