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Keep collecting: accurate species
distribution modelling requires more
collections than previously thought

Kenneth J. Feeley1,2* and Miles R. Silman3,4

INTRODUCTION

Species distribution models (SDMs) are a general suite of

models that relate the frequency of species occurrences

(presence only or presence/absence) to sets of environmental

variables. These relationships can then be used to generate

predictions of the geographic areas where the species are

expected to occur, making SDMs powerful and widely used

tools in conservation biology, biogeography and ecology

(Franklin, 2009; Richardson & Whittaker, 2010). SDMs are

also increasingly used to predict where species may occur in

the future under different climate change scenarios. These

predictions can then be used to predict extinction risks because

of changes in habitat area as species ‘‘migrate’’ from their
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ABSTRACT

Aim Species distribution models (SDMs) use the locations of collection records

to map the distributions of species, making them a powerful tool in conservation

biology, ecology and biogeography. However, the accuracy of range predictions

may be reduced by temporally autocorrelated biases in the data. We assess the

accuracy of SDMs in predicting the ranges of tropical plant species on the basis of

different sample sizes while incorporating real-world collection patterns and

biases.

Location Tropical South American moist forests.

Methods We use dated herbarium records to model the distributions of 65

Amazonian and Andean plant species. For each species, we use the first 25, 50,

100, 125 and 150 records collected and available for each species to analyse

changes in spatial aggregation and climatic representativeness through time. We

compare the accuracy of SDM range estimates produced using the time-ordered

data subsets to the accuracy of range estimates generated using the same number

of collections but randomly subsampled from all available records.

Results We find that collections become increasingly aggregated through time but

that additional collecting sites are added resulting in progressively better

representations of the species’ full climatic niches. The range predictions

produced using time-ordered data subsets are less accurate than predictions

from random subsets of equal sample sizes. Range predictions produced using

time-ordered data subsets consistently underestimate the extent of ranges while no

such tendency exists for range predictions produced using random data subsets.

Main conclusions These results suggest that larger sample sizes are required to

accurately map species ranges. Additional attention should be given to increasing

the number of records available per species through continued collecting, better

distributed collecting, and/or increasing access to existing collections. The fact

that SDMs generally under-predict the extent of species ranges means that

extinction risks of species because of future habitat loss may be lower than

previously estimated.

Keywords

Amazon, Andes, collecting biases, conservation biogeography, maxent, range

maps.

Diversity and Distributions, (Diversity Distrib.) (2011) 1–9

DOI: 10.1111/j.1472-4642.2011.00813.x
ª 2011 Blackwell Publishing Ltd http://wileyonlinelibrary.com/journal/ddi 1

A
 J

ou
rn

al
 o

f 
Co

ns
er

va
ti

on
 B

io
ge

og
ra

ph
y

D
iv

er
si

ty
 a

nd
 D

is
tr

ib
ut

io
ns



current to future ranges (e.g. Thomas et al., 2004; Feeley &

Silman, 2010a). SDMs have rapidly gained in popularity given

the potential value of their output combined with their ease of

implementation using freely available user-friendly software

(such as garp, modeco, biomod, maxent, diva) and the

growing number of extensive online species occurrence

databases (e.g. the millions of species collection and observa-

tion records available online through GBIF, SpeciesLink,

Mantis, and elsewhere)(Franklin, 2009).

SDMs have been previously evaluated based on how the

accuracy of their range predictions scales with number of

occurrence records, or sample size (e.g. Stockwell & Peterson,

2002; Kadmon et al., 2003; Elith et al., 2006; Hernandez et al.,

2006; Wisz et al., 2008). These studies, which serve as

guidelines for the minimum sample size required for species

to be included in SDMs used for conservation planning, have

used various measures to assess the accuracy of the range maps

produced by the SDMs with reduced sample sizes. For

example, accuracy can be assessed as the degree of accordance

between range maps predicted using reduced versus full data

sets, or alternatively as the ability of range maps produced using

data subsets to correctly predict the presence (or presence

versus absence) of the species as recorded in independent data

sets. However, it is important to note that all of these studies

produce their data subsets by selecting samples at random from

the larger pool of species occurrence records and then iterating

this random subsampling process many times to produce

multiple range predictions per species per sample size (Stock-

well & Peterson, 2002; Kadmon et al., 2003; Elith et al., 2006;

Hernandez et al., 2006; Wisz et al., 2008).

While randomly sub-sampling the data may allow for the

assessment and comparison of power between different SDMs,

it is likely a poor indicator of the actual number of collections

that are required to accurately map and characterize species’

distributions. This is because species are rarely, if ever,

collected at random. Instead, collecting efforts and field studies

suffer from many documented biases, both intrinsic and

unintentional (Kadmon et al., 2004; Moerman & Estabrook,

2006; Schulman et al., 2007; Tobler et al., 2007; Loiselle et al.,

2008). For example, studies have shown that plants tend to be

collected close to research stations and/or along routes of

relatively easy access such as roads and rivers (Kadmon et al.,

2004). Furthermore, scientific studies are not conducted at

random, but rather tend to focus on specifically chosen areas

that are systematically explored. This may result in geographic

biases being temporally autocorrelated as a result of collection

campaigns in which researchers collect many specimens from a

small area and then move to another area within that region.

Given the nature of these biases, subsets of records ordered by

collection date will likely come from just a limited, non-

random portion a species’ full range.

As such, it can be hypothesized that time-ordered data

subsets will be less representative of the full climatic conditions

under which species occur. Furthermore, SDMs based on time-

ordered data subsets will result in less accurate distribution

estimates than if the same number of randomly selected

collections were used (Dormann et al., 2007). If this is the case,

accurately estimating species ranges will require that more

records be collected and incorporated into SDMs than

previously suggested. The potential effects of temporal auto-

correlations on the ability of SDMs to map species ranges with

small sample sizes have been noted (Wisz et al., 2008) but not

evaluated.

Here, we assess the climatic representativeness of collections

and evaluate the accuracy of SDMs in predicting species ranges

on the basis of different sample sizes while incorporates real-

world assumptions about how samples are collected in the

field, including potential effects of temporal autocorrelations

and collection biases. Specifically, we use a database of dated

herbarium collection records to model the distributions of 65

well-collected Amazonian and Andean plant species (each

with ‡ 200 dated records available after data filtering). We

then use the popular SDM software, maxent, to produce range

estimates using the first 25, 50, 100, 125 and 150 records that

were collected for each species. We assess the accuracy of the

results generated from these time-ordered subsets to those

generated from the full data set of all available records for each

species by quantifying accordance between the predicted range

estimates. We compare the accuracy of range estimates

generated with the time-ordered subsets to the accuracy of

range estimates generated using the same number of collec-

tions but randomly subsampled from all available records. By

comparing the accuracy of models generated from the time-

ordered and randomly subsampled data sets, we can assess the

impacts of collection biases (i.e. collector behaviour and the

nature of field projects) on range estimates. This information

will aid in the design of field inventories designed to

understand biodiversity distribution and its conservation,

and also improve recommendations of the minimum number

of collections that should be included when estimating species

current (and future) ranges. This is a key challenge in

conservation biogeography (Richardson & Whittaker, 2010).

METHODS

We downloaded all available plant herbarium records for

tropical South America through the Global Biodiversity

Information Facility data portal (GBIF, http://www.gbif.org/;

specific databases accessed are listed in the Appendix S1 in the

Supporting Information) and SpeciesLink (http://splink.cria.

org.br; Appendix S1). All records were then screened using

several standard data filters (Feeley & Silman, 2010b, 2011).

First, we only included records with geographic collection

coordinates and ‘without known coordinate issues’ (GBIF) or

coordinates that were ‘not suspect’ (SpeciesLink). We also

excluded any records with obvious geographic or elevational

errors (e.g. those occurring over bodies of water or at

elevations > 6000 m). Furthermore, we only included speci-

mens collected from the ‘Tropical and Subtropical Moist

Broadleaf Forests’ and ‘Montane Grasslands and Shrublands’

biomes of South America as defined by the World Wildlife

Fund (Olson et al., 2001), thereby effectively limiting our focus
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to just Amazonian and Andean plant species by excluding any

records from other geographic areas or biomes. Finally, we

excluded all records that did not include a date of collection.

For each plant species with ‡ 200 dated collection records

(n = 65, Table S1), we estimated their potential range using

the maxent species distribution model. maxent is an SDM

based on machine learning and the principle of maximum

entropy (Phillips et al., 2006; Phillips & Dudı́k, 2008). maxent

is used to estimate ‘the multivariate distribution of suitable

habitat conditions (associated with species occurrences) in

environmental feature-space’ (Franklin, 2009). maxent has

consistently been shown to be one of the most robust SDMs

and to perform very well using presence-only data even with

limited sample sizes (Elith et al., 2006; Hernandez et al., 2006;

Wisz et al., 2008; Elith & Graham, 2009). Indeed, some

previous studies have indicated that it can produce accurate

range maps using data from as few as 20–30 occurrences

(Hernandez et al., 2006; Wisz et al., 2008). As a result of its

strong performance, availability and ease of implementation,

maxent is one of the most popular SDMs currently being

employed to estimate species ranges in relation to environ-

mental predictors (Phillips & Dudı́k, 2008; Franklin, 2009).

We used three climatic variables to estimate species distri-

butions in maxent: (1) mean annual temperature, (2) total

annual precipitation and (3) seasonality of precipitation

(coefficient of variation of monthly rainfall). We selected these

climatic variables as they have previously been shown to play

important roles in the performance of tropical plants and are

believed to be strongly related to individual species distribu-

tions as well as continental-scale gradients of plant species

diversity and composition (Gentry, 1988; Ter Steege et al.,

2003, 2006; Kreft & Jetz, 2007). Climatic data were down-

loaded from the WorldClim database (http://www.worldclim.

org/) at a resolution of 2.5 arc min (c. 5 km at the equator)

(Hijmans et al., 2005).

The output of maxent is a continuous cumulative proba-

bility field (Phillips et al., 2006). We transformed this prob-

ability field to a binary map of the ‘Suitable’ versus ‘Unsuitable’

habitat within tropical South America by thresholding. For

each maxent run, we set the threshold as the cumulative

probability at which the sum of sensitivity and specificity is

maximized (habitat labelled as suitable when probabil-

ity ‡ threshold). In validation tests, this threshold criterion

has been found to perform well and to have a high degree of

accuracy in transforming probability fields to binary range

maps (Jiménez-Valverde & Lobo, 2007).

We generated two subsamples of the full data set, a ‘random’

subset and a ‘time-ordered’ subset. For the former, we

randomly selected subsets of 25, 50, 75, 100, 125 and 150

collections from each species’ full data set. The data subsets

were then used to create range maps in maxent. We iterated

this process 30 times to generate distributions of possible range

predictions for each species per sample size. We assessed the

accuracy, or per cent overlap, of each of the 180 range maps

generated per species (six sample sizes · 30 draws per sample

size · 65 species = 11,700 range maps total) against range

maps produced using the corresponding species’ full collection

data set. Accuracy was assessed using confusion matrixes (i.e.

error matrixes) and the kappa statistic (Monserud & Leemans,

1992; Fielding & Bell, 1997; Franklin, 2009) which indicates the

per cent accordance between predicted range maps.

We next generated a set of additional maxent range maps

for each species using the time-ordered lists of geographic

collection locations. The time-ordered subsets represented the

oldest 25, 50, 75, 100 and 125 available specimens. As above,

we assessed the accuracy of the resultant range maps against

the range maps produced using the corresponding full data sets

using the kappa statistic. We tested the hypothesis that the

range estimates generated using these time-ordered collection

data subsets will perform significantly worse than the random

data subsets by comparing the accuracy (kappa) of the maps

generated from the time-ordered collections to the distribution

of kappa values generated using the equal number of randomly

selected collections. A time-ordered subset was deemed to have

performed significantly worse than the random subsets if its

kappa value was less than the 5% quantiles of the distribution

of kappa values generated with the same number of random

collections for the corresponding species.

To characterize collection patterns and how the degree of

spatial aggregation, or clumping, in collections may change

through time, we quantified the degree of aggregation in each

of the time-ordered subsets. Degree of aggregation was

estimated by calculating the mean nearest neighbour distance

between collection points (MNNDto) and comparing this to
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Figure 1 Box-and-whisker plots showing the distribution of the

median per cent accordance values (kappa) of species ranges

estimated using all available collections (minimum = 200 collec-

tions per species) versus ranges estimated using time-ordered data

subsets (white) and ranges estimated using random subsets (grey).

At all sample sizes, median kappa values for time-ordered subsets

are significantly less than for random subsets (Welches two sample

t-test; in all cases P < 0.00005). Boxes indicate the median and

interquartile ranges; whiskers extend to the most extreme value

which is £ 1.5 times the interquartile range from the box ends.

Temporal autocorrelated biases necessitate more collections
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the expected mean nearest neighbour distance if equal

numbers of collections had been sampled at random from

throughout the full species range (MNNDr; species range based

on the complete collection data set as above). Random

sampling was simulated 1000 times per species per sample

size to generate distributions of MNNDr values. A standardized

measure of spatial aggregation was then calculated as:

(MNNDto)mean(MMDr))/stdev(MMDr). Negative values

indicate closer than expected nearest neighbour distances and

hence a greater degree of clumping in collection locations.

Finally, we analysed the climatic representativeness of the

time-ordered subsets by calculating the range of climatic

conditions (mean annual temperature, annual precipitation

and seasonality of rainfall) sampled with each data subset.

Climatic ranges were calculated as the difference in maximum

and minimum values extracted for each climatic variable at the

sites of collection standardized as a proportion of full climatic

ranges covered by each species in the full collection data set.

RESULTS

The mean accuracy of range maps increased with increasing

number of samples regardless of the technique used to generate

the data subsets (Fig. 1). However, at all sample sizes, the

accuracy of the SDMs generated using time-ordered data

subsets was significantly worse than when using subsets of

collections taken randomly from the species’ complete data set

(Welches two sample t-test; in all cases P < 0.00005; Fig. 1). At

the individual species level, the percentage of study species for

which range estimates generated from time-ordered subsets

performed significantly worse than range estimates generated

using random data subsets was 31, 46, 38, 29, 21 and 17%

using 25, 50, 75, 100, 125 and 150 samples, respectively (Fig. 2;

Table S2).

The type of error differed between range maps produced

using the time-ordered versus random data subsets. When

using random subsets, the SDMs tended to produce different
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Figure 2 The per cent accordance

(kappa) of species ranges estimated using

all available collections (minimum = 200

collections per species) versus ranges

estimated using time-ordered data subsets

of the first (a) 25, (b) 50, (c) 75, (d) 100,

(e) 125 and (f) 150 samples (points) and

the 90% quantiles of kappa values for

ranges estimated using random subsets of

the same sample sizes (bars). Black points

indicate species whose range estimates

produced with time-ordered data subsets

have Kappa values significantly less than

the corresponding range estimates using

random data subsets. Species are ordered

according to their time-ordered data

subset kappa value with 25 samples

(see Table S1 in the supporting online

materials for species IDs).
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range predictions but did not have any consistent tendency to

over- or under-predict habitat area (the size of area deemed

suitable) when compared with the range estimates produced

using the full data sets (Fig. 3; Table S3). In fact, predictions of

habitat area differed significantly from the habitat areas of the

full ranges in only 5, 8, 8, 0, 2 and 2% of species using 25, 50,

75, 100, 125 and 150 samples, respectively. In contrast, when

using the time-ordered data subsets, habitat areas were

consistently under-predicted. Specifically, range estimates

generated using time-ordered subsets under-predicted habitat

area in 66, 63, 63, 63, 63 and 54% species using 25, 50, 75, 100,

125 and 150 samples, respectively. Except at the highest sample

size (n = 150), this is significantly more under-predictions

than expected by random (binomial probability, P £ 0.001).

The standardized degree of spatial aggregation increased

with larger time-order data subsets (Fig. 4; Table S4). The

proportion of the climatic niche breadth represented by

collections also increased with larger time-ordered data subsets

(Fig. 5; Tables S5–S7). This pattern was strongest in the case of

mean annual temperature for which the data subsets of the first

25 collections represented on average just 53.3% (95%

CI = 48.0–58.6%) of the species’ full temperature ranges.

DISCUSSION

Results from this study show that the use of randomly

subsampled data records disregards the temporally autocorre-

lated spatial biases that are ubiquitous in herbarium collection

databases. Species occurrence data are not collected at random

but rather collections tend to be clumped around specific areas

because of the nature of collecting campaigns and ease of

access to sites within a particular habitat (Kadmon et al., 2004;

Moerman & Estabrook, 2006; Schulman et al., 2007; Tobler

et al., 2007; Loiselle et al., 2008). Interestingly, through time,
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Figure 3 Relative habitat areas (in rela-

tion to habitat areas predicted using full

data sets) estimated using time-ordered

data subsets of the first (a) 25, (b) 50, (c)

75, (d) 100, (e) 125 and (f) 150 samples

(points) and the 90% quantiles of relative

areas for ranges estimated using random

subsets of the same sample sizes (bars).

Black points indicate species whose

estimate of habitat area as produced with

time-ordered data subsets is significantly

less than areas estimated using random

data subsets. Species order is maintained

from Fig. 2 (see Table S1 in the support-

ing online materials for species IDs).

Temporal autocorrelated biases necessitate more collections
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collections actually become increasing spatially aggregated or

clumped as areas of interest are revisited (Fig. 4; Table S4).

However, additional collecting sites are added through time

resulting in better representations of the full climatic niches of

species (Fig. 5; Tables S5–S7). Of particular interest within the

context of global warming, the climatic representativeness with

small sample sizes is lowest in the case of mean annual

temperature (Fig. 5; Tables S5–S7).

As a result of the spatio-temporal aggregation of collections,

many more records will be required to accurately characterize

the ‘true’ range of conditions under which species may occur

than if the collections had been collected at random across the

species’ ranges. For example, 75–100 collections are required to

produce range estimates that are as accurate on average as the

range estimates produced using 25 randomly subsampled

collections (Fig. 1). This result has important implications for

our estimates of the effort required to gather enough data to

accurately characterize of species’ ranges and for best-practice

guidelines for future collections. While testing the accuracy of

SDMs using random subsets of data gives us means of assessing

the power of various models (Wisz et al., 2008), the results of

these studies should not be used as a guideline for how many

samples should actually be included when attempting to model

species ranges. Nor should the results of studies based on

random subsets of collections data be used as guidelines for

deciding when species are sufficiently collected to deemphasize

future collections and stop funding efforts aimed at obtaining

new field records.

The fact that more collections are required to accurately

predict species distributions than has been suggested by

previous studies also has important implications for the utility

and interpretation of SDMs. This will be especially true for taxa

or geographic areas for which the number of available

occurrence records is limited. For example, c. 5% of tropical

plant species are represented by ‡ 20 records available through

the combined GBIF and SpeciesLink repositories (Feeley &
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Figure 5 Box-and-whisker plots showing the percentage of full

climatic niche breadth represented by time-ordered collection data
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Silman, 2011). If, however, the minimum sample size is

increased to ‡ 100, only 0.3% of species have enough available

data (Feeley & Silman, 2011).

The amount of data required could possibly be reduced if

collection biases are reduced, for example through detecting

and quantifying biases in past collections (Robertson et al.,

2010). Biases in future collecting efforts can be minimized

through systematic sampling in the field at either random,

regular or strategically situated locations. Ideally, national

sampling grids or inventories would be established that would

minimize geographic and taxonomic collection biases. The use

of regular inventories would also result in presence and

absence data allowing for different sets of SDMs and more

accurate predictions of species distributions. National inven-

tory programmes are already implemented in several devel-

oped nations (e.g. The USA’s Forest Inventory Analysis: http://

www.fia.fs.fed.us/). Similar efforts should be implemented

globally and especially in developing tropical nations which

house the vast majority of terrestrial diversity and which face

some of the greatest conservation challenges. Given the

logistical and physical difficulty of working in Earth’s highest

biodiversity areas, though, the benefits of a random or

systematic sampling strategy may be outweighed in many

cases by simply adding additional sampling efforts in areas

with marginal predictive certainty in existing models, along

environmental gradients (Austin & Heyligers, 1989; Wessels

et al., 1998), or as selected through survey-gap analyses (Funk

et al., 2005).

The potentially good news arising from this study is that

time-ordered subsets of records tend to under-predict species

ranges (as may be expected with clumped sampling; Fig. 3;

Table S3). As such, it is likely that the ranges currently being

predicted for most species are underestimates. It is therefore

possible that we are over-predicting the threat of extinction for

many species as risk of extinction due to habitat loss (e.g.

because of climate change and/or deforestation and land use

change) is generally negatively associated with range extent (i.e.

specialized species with small ranges will generally be a greater

risk of extinction than species with larger ranges)(Jetz et al.,

2008; Feeley & Silman, 2010b). The overestimation of habitat

loss may be magnified in spatially explicit analyses (e.g. Feeley

& Silman, 2009) if disturbances and collection efforts are both

concentrated around areas of easy access. Conversely, estimates

of habitat loss may be artificially lowered if collectors

oversample from parks and other protected areas.

We conclude by stressing that the multiple biases in SDMs as

revealed in this and other papers do not invalidate or undermine

the general methodology. Quite the opposite, all models have

biases and uncertainties, and understanding the biases allows

policy and management decisions that are both sensitive to and

robust to uncertainty (Richardson & Whittaker, 2010).
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Jiménez-Valverde, A. & Lobo, J.M. (2007) Threshold criteria

for conversion of probability of species presence to either-or

presence-absence. Acta Oecologica, 31, 361–369.

Kadmon, R., Farber, O. & Danin, A. (2003) A systematic

analysis of factors affecting the performance of climatic

envelope models. Ecological Applications, 13, 853–867.

Kadmon, R., Farber, O. & Danin, A. (2004) Effect of roadside

bias on the accuracy of predictive maps produced by bio-

climatic models. Ecological Applications, 14, 401–413.

Kreft, H. & Jetz, W. (2007) Global patterns and determinants

of vascular plant diversity. Proceedings of the National

Academy of Sciences, 104, 5925–5930.

Loiselle, B.A., Jorgensen, P.M., Consiglio, T., Jimenez, I., Blake,

J.G., Lohmann, L.G. & Montiel, O.M. (2008) Predicting

species distributions from herbarium collections: does cli-

mate bias in collection sampling influence model outcomes?

Journal of Biogeography, 35, 105–116.

Moerman, D.E. & Estabrook, G.F. (2006) The botanist effect:

counties with maximal species richness tend to be home to

universities and botanists. Journal of Biogeography, 33, 1969–

1974.

Monserud, R.A. & Leemans, R. (1992) Comparing global

vegetation maps with the kappa statistic. Ecological Model-

ling, 62, 275–293.

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess,

N.D., Powell, G.V.N., Underwood, E.C., Amico, J.A., Itoua,

I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F.,

Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W.,

Hedao, P. & Kassem, K.R. (2001) Terrestrial ecoregions of the

world: a new map of life on earth. BioScience, 51, 933–938.

Phillips, S.J. & Dudı́k, M. (2008) Modeling of species distri-

butions with maxent: new extensions and a comprehensive

evaluation. Ecography, 31, 161–175.

Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maxi-

mum entropy modeling of species geographic distributions.

Ecological Modelling, 190, 231–259.

Richardson, D.M. & Whittaker, R.J. (2010) Conservation

biogeography – foundations, concepts and challenges.

Diversity and Distributions, 16, 313–320.

Robertson, M.P., Cumming, G.S. & Erasmus, B.F.N. (2010)

Getting the most out of atlas data. Diversity and Distribu-

tions, 16, 363–375.

Schulman, L., Toivonen, T. & Ruokolainen, K. (2007) Analy-

sing botanical collecting effort in amazonia and correcting

for it in species range estimation. Journal of Biogeography, 34,

1388–1399.

Stockwell, D.R.B. & Peterson, A.T. (2002) Effects of sample size

on accuracy of species distribution models. Ecological Mod-

elling, 148, 1–13.

Ter Steege, H., Pitman, N., Sabatier, D. et al. (2003) A spatial

model of tree alpha-diversity and tree density for the Ama-

zon. Biodiversity and Conservation, 12, 2255–2277.

Ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J.,

Sabatier, D., Duque, A., Molino, J.-F., Prevost, M.-F., Spi-

chiger, R., Castellanos, H., Von Hildebrand, P. & Vasquez, R.

(2006) Continental-scale patterns of canopy tree composi-

tion and function across amazonia. Nature, 443, 444–447.

Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M.,

Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., De

Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L.,

Huntley, B., Van Jaarsveld, A.S., Midgley, G.F., Miles, L.,

Ortega-Huerta, M.A., Townsend Peterson, A., Phillips, O.L.

& Williams, S.E. (2004) Extinction risk from climate change.

Nature, 427, 145–148.

Tobler, M., Honorio, E., Janovec, J. & Reynel, C. (2007)

Implications of collection patterns of botanical specimens on

their usefulness for conservation planning: an example of

two neotropical plant families (moraceae and myristicaceae)

in Peru. Biodiversity and Conservation, 16, 659–677.

Wessels, K.J., Jaarsveld, A.S.V., Grimbeek, J.D. & Linde,

M.J.V.D. (1998) An evaluation of the gradsect biological

survey method. Biodiversity and Conservation, 7, 1093–1121.

Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H.

& Guisan, A. (2008) Effects of sample size on the perfor-

mance of species distribution models. Diversity and Distri-

butions, 14, 763–773.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online

version of this article:

Appendix S1 List of herbaria contributing tropical plant

collection records accessed through the Global Biodiversity

Information Facility and SpeciesLink.

Table S1 Number of collections in full dataset for each of the

65 study species.

Table S2 Percent accordance (kappa) between species range

maps produced using time-ordered data subsets versus the

corresponding range maps produced using the full datasets.

The 90% quantiles of kappa values for maps produced using

random data subsets are listed in parentheses.

Table S3 Area of range maps produced using time-ordered

data subsets relative to the corresponding range maps

produced using the full datasets. The 90% quantiles of relative

areas for maps produced using random data subsets are listed

in parentheses.

Table S4 Degree of spatial aggregation exhibited by each

species for each time-ordered data subset sample size.

Table S5 Proportion of full thermal niche breadth represented

by time-ordered collection datasets.

Table S6 Proportion of full precipitation niche breadth

represented by time-ordered collection datasets.

Table S7 Proportion of full seasonality of precipitation niche

breadth represented by time-ordered collection datasets.

K. J. Feeley and M. R. Silman

8 Diversity and Distributions, 1–9, ª 2011 Blackwell Publishing Ltd



As a service to our authors and readers, this journal provides

supporting information supplied by the authors. Such mate-

rials are peer-reviewed and may be re-organized for online

delivery, but are not copy-edited or typeset. Technical support

issues arising from supporting information (other than missing

files) should be addressed to the authors.

BIOSKETCHES

Kenneth J. Feeley is an Assistant Professor in the Department

of Biological Sciences at Florida International University and a

Conservation Biologist at the Fairchild Tropical Botanic Garden

in Miami, FL, USA. His research focuses on understanding the

responses of tropical forest ecosystems to large-scale anthropo-

genic disturbances such as deforestation, fragmentation and

climate change.

Miles R. Silman is a community ecologist interested in

understanding the factors that influence species distributions

and the forces that promote and maintain diversity in tropical

ecosystems. He is an Associate Professor in the Department of

Biology at Wake Forest University and a principal investigator

in the Andes Biodiversity and Ecosystem Research Group.

Author Contributions: K.J.F. and M.R.S. conceived the study;

K.J.F. collected the data; K.J.F. analyzed the data; K.J.F. and

M.R.S. wrote the paper.

Editor: Jessica Hellmann

Temporal autocorrelated biases necessitate more collections

Diversity and Distributions, 1–9, ª 2011 Blackwell Publishing Ltd 9


