Gas Kinetics

Introduction

- Most deposition techniques rely on gas flow in a vacuum.
- We need a model for understanding;
 - the speed and energy of the gas molecules as a function of temperature and pressure,
 - how these molecules interact with each other and their surroundings,
 - and how mass, heat and momentum is transported by these molecules.

The Size of a Molecule (a very rough calculation)

- Take water (liquid H_2O) as an example.
- Oxygen has 8 protons and 8 neutrons for a total of 16 <u>nucleons</u> and Hydrogen has 1 proton. So water has 16+1+1=18 nucleons

$$m_{P} \approx m_{N} \approx 1.66 \times 10^{-24} g$$

$$m_{H_{2}O} = 18m_{N} = 2.99 \times 10^{-23} g$$

$$N_{H_{2}O} = 1/m_{H_{2}O} = 3.35 \times 10^{22} \text{ molecules / } g$$

$$\rho_{H_{2}O} = 1.00g / cm^{3}$$

$$V_{H_{2}O} = \frac{1}{\rho_{H_{2}O}N_{H_{2}O}} = 2.99 \times 10^{-23} cm^{3} / \text{ molecule}$$

$$d_{H_{2}O} = 2 \times \sqrt[3]{\frac{3}{4}}V_{H_{2}O} = 5.64 \times 10^{-8} cm$$

ν4

The Distance Between Molecules in a Gas

• Now take water vapor (gaseous H_2O).

$$\rho_{H_2O} = 0.8 \times 10^{-3} \, g \,/\, cm^3$$
$$V_{H_2O} = \frac{1}{\rho_{H_2O} N_{H_2O}} = 3.73 \times 10^{-20} \, cm^3 \,/\, molecule$$

$$l_{H_2O} = \sqrt[3]{V_{H_2O}} = 3.34 \times 10^{-7} \, cm$$

 $l_{H_2O}\approx 6d_{H_2O}$

Molecular Velocities

- Basic assumptions:
 - We'll assume an ideal gas where the gas molecules interact elastically (collisions are similar to the collisions of hard billiard balls).
 - The distance between molecules are large compared to their sizes.
 - There are no attractive or repulsive forces between the molecules and each molecule moves independently of the others.

Maxwell-Boltzmann Distribution

• Under these assumptions, the molecules of a gas have velocities that are distributed according to:

$$f(v) = \frac{1}{n} \frac{dn}{dv} = 4\pi v^2 \sqrt{\frac{M}{2\pi RT}} \exp\left(-\frac{Mv^2}{2RT}\right)$$

where f is the fractional number of molecules, v is the velocity, M is the molecular weight, T is the temperature and R is the universal gas constant.

While the velocity of a single molecule depends on the temperature and its molecular weight, its kinetic energy is only dependent on temperature and is equally partitioned into the three coordinates.

Pressure

- Since readily measurable quantities are temperature and pressure (and not number density or velocity) we need a more convenient relationship that relates them.
- Pressure arises from the momentum transfer from the gas molecules to the walls of the container.
- The average force on the walls of the container is given by:

$$\overline{F} = MN_m \frac{\overline{v_x}^2}{L} = \frac{1}{3}MN_m \frac{\overline{v}^2}{L} = \frac{MN_m}{3L} \frac{3RT}{M} = \frac{N_m RT}{L} = \frac{N_m RTA}{V}$$

$$P = \frac{\overline{F}}{A} = \frac{N_m RT}{V} \quad \text{then}$$

$$\overline{PV = N_m RT} \quad \text{or} \quad \overline{PV = Nk_B T} \quad \text{where } N_m \text{ is the gas and } N_m \text{ the gas and } N_m \text{ is the gas$$

where N_m is the total number of moles of the gas and N is the number of molecules

Units of Pressure

- SI units: 1 Pascal (1 Pa) = 1 N/m²
 Not very practical
- 1 Torr = 133 Pa = 1 mm Hg
- 1 bar = 750 Torr = 10^5 Pa = 0.987 atm
- 1 atm = 760 Torr = 10100 Pa
- 1 psi = 51.71 Torr = 0.068 atm

Mean Free Path

- In a vapor, gas molecules will be moving freely.
- Their motion is interrupted only by collisions with other molecules or the container.
- The average distance a molecule can move between collisions is called the mean free path.

Rough Calculation of the MFP

• Suppose there is a gas molecule trying to get through an array of gas molecules.

Area blocked by one molecule

Probability that a collision will occur

$$R = \pi d^2 / l^2$$

Average number of layers between collisions

$$1/2R = l^2/2\pi d^2$$

$$MFP = \frac{l}{2R} = \frac{l^3}{2\pi d^2} = \frac{1}{2\pi n d^2}$$

where n is the number of gas molecules per cm³

Rough Calculation of the MFP

In an ideal gas
$$n = \frac{N}{V} = \frac{P}{k_B T}$$

$$MFP = \frac{1}{2\pi nd^2} = \frac{k_B T}{2\pi d^2 P}$$

More accurately

$$MFP = \frac{\sqrt{2}k_BT}{2\pi d^2P}$$

P (Torr)	MFP (cm)
760	10 ⁻⁵
1	10 ⁻²
0.001	10

Molecular Flow Regimes

- Since film deposition depends on how a gas flows and the mean free path is a measure of the interaction between the gas molecules, it determines the type of gas flow that can happen.
- The flow of gas is characterized by the Knudsen number (Kn).

$$Kn = \frac{MFP}{L}$$

L is a dimension of the vacuum chamber

- If Kn < 0.01, many molecules in chamber, pressure is high, the flow is <u>viscous</u> (like a fluid).
- If Kn > 1, few molecules in chamber, pressure is low, gas flow is molecular and ballistic.
- If 1 > Kn > 0.01, the gas is in a transition regime where neither property is valid.

Gas Transport: Diffusion

- Diffusion in gases is the mixing of one material (A) into another (B).
- Fick's Law for solids is still valid.

$$J = -D\frac{dn_A}{dx} \qquad D \propto \frac{T^{7/4}\sqrt{\frac{1}{M_A} + \frac{1}{M_B}}}{P(d_A + d_B)^2}$$

 In the ballistic regime (Kn > 1) diffusion will not occur (not enough molecules around).

Gas Transport: Viscosity

• In a chamber, gas molecules traveling at different speed exert drag on each other.

where, τ is the shear stress, *u* is the velocity in a direction perpendicular to *y* and η is the viscosity.

Again, in the ballistic regime, viscous interactions do not occur.

Gas Transport: Heat Conduction

- Heat can be transported through the transfer of kinetic energy between gas molecules.
- In the viscous regime, heat transfer between a heater and the substrate occurs through the collisions of the gas molecules in between.
- In the ballistic regime, the molecules don't collide with each other so heat transfer depends on the amount of flow of molecules (flux) from the heater to the substrate.

Gas Flow

 Gas will flow when there is a pressure difference between different sections of a chamber.

Conductance

- In a system with multiple components, the overall conductance is determined by how the components are hooked up.
- Series connections:

$$C_{sys} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots\right)^{-1}$$

• Parallel connections:

$$C_{sys} = C_1 + C_2 + C_3 + \dots$$

Pumping Speed

• The pumping speed S_p , is defined as the volume of gas passing the plane of the inlet port per unit time when the pressure at the pump inlet is P_p .

$$Q = P_p S_p$$

Interaction With Surfaces

- Gas molecules colliding with the chamber walls result in pressure.
- Another possible interaction (and one crucial in film deposition) is gas impingement on other surfaces such as the substrate.
- A measure of the amount of gas incident on a surface is the flux.

Flux

 The flux is the number of molecules that strike an element of a surface perpendicular to a coordinate direction, per unit time and area.

$$\Phi = \int_{0}^{\infty} v_{x} dn_{x} \longrightarrow \frac{\Phi}{N_{A}} = \frac{P}{\sqrt{2\pi MRT}}$$

$$\Phi = 3.513 \times 10^{22} \frac{P}{\sqrt{MT}}$$

with P expressed in Torrs

Deposition Rate

• The flux of molecules on the surface leads to deposition where the rate of film growth depends on the flux.

$$\frac{dh_{film}}{dt} = \Phi\left(\frac{M_{film}}{\rho_{film}N_A}\right)$$

where $M_{\rm film}$ is the molar molecular mass (g/mol) and $\rho_{\rm film}$ is the film density (g/m³)

 Of course this assumes that there are no chemical reactions, bouncing off of molecules or diffusion into the surface.