Gas Kinetics

Introduction

- Most deposition techniques rely on gas flow in a vacuum.
- We need a model for understanding;
- the speed and energy of the gas molecules as a function of temperature and pressure,
- how these molecules interact with each other and their surroundings,
- and how mass, heat and momentum is transported by these molecules.

The Size of a Molecule (a very rough calculation)

- Take water (liquid $\mathrm{H}_{2} \mathrm{O}$) as an example.
- Oxygen has 8 protons and 8 neutrons for a total of 16 nucleons and Hydrogen has 1 proton. So water has 16+1+1=18 nucleons

$$
\begin{aligned}
& m_{P} \approx m_{N} \approx 1.66 \times 10^{-24} \mathrm{~g} \\
& m_{\mathrm{H}_{2} \mathrm{O}}=18 m_{\mathrm{N}}=2.99 \times 10^{-23} \mathrm{~g} \\
& N_{\mathrm{H}_{2} \mathrm{O}}=1 / m_{\mathrm{H}_{2} \mathrm{O}}=3.35 \times 10^{22} \text { molecules } / \mathrm{g} \\
& \rho_{\mathrm{H}_{2} \mathrm{O}}=1.00 \mathrm{~g} / \mathrm{cm}^{3} \\
& V_{\mathrm{H}_{2} \mathrm{O}}=\frac{1}{\rho_{\mathrm{H}_{2} \mathrm{O}} N_{\mathrm{H}_{2} \mathrm{O}}}=2.99 \times 10^{-23} \mathrm{~cm}^{3} / \text { molecule } \\
& d_{\mathrm{H}_{2} \mathrm{O}}=2 \times \sqrt[3]{\frac{3}{4} V_{\mathrm{H}_{2} \mathrm{O}}}=5.64 \times 10^{-8} \mathrm{~cm}
\end{aligned}
$$

The Distance Between Molecules in a Gas

- Now take water vapor (gaseous $\mathrm{H}_{2} \mathrm{O}$).

$$
\begin{aligned}
\rho_{\mathrm{H}_{2} \mathrm{O}} & =0.8 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3} \\
V_{\mathrm{H}_{2} \mathrm{O}} & =\frac{1}{\rho_{\mathrm{H}_{2} \mathrm{O}} N_{\mathrm{H}_{2} \mathrm{O}}}=3.73 \times 10^{-20} \mathrm{~cm}^{3} / \text { molecule } \\
l_{\mathrm{H}_{2} \mathrm{O}} & =\sqrt[3]{V_{\mathrm{H}_{2} \mathrm{O}}}=3.34 \times 10^{-7} \mathrm{~cm} \\
l_{\mathrm{H}_{2} \mathrm{O}} & \approx 6 d_{\mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

Molecular Velocities

- Basic assumptions:
- We'll assume an ideal gas where the gas molecules interact elastically (collisions are similar to the collisions of hard billiard balls).
- The distance between molecules are large compared to their sizes.
- There are no attractive or repulsive forces between the molecules and each molecule moves independently of the others.

Maxwell-Boltzmann Distribution

- Under these assumptions, the molecules of a gas have velocities that are distributed according to:

$$
f(v)=\frac{1}{n} \frac{d n}{d v}=4 \pi v^{2} \sqrt{\frac{M}{2 \pi R T}} \exp \left(-\frac{M v^{2}}{2 R T}\right)
$$

where f is the fractional number of molecules, v is the velocity, M is the molecular weight, T is the temperature and R is the universal gas constant.

While the velocity of a single molecule depends on the temperature and its molecular weight, its kinetic energy is only dependent on temperature and is equally partitioned into the three coordinates.

Pressure

- Since readily measurable quantities are temperature and pressure (and not number density or velocity) we need a more convenient relationship that relates them.
- Pressure arises from the momentum transfer from the gas molecules to the walls of the container.
- The average force on the walls of the container is given by:

$$
\begin{aligned}
& \bar{F}=M N_{m} \frac{\bar{v}_{x}^{2}}{L}=\frac{1}{3} M N_{m} \frac{\bar{v}^{2}}{L}=\frac{M N_{m}}{3 L} \frac{3 R T}{M}=\frac{N_{m} R T}{L}=\frac{N_{m} R T A}{V} \\
& P=\frac{\bar{F}}{A}=\frac{N_{m} R T}{V} \text { then }
\end{aligned}
$$

$$
P V=N_{m} R T \text { or } P V=N k_{B} T
$$

where N_{m} is the total number of moles of the gas and N is the number of molecules

Units of Pressure

- SI units: 1 Pascal (1 Pa) $=1 \mathrm{~N} / \mathrm{m}^{2}$
- Not very practical
- 1 Torr $=133 \mathrm{~Pa}=1 \mathrm{~mm} \mathrm{Hg}$
- 1 bar $=750$ Torr $=10^{5} \mathrm{~Pa}=0.987 \mathrm{~atm}$
- $1 \mathrm{~atm}=760$ Torr $=10100 \mathrm{~Pa}$
- 1 psi $=51.71$ Torr $=0.068$ atm

Mean Free Path

- In a vapor, gas molecules will be moving freely.
- Their motion is interrupted only by collisions with other molecules or the container.
- The average distance a molecule can move between collisions is called the mean free path.

Rough Calculation of the MFP

- Suppose there is a gas molecule trying to get through an array of gas molecules.

Probability that a collision will occur

$$
R=\pi d^{2} / l^{2}
$$

Average number of layers between collisions

$$
1 / 2 R=l^{2} / 2 \pi d^{2}
$$

$$
M F P=\frac{l}{2 R}=\frac{l^{3}}{2 \pi d^{2}}=\frac{1}{2 \pi n d^{2}}
$$

Rough Calculation of the MFP

In an ideal gas $\quad n=\frac{N}{V}=\frac{P}{k_{B} T}$

$$
M F P=\frac{1}{2 \pi n d^{2}}=\frac{k_{B} T}{2 \pi d^{2} P}
$$

\mathbf{P} (Torr)	MFP (cm)
760	10^{-5}
1	10^{-2}
0.001	10

Molecular Flow Regimes

- Since film deposition depends on how a gas flows and the mean free path is a measure of the interaction between the gas molecules, it determines the type of gas flow that can happen.
- The flow of gas is characterized by the Knudsen number (Kn).

$$
K n=\frac{M F P}{L}
$$

L is a dimension of the vacuum chamber

- If $K n<0.01$, many molecules in chamber, pressure is high, the flow is viscous (like a fluid).
- If $K n>1$, few molecules in chamber, pressure is low, gas flow is molecular and ballistic.
- If $1>K n>0.01$, the gas is in a transition regime where neither property is valid.

Gas Transport: Diffusion

- Diffusion in gases is the mixing of one material (A) into another (B).
- Fick's Law for solids is still valid.

$$
J=-D \frac{d n_{A}}{d x}
$$

$$
D \propto \frac{T^{7 / 4} \sqrt{\frac{1}{M_{A}}+\frac{1}{M_{B}}}}{P\left(d_{A}+d_{B}\right)^{2}}
$$

- In the ballistic regime ($K n>1$) diffusion will not occur (not enough molecules around).

Gas Transport: Viscosity

- In a chamber, gas molecules traveling at different speed exert drag on each other.
$\tau=\eta\left(\frac{d u}{d y}\right)$ where, τ is the shear stress, u is the velocity in a direction perpendicular to y and η is the viscosity.

- Again, in the ballistic regime, viscous interactions do not occur.

Gas Transport: Heat Conduction

- Heat can be transported through the transfer of kinetic energy between gas molecules.
- In the viscous regime, heat transfer between a heater and the substrate occurs through the collisions of the gas molecules in between.
- In the ballistic regime, the molecules don't collide with each other so heat transfer depends on the amount of flow of molecules (flux) from the heater to the substrate.

Gas Flow

- Gas will flow when there is a pressure difference between different sections of a chamber.

Conductance

- In a system with multiple components, the overall conductance is determined by how the components are hooked up.
- Series connections:

$$
C_{y y s}=\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots\right)^{-1}
$$

- Parallel connections:

$$
C_{s y s}=C_{1}+C_{2}+C_{3}+\ldots
$$

Pumping Speed

- The pumping speed S_{p}, is defined as the volume of gas passing the plane of the inlet port per unit time when the pressure at the pump inlet is P_{p}.

$$
Q=P_{p} S_{p}
$$

Interaction With Surfaces

- Gas molecules colliding with the chamber walls result in pressure.
- Another possible interaction (and one crucial in film deposition) is gas impingement on other surfaces such as the substrate.
- A measure of the amount of gas incident on a surface is the flux.

Flux

- The flux is the number of molecules that strike an element of a surface perpendicular to a coordinate direction, per unit time and area.

$$
\Phi=\int_{0}^{\infty} v_{x} d n_{x} \longrightarrow \frac{\Phi}{N_{A}}=\frac{P}{\sqrt{2 \pi M R T}}
$$

$$
\Phi=3.513 \times 10^{22} \frac{P}{\sqrt{M T}}
$$

with P expressed in Torrs

Deposition Rate

- The flux of molecules on the surface leads to deposition where the rate of film growth depends on the flux.

$$
\frac{d h_{\text {film }}}{d t}=\Phi\left(\frac{M_{\text {film }}}{\rho_{\text {film }} N_{A}}\right) \begin{aligned}
& \text { where } M_{\text {film }} \text { is the molar molecular } \\
& \text { mass }(\mathrm{g} / \mathrm{mol}) \text { and } \rho_{\text {film }} \text { is the film } \\
& \text { density }\left(\mathrm{g} / \mathrm{m}^{3}\right)
\end{aligned}
$$

- Of course this assumes that there are no chemical reactions, bouncing off of molecules or diffusion into the surface.

