VANISHING OF MODULAR FORMS AT INFINITY

SCOTT AHLGREN, NADIA MASRI, AND JEREMY ROUSE

Abstract

We give upper bounds for the maximal order of vanishing at ∞ of a modular form or cusp form of weight k on $\Gamma_{0}(N p)$ when $p \nmid N$ is prime. The results improve the upper bound given by the classical valence formula and the bound (in characteristic p) given by a theorem of Sturm. In many cases the bounds are sharp. As a corollary, we obtain a necessary condition for the existence of a non-zero form $f \in S_{2}\left(\Gamma_{0}(N p)\right)$ with $\operatorname{ord}_{\infty}(f)$ larger than the genus of $X_{0}(N p)$. In particular, this gives a (non-geometric) proof of a theorem of Ogg, which asserts that ∞ is not a Weierstrass point on $X_{0}(N p)$ if $p \nmid N$ and $X_{0}(N)$ has genus zero.

1. Introduction and statement of results

Let $M_{k}\left(\Gamma_{0}(N)\right)$ denote the complex vector space of holomorphic modular forms of weight k and level N, and let $S_{k}\left(\Gamma_{0}(N)\right)$ denote the subspace of cusp forms (see, for example, [4] for background). If $f(z)$ is a non-zero element of $M_{k}\left(\Gamma_{0}(N)\right)$, and $q:=e^{2 \pi i z}$, then f has a Fourier expansion at ∞ of the form

$$
f(z)=\sum_{n=n_{0}}^{\infty} a(n) q^{n} \quad \text { with } a\left(n_{0}\right) \neq 0
$$

Given such a form f, we define

$$
\operatorname{ord}_{\infty}(f):=n_{0}
$$

The following question is very natural:
For a non-zero element $f \in M_{k}\left(\Gamma_{0}(N)\right)$ (respectively $S_{k}\left(\Gamma_{0}(N)\right)$, what is the largest possible value of $\operatorname{ord}_{\infty}(f)$?
For convenience, we define $\Gamma:=\mathrm{SL}_{2}(\mathbb{Z})$. By the valence formula, we know that the total number of zeros of a non-zero element $f \in M_{k}\left(\Gamma_{0}(N)\right.$) (counted in local coordinates in the usual way), is given by $\frac{k}{12}\left[\Gamma: \Gamma_{0}(N)\right]$ (see, for example, Chapter V of [12]). An element of $M_{k}\left(\Gamma_{0}(N)\right)$ may (depending on the values of N and k) have forced vanishing at elliptic points. We denote by $\alpha(N, k)$ the number of zeros forced by this consideration, and by $\epsilon_{\infty}(N)$ the number of cusps of $\Gamma_{0}(N)$ (see (3.2), (3.4) for the precise definitions). Then we have

$$
\begin{align*}
& 0 \neq f \in M_{k}\left(\Gamma_{0}(N)\right) \Longrightarrow \operatorname{ord}_{\infty}(f) \leq \frac{k}{12}\left[\Gamma: \Gamma_{0}(N)\right]-\alpha(N, k), \\
& 0 \neq f \in S_{k}\left(\Gamma_{0}(N)\right) \Longrightarrow \operatorname{ord}_{\infty}(f) \leq \frac{k}{12}\left[\Gamma: \Gamma_{0}(N)\right]-\alpha(N, k)-\epsilon_{\infty}(N)+1 \tag{1.1}
\end{align*}
$$

On the other hand, each of the spaces $M_{k}\left(\Gamma_{0}(N)\right)$ and $S_{k}\left(\Gamma_{0}(N)\right)$ has a basis consisting of forms with rational coefficients. Using this basis, one can construct an integral basis in

[^0]"echelon form." To be precise, let d denote the dimension of the space in question. Then we have a basis of forms $\left\{f_{1}, \ldots, f_{d}\right\}$ with integer coefficients and with the property that
\[

$$
\begin{gather*}
f_{1}(z)=a_{1} q^{c_{1}}+O\left(q^{c_{1}+1}\right) \\
f_{2}(z)=a_{2} q^{c_{2}}+O\left(q^{c_{2}+1}\right) \tag{1.2}\\
\vdots \\
f_{d}(z)=a_{d} q^{c_{d}}+O\left(q^{c_{d}+1}\right) .
\end{gather*}
$$
\]

Here each leading coefficient a_{i} is a non-zero integer, and $c_{1}<c_{2}<\cdots<c_{d}$. It is clear that the maximal order of vanishing at infinity of any non-zero form in the space is equal to c_{d}.

Denote the maximal order of vanishing of any non-zero form in $M_{k}\left(\Gamma_{0}(N)\right)$ by $m_{N, k}$ and the maximal order of vanishing of any non-zero form in $S_{k}\left(\Gamma_{0}(N)\right)$ by $s_{N, k}$. Using (1.1) and the above basis, we see that

$$
\begin{align*}
& \operatorname{dim}\left(M_{k}\left(\Gamma_{0}(N)\right)\right)-1 \leq m_{N, k} \leq \frac{k}{12}\left[\Gamma: \Gamma_{0}(N)\right]-\alpha(N, k), \tag{1.3}\\
& \operatorname{dim}\left(S_{k}\left(\Gamma_{0}(N)\right)\right) \leq s_{N, k} \leq \frac{k}{12}\left[\Gamma: \Gamma_{0}(N)\right]-\alpha(N, k)-\epsilon_{\infty}(N)+1 .
\end{align*}
$$

It is possible to construct examples of spaces for which $m_{N, k}$ (respectively $s_{N, k}$) falls at either end of the allowable range. However, the exact value of these quantities is in general mysterious. For example, it is conjectured that if N is squarefree, then ∞ is not a Weierstrass point on the modular curve $X_{0}(N)$. Letting $g(N)$ denote the genus of $X_{0}(N)$, this is equivalent to the assertion that $s_{N, 2}=\operatorname{dim}\left(S_{2}\left(\Gamma_{0}(N)\right)\right)=g(N)$ for such N. This has been verified by William Stein for squarefree $N \leq 3223$. On the other hand, Lehner and Newman [9] and Atkin [1] proved that $s_{N, 2}>\operatorname{dim}\left(S_{2}\left(\Gamma_{0}(N)\right)\right)$ for many families of N which are not squarefree.

Using geometric arguments in characteristic p, Ogg [10] proved that ∞ is not a Weierstrass point on $X_{0}(N p)$ whenever $p \nmid N$ is prime and $X_{0}(N)$ has genus zero. Recently, Kohnen [8] and Kilger [7] have used techniques from the theory of modular forms mod p to reprove Ogg's result for certain curves $X_{0}(p \ell)$ when p and ℓ are distinct primes. As a corollary to our first theorem, we obtain a proof of Ogg's result which uses only standard facts from the theory of modular forms mod p.

To state the first result, when $p \| N$ we require the Atkin-Lehner involution W_{p}^{N} on $S_{2}\left(\Gamma_{0}(N)\right.$) (see (3.5) below). For a power series $f=\sum a(n) q^{n}$ with rational coefficients and bounded denominators, we recall that $v_{p}(f):=\inf \left\{v_{p}(a(n))\right\}$. Then we have the following, which was proved for certain N of the form $p \ell$ by Kohnen and Kilger.

Theorem 1.1. Suppose that $p \geq 5$ is a prime with $p \| N$ and that $f \in S_{2}\left(\Gamma_{0}(N)\right) \cap \mathbb{Q}[[q]]$ has $v_{p}(f)=0$ and $v_{p}\left(f \mid W_{p}^{N}\right) \geq 0$. Then $\operatorname{ord}_{\infty}(f) \leq g(N)$.

As an easy corollary, we obtain Ogg's result.
Corollary 1.2. If p is a prime with $p \| N$, and $g(N / p)=0$, then ∞ is not a Weierstrass point on $X_{0}(N)$.

We now state the results for general weights. If $f \in M_{k}\left(\Gamma_{0}(N)\right)$ then let $\alpha_{2}(N, k)$ and $\alpha_{3}(N, k)$ denote the number of complex zeros of f which are forced at the elliptic points of order 2 and 3 (see (3.3) for the precise values). We will consider levels N of the form $N=p N^{\prime}$ where $p \geq 5$ is a prime with $p \nmid N^{\prime}$. For such N, and for weights k which are sufficiently
small relative to p, we obtain an improvement of the upper bounds in (1.3) for each of the quantities $m_{N, k}$ and $s_{N, k}$. We note that Theorem 4.2 gives a more precise statement for any particular form f.

Theorem 1.3. Suppose that $k \geq 2$, that $p \geq k+3$ is prime, and that N is an integer with $p \| N$. Suppose that $f(z) \in M_{k}\left(\Gamma_{0}(N)\right)$ and that $f \neq 0$. Then we have

$$
\operatorname{ord}_{\infty}(f) \leq \frac{k p}{12} \cdot\left[\Gamma: \Gamma_{0}(N / p)\right]-\frac{1}{2} \alpha_{2}(N / p, k p)-\frac{1}{3} \alpha_{3}(N / p, k p) .
$$

Theorem 1.4. Suppose that $k \geq 2$, that $p \geq \max (5, k+1)$ is prime, and that N is an integer with $p \| N$. Suppose that $f(z) \in S_{k}\left(\Gamma_{0}(N)\right)$ and that $f \neq 0$. Then we have

$$
\operatorname{ord}_{\infty}(f) \leq \frac{k p}{12} \cdot\left[\Gamma: \Gamma_{0}(N / p)\right]-\frac{1}{2} \alpha_{2}(N / p, k p)-\frac{1}{3} \alpha_{3}(N / p, k p)-\epsilon_{\infty}(N / p)+1
$$

The bounds in these results are sharp for many spaces of forms. Let $\eta(z)$ be the usual Dedekind eta-function, defined by

$$
\eta(z):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

For one family of examples, define $f(z) \in M_{4}\left(\Gamma_{0}(15)\right)$ by

$$
f(z):=\frac{\eta(z) \cdot \eta^{15}(15 z)}{\eta^{3}(3 z) \cdot \eta^{5}(5 z)}=q^{8}+\cdots,
$$

and if $p>5$ is prime, then define $g(z) \in M_{4}\left(\Gamma_{0}(15 p)\right)$ by

$$
g(z):=f(p z)=q^{8 p}+\cdots \in M_{4}\left(\Gamma_{0}(15 p)\right) .
$$

We have $\alpha(15 p, 4)=0$, so in this case the upper bound in (1.3) is $\frac{4}{12}\left[\Gamma: \Gamma_{0}(15 p)\right]=8 p+8$. We see that the actual order of vanishing matches the bound $\frac{4 p}{12}\left[\Gamma: \Gamma_{0}(15)\right]=8 p$ provided by Theorem 1.3. Infinite families of related examples will be discussed in the last section.

We also remark that the hypothesis on the size of p is necessary. For example, in the space $M_{6}\left(\Gamma_{0}(35)\right)$, there is a form whose q-expansion begins with $q^{21}+\cdots$. On the other hand, we have $\frac{6 \cdot 7}{12}\left[\Gamma: \Gamma_{0}(5)\right]-\frac{1}{2} \alpha_{2}(5,42)=20$, from which we see that the conclusion does not hold when $p=7$.

To see that Theorem 1.4 is sharp, consider the space $S_{4}\left(\Gamma_{0}(60)\right)$. We have $\alpha(60,4)=0$ and $\epsilon_{\infty}(60)=12$, so the upper bound provided by (1.3) is 37 . On the other hand, we have $\left[\Gamma: \Gamma_{0}(12)\right]=24$ and $\epsilon_{\infty}(12)=6$, so the bound in Theorem 1.4 is $\frac{4 \cdot 5}{12} \cdot 24-5=35$. In fact, there is a form in this space whose q-expansion is $q^{35}+\cdots$. More examples will be provided in the last section. Again, the assumption on p is necessary; to see this note that there is a form $f \in S_{8}\left(\Gamma_{0}(35)\right)$ whose q-expansion is $f=q^{26}+\cdots$.

A computation using (1.1) shows that $s_{N, k}$ attains values in an interval, considered asymptotically with respect to N, of length $\frac{p+1}{12}\left[\Gamma: \Gamma_{0}(N / p)\right]$. Theorem 1.4 implies that $s_{N, k}$ lies in the narrower range

$$
\begin{equation*}
\operatorname{dim}\left(S_{k}\left(\Gamma_{0}(N)\right) \leq s_{N, k} \leq \frac{k p}{12}\left[\Gamma: \Gamma_{0}(N / p)\right]-\frac{1}{2} \alpha_{2}(N / p, k p)-\frac{1}{3} \alpha_{3}(N / p, k p)-\epsilon_{\infty}\left(\frac{N}{p}\right)+1\right. \tag{1.4}
\end{equation*}
$$

Considered asymptotically with respect to N, this interval has length $\frac{-k+p+1}{12}\left[\Gamma: \Gamma_{0}(N / p)\right]$. So the result of Theorem 1.4 is optimized when p is as close to k as possible. For example,
when $k=4$ and $p=5$, then the length of the interval (1.4) is asymptotically one-third the length of the interval in (1.1).

The proofs of these results use techniques similar to those in [8], [7]. In order to prove these theorems, we will establish the analogous results in characteristic p. In particular, we give an improvement of a well-known theorem of Sturm on the maximal order of vanishing of a modular form in characteristic p. The tools involve facts on the integrality of modular forms, a modification of Sturm's original result to account for forced vanishing at the elliptic points, the trace map, the theory of modular forms $\bmod p$, and a recent result of Kilbourn [6] which, extending results of Deligne-Rapaport [3] and Weissauer [14] for weight 2, gives bounds for the p-adic valuation of the image of a cusp form $f \in S_{k}\left(\Gamma_{0}(N)\right)$ under the AtkinLehner operator W_{p}^{N}. We begin in the next section by stating the characteristic p results and deducing from them Theorems 1.3 and 1.4. The following sections contain background material, the proof of the characteristic p results, and examples.

2. A Result modulo p

If $f(z)=\sum_{n=0}^{\infty} a(n) q^{n} \in M_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Q}[[q]]$ and p is prime, then define

$$
\begin{equation*}
v_{p}(f):=\inf \left\{v_{p}(a(n)\}\right. \tag{2.1}
\end{equation*}
$$

(this infimum exists by the principle of bounded denominators). If p is prime, then let $\mathbb{Z}_{(p)}$ denote the ring of p-integral rational numbers. If $f \in \mathbb{Z}_{(p)}[[q]]$, then we write \bar{f} for its (coefficientwise) reduction modulo p, and if $v_{p}(f)=0$ then we denote by $\operatorname{ord}_{\infty}(\bar{f})$ the index of the first coefficient which does not vanish modulo p.

A well-known theorem of Sturm [13] gives bounds for the maximal order of vanishing of a modular form modulo p. Theorems 1.3 and 1.4 will follow from the next results, which improve Sturm's theorem in the cases under consideration.
Theorem 2.1. Suppose that $k \geq 2$ is an even integer, that $p \geq k+3$ is prime, and that N is a positive integer with $p \| N$. Suppose that $f(z) \in M_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Z}_{(p)}[[q]]$ and that $f \not \equiv 0$ $(\bmod p)$. Then

$$
\operatorname{ord}_{\infty}(\bar{f}) \leq \frac{k p}{12} \cdot\left[\Gamma: \Gamma_{0}(N / p)\right]-\frac{1}{2} \alpha_{2}(N / p, k p)-\frac{1}{3} \alpha_{3}(N / p, k p) .
$$

Theorem 2.2. Suppose that $k \geq 2$ is an even integer, that $p \geq \max (5, k+1)$ is prime, and that N is a positive integer with $p \| N$. Suppose that $f(z) \in S_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Z}_{(p)}[[q]]$ and that $f \not \equiv 0(\bmod p)$. Then

$$
\operatorname{ord}_{\infty}(\bar{f}) \leq \frac{k p}{12} \cdot\left[\Gamma: \Gamma_{0}(N / p)\right]-\frac{1}{2} \alpha_{2}(N / p, k p)-\frac{1}{3} \alpha_{3}(N / p, k p)-\epsilon_{\infty}(N / p)+1
$$

To deduce Theorem 1.3, we argue as follows. It suffices to prove the result for the form f_{d} in the basis (1.2). Assume without loss of generality that $v_{p}\left(f_{d}\right)=0$. Since $\operatorname{ord}_{\infty}\left(f_{d}\right) \leq$ $\operatorname{ord}_{\infty}\left(\bar{f}_{d}\right)$, Theorem 1.3 follows. Theorem 1.4 follows in the same manner.

3. Preliminaries

We first recall the values of some of the quantities introduced in the first section. A good reference is thet table on p. 107 of the book of Diamond and Shurman [4]. We have

$$
\begin{equation*}
\left[\Gamma: \Gamma_{0}(N)\right]=N \prod_{p \mid N}\left(1+\frac{1}{p}\right) . \tag{3.1}
\end{equation*}
$$

The number of cusps on $X_{0}(N)$ is given by

$$
\begin{equation*}
\epsilon_{\infty}(N)=\sum_{d \mid N} \phi(\operatorname{gcd}(d, N / d)) \tag{3.2}
\end{equation*}
$$

Let $\epsilon_{2}(N), \epsilon_{3}(N)$ denote the numbers of elliptic points of orders 2 and 3 on $X_{0}(N)$, respectively. Then we have

$$
\begin{aligned}
& \epsilon_{2}(N)= \begin{cases}0 & \text { if } 4 \mid N \\
\prod_{p \mid N}\left(1+\left(\frac{-4}{p}\right)\right) & \text { otherwise }\end{cases} \\
& \epsilon_{3}(N)= \begin{cases}0 & \text { if } 9 \mid N \\
\prod_{p \mid N}\left(1+\left(\frac{-3}{p}\right)\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

If $\alpha_{2}(N, k)$ and $\alpha_{3}(N, k)$ count the number of forced complex zeroes of a form $f \in M_{k}\left(\Gamma_{0}(N)\right)$ at the elliptic points of order 2 and order 3 respectively, then

$$
\left(\alpha_{2}(N, k), \alpha_{3}(N, k)\right):= \begin{cases}\left(\epsilon_{2}(N), 2 \epsilon_{3}(N)\right) & \text { if } k \equiv 2 \quad(\bmod 12), \tag{3.3}\\ \left(0, \epsilon_{3}(N)\right) & \text { if } k \equiv 4 \quad(\bmod 12), \\ \left(\epsilon_{2}(N), 0\right) & \text { if } k \equiv 6 \quad(\bmod 12), \\ \left(0,2 \epsilon_{3}(N)\right) & \text { if } k \equiv 8 \quad(\bmod 12), \\ \left(\epsilon_{2}(N), \epsilon_{3}(N)\right) & \text { if } k \equiv 10 \quad(\bmod 12), \\ (0,0) & \text { if } k \equiv 0 \quad(\bmod 12)\end{cases}
$$

Then the quantity $\alpha(N, k)$ used in the introduction is given by

$$
\begin{equation*}
\alpha(N, k):=\frac{1}{2} \alpha_{2}(N, k)+\frac{1}{3} \alpha_{3}(N, k) . \tag{3.4}
\end{equation*}
$$

We next recall some basic operators (a good reference is [2]). For any prime p, we define the linear operators U_{p} and V_{p} on Fourier expansions by

$$
\begin{aligned}
& \left(\sum a(n) q^{n}\right) \mid U_{p}:=\sum a(p n) q^{n} \\
& \left(\sum a(n) q^{n}\right) \mid V_{p}:=\sum a(n) q^{p n}
\end{aligned}
$$

We will always assume that p is a prime with $p \| N$. For such primes, we define the Atkin-Lehner involution W_{p}^{N} on $M_{k}\left(\Gamma_{0}(N)\right)$ by

$$
\left.f\right|_{k} W_{p}^{N}:=\left.f\right|_{k}\left(\begin{array}{cc}
p a & 1 \tag{3.5}\\
N b & p
\end{array}\right)
$$

where $a, b \in \mathbb{Z}$ and $p^{2} a-N b=p$. We then have

$$
\begin{equation*}
\left.\left.f\right|_{k} W_{p}^{N}=p^{\frac{k}{2}} f \right\rvert\, V_{p} \quad \text { for } f \in M_{k}\left(\Gamma_{0}(N / p)\right) \tag{3.6}
\end{equation*}
$$

We recall also the trace operator

$$
\operatorname{Tr}_{N / p}^{N}: M_{k}\left(\Gamma_{0}(N)\right) \rightarrow M_{k}\left(\Gamma_{0}(N / p)\right)
$$

defined by

$$
\begin{equation*}
\operatorname{Tr}_{N / p}^{N}(f): \left.=f+\left.p^{1-\frac{k}{2}} f\right|_{k} W_{p}^{N} \right\rvert\, U_{p} \tag{3.7}
\end{equation*}
$$

The trace takes cusp forms to cusp forms. Finally, we define the familiar modular form

$$
E_{p-1}^{*}:=E_{p-1}-p^{p-1} E_{p-1} \mid V_{p} \in M_{p-1}\left(\Gamma_{0}(p)\right) .
$$

We have $E_{p-1}^{*} \equiv 1(\bmod p)$ and

$$
\begin{equation*}
\left.E_{p-1}^{*}\right|_{p-1} W_{p}^{N} \equiv 0 \quad\left(\bmod p^{\frac{p+1}{2}}\right) \quad \text { for all } N \text { with } p \| N . \tag{3.8}
\end{equation*}
$$

We will make use of the following recent result of Kilbourn [6]. This generalizes the result of Weissauer [14] in the case of weight 2.

Theorem 3.1 (Kilbourn). Suppose that $f \in S_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Q}[[q]]$ and that p is a prime with $p \| N$ and $p \geq \max (5, k+1)$. Then $\left|v_{p}\left(\left.f\right|_{k} W_{p}^{N}\right)-v_{p}(f)\right| \leq \frac{k}{2}$.

We also require a minor modification of this theorem for modular forms.
Theorem 3.2. Suppose that $f \in M_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Q}[[q]]$ and that p is a prime with $p \| N$ and $p \geq k+3$. Then $\left|v_{p}\left(\left.f\right|_{k} W_{p}^{N}\right)-v_{p}(f)\right| \leq \frac{k}{2}$.

In the case of prime level, this result is proven in [3], Proposition 3.20.
For the convenience of the reader, we will sketch Kilbourn's method as applied to Theorem 3.2. We seek a contradiction from the assumption (made without loss of generality after renormalization) that $f \in M_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Z}_{(p)}[[q]]$ has $v_{p}(f)=0$ and $v_{p}\left(\left.f\right|_{k} W_{p}^{N}\right) \geq k / 2+1$. Defining $h:=\operatorname{Tr}_{N / p}^{N}(f) \in M_{k}\left(\Gamma_{0}(N / p)\right)$, we find from (3.7) that $h \equiv f\left(\bmod p^{2}\right)$. Let $m:=v_{p}(h-f) \geq 2$ and define $g:=(h-f) / p^{m} \in M_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Z}_{(p)}[[q]]$. Using the hypotheses and (3.6), it can be shown that $h\left|V_{p} \equiv p^{m-k / 2} g\right|_{k} W_{p}^{N}(\bmod p)$. Defining

$$
\begin{equation*}
h^{\prime}:=\operatorname{Tr}_{N / p}^{N}\left(p^{m-k / 2}\left(\left.g\right|_{k} W_{p}^{N}\right)\left(E_{p-1}^{*}\right)^{k-2}\right) \in M_{(k-2) p+2}\left(\Gamma_{0}(N / p)\right), \tag{3.9}
\end{equation*}
$$

we find after a computation that $h^{\prime} \equiv h \mid V_{p}(\bmod p)$.
If $F \in M_{k}\left(\Gamma_{0}(N / p)\right) \cap \mathbb{Z}_{(p)}[[q]]$, define

$$
\omega(F)=\inf \left\{k: \text { there exists } G \in M_{k}\left(\Gamma_{0}(N / p)\right) \cap \mathbb{Z}_{(p)}[[q]] \text { with } F \equiv G \quad(\bmod p)\right\} .
$$

The theory of modular forms modulo p (see Section 4 of [5]) implies that $\omega\left(h^{\prime}\right)=\omega\left(h^{p}\right)=$ $p \omega(h)$. Since $k \leq p-3$ and h is not identically zero, it follows that $\omega\left(h^{\prime}\right)=p k$, contradicting (3.9).

4. Proof of Theorem 2.1

We require a slight sharpening of Sturm's theorem [13]. We follow Sturm's proof, but take account of forced vanishing at the elliptic points.

Theorem 4.1. Suppose that $k \geq 2$ is an even integer and that N is a positive integer. Suppose that $f(z) \in M_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Z}_{(p)}[[q]]$ and that $f \not \equiv 0(\bmod p)$. Then

$$
\operatorname{ord}_{\infty}(\bar{f}) \leq \frac{k}{12} \cdot\left[\Gamma: \Gamma_{0}(N)\right]-\frac{1}{3} \alpha_{3}(N, k)-\frac{1}{2} \alpha_{2}(N, k) .
$$

If in fact $f(z) \in S_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Z}_{(p)}[[q]]$, then

$$
\operatorname{ord}_{\infty}(\bar{f}) \leq \frac{k}{12} \cdot\left[\Gamma: \Gamma_{0}(N)\right]-\frac{1}{3} \alpha_{3}(N, k)-\frac{1}{2} \alpha_{2}(N, k)-\epsilon_{\infty}(N)+1 .
$$

Proof. Define $m:=\left[\Gamma: \Gamma_{0}(N)\right]$ and let $\gamma_{v}, v=1, \ldots, m$ (where γ_{1} is the identity) be the representatives of $\Gamma \backslash \Gamma_{0}(N)$. Following Sturm's argument, we fix a number field K containing the coefficients of each form $\left.f\right|_{k} \gamma_{v}$, and denote by \mathcal{O} the ring of integers of K. Let λ be any place above p. For each v, we find $A_{v} \in K^{\times}$such that $v_{\lambda}\left(\left.A_{v} f\right|_{k} \gamma_{v}\right)=0$, and consider the form

$$
G:=\left.f \prod_{v=2}^{m} A_{v} f\right|_{k} \gamma_{v} \in S_{k m}(\Gamma)
$$

Note that $G \not \equiv 0(\bmod \lambda)$. For $h=2,3$, we see that for each complex zero of f at an elliptic fixed point of order h on a fundamental domain for $\Gamma_{0}(N)$, the function G has precisely one zero at an elliptic fixed point of order h on a fundamental domain for Γ. Since E_{4} and E_{6} have simple zeros at the points of order 3,2 for Γ, we conclude that

$$
G^{\prime}:=\frac{G}{E_{4}^{\alpha_{3}(N, k)} E_{6}^{\alpha_{2}(N, k)}} \in S_{k m-4 \alpha_{3}(N, k)-6 \alpha_{2}(N, k)}(\Gamma) .
$$

Since f is a cusp form, we see that for each $v \geq 2$, we have an expansion of the form

$$
\left.A_{v} f\right|_{k} \gamma_{v}=c_{v} q^{1 / h_{v}}+\cdots
$$

where h_{v} is the width of the cusp corresponding to γ_{v}. Since each such cusp corresponds to exactly h_{v} of the elements γ_{v}, we conclude that G^{\prime} vanishes $\bmod \lambda$ at ∞ to order at least

$$
\operatorname{ord}_{\lambda}(\bar{f})+\epsilon_{\infty}(N)-1 .
$$

By Sturm's result in level one, this quantity is at most one-twelfth the weight of G^{\prime}, which gives the theorem for cusp forms. The proof for modular forms is the same.

We will now prove the following.
Theorem 4.2. Suppose that N and k are positive integers and that $p \geq 5$ is a prime with $p \| N$. Suppose that $f \in M_{k}\left(\Gamma_{0}(N)\right) \cap \mathbb{Z}_{(p)}[[q]]$ has

$$
v_{p}(f)=0, \quad v_{p}\left(\left.f\right|_{k} W_{p}^{N}\right) \geq a
$$

(1) If $p \geq k+3$, then

$$
\begin{aligned}
\operatorname{ord}_{\infty}(\bar{f}) \leq \frac{k+\left(\frac{k}{2}-a\right)(p-1)}{12} & {\left[\Gamma: \Gamma_{0}(N / p)\right] } \\
& -\frac{1}{3} \alpha_{2}\left(N / p, k+\left(\frac{k}{2}-a\right)(p-1)\right)-\frac{1}{2} \alpha_{3}\left(N / p, k+\left(\frac{k}{2}-a\right)(p-1)\right) .
\end{aligned}
$$

(2) If $p \geq k+1$ and $f \in S_{k}\left(\Gamma_{0}(N)\right)$, then

$$
\begin{aligned}
\operatorname{ord}_{\infty}(\bar{f}) & \leq \frac{k+\left(\frac{k}{2}-a\right)(p-1)}{12}\left[\Gamma: \Gamma_{0}(N / p)\right] \\
& -\frac{1}{3} \alpha_{2}\left(N / p, k+\left(\frac{k}{2}-a\right)(p-1)\right)-\frac{1}{2} \alpha_{3}\left(N / p, k+\left(\frac{k}{2}-a\right)(p-1)\right)-\epsilon_{\infty}(N / p)+1 .
\end{aligned}
$$

Theorems 2.1 and 2.2 follow immediately since by Theorems 3.1 and 3.2 we have $a \geq-k / 2$ in each case.

Proof of Theorem 4.2. Let f be as in the hypotheses of the first part. Then consider the form

$$
\begin{aligned}
& F:=\operatorname{Tr}_{N / p}^{N}\left(f\left(E_{p-1}^{*}\right)^{\frac{k}{2}-a}\right) \\
& \left.=f\left(E_{p-1}^{*}\right)^{\frac{k}{2}-a}+p^{1-\frac{k+\left(\frac{k}{2}-a\right)(p-1)}{2}}\left(\left.\left.f\right|_{k} W_{p}^{N} \cdot\left(E_{p-1}^{*}\right)^{\frac{k}{2}-a}\right|_{(p-1)\left(\frac{k}{2}-a\right)} W_{p}^{N}\right) \right\rvert\, U_{p}
\end{aligned}
$$

Then $F \in M_{k+\left(\frac{k}{2}-a\right)(p-1)}\left(\Gamma_{0}(N / p)\right) \cap \mathbb{Q}[[q]]$. Moreover, a computation using (3.8) shows that we have $F \equiv f(\bmod p)$. By Theorem 4.1 we conclude that

$$
\begin{aligned}
\operatorname{ord}_{\infty}(\bar{f})=\operatorname{ord}_{\infty}(\bar{F}) \leq & \frac{k+\left(\frac{k}{2}-a\right)(p-1)}{12}\left[\Gamma: \Gamma_{0}(N / p)\right] \\
& -\frac{1}{3} \alpha_{2}\left(N / p, k+\left(\frac{k}{2}-a\right)(p-1)\right)-\frac{1}{2} \alpha_{3}\left(N / p, k+\left(\frac{k}{2}-a\right)(p-1)\right) .
\end{aligned}
$$

The second assertion follows in a similar manner.
Finally, we prove Theorem 1.1. If $f \in S_{2}\left(\Gamma_{0}(N)\right)$ is as in the hypothesis, then, taking $k=2$ and $a=0$ in Theorem 4.2, we find that

$$
\operatorname{ord}_{\infty}(\bar{f}) \leq \frac{p+1}{12}\left[\Gamma: \Gamma_{0}(N / p)\right]-\epsilon_{\infty}(N / p)-\frac{1}{2} \alpha_{2}(N / p, p+1)-\frac{1}{3} \alpha_{3}(N / p, p+1)+1 .
$$

A computation shows that we have $\alpha_{2}(N / p, p+1)=\frac{1}{2} \epsilon_{2}(N), \alpha_{3}(N / p, p+1)=\epsilon_{3}(N)$, and $\epsilon_{\infty}(N / p)=\frac{1}{2} \epsilon_{\infty}(N)$. Thus,

$$
\operatorname{ord}_{\infty}(\bar{f}) \leq \frac{\left[\Gamma: \Gamma_{0}(N)\right]}{12}-\frac{1}{2} \epsilon_{\infty}(N)-\frac{1}{4} \epsilon_{2}(N)-\frac{1}{3} \epsilon_{3}(N)+1 .
$$

The right hand side is precisely the genus of $X_{0}(N)$, which proves Theorem 1.1.
Corollary 1.2 can be checked explicitly when $p=2,3$. For other primes, we note that if $g(N / p)=0$ and $f \in S_{2}\left(\Gamma_{0}(N)\right) \cap \mathbb{Z}_{(p)}[[q]]$, then $\operatorname{Tr}_{N / p}^{N}\left(f \mid W_{p}^{N}\right)=0$, so that we must have $v_{p}\left(f \mid W_{p}^{N}\right)=v_{p}\left(f \mid U_{p}\right) \geq 0$.

5. Examples

We provide more examples of spaces for which Theorems 1.3 and 1.4 are sharp. Let $N^{\prime} \geq 1$ be a squarefree integer. Define the form

$$
f_{N^{\prime}}(z):=\left(\prod_{d \mid N^{\prime}} \eta(d z)^{\mu\left(N^{\prime} / d\right) d}\right)^{\alpha}
$$

where $\mu(n)$ is the Möbius function and

$$
\alpha:= \begin{cases}24 & \text { if } N^{\prime}=1 \\ 8 & \text { if } N^{\prime}=2 \\ 6 & \text { if } N^{\prime}=3, \\ 2 & \text { if } N^{\prime}=6, p, \text { or } 2 p \text { where } p \geq 5 \text { is prime, } \\ 1 & \text { otherwise. }\end{cases}
$$

Set

$$
k:=\frac{\alpha \phi\left(N^{\prime}\right)}{2} .
$$

Using standard criteria (a convenient reference is Section 1.4 of [11]) it can be checked that $f_{N^{\prime}}(z) \in M_{k}\left(\Gamma_{0}\left(N^{\prime}\right)\right)$ and that

$$
\operatorname{ord}_{\infty}\left(f_{N^{\prime}}(z)\right)=\frac{\alpha \phi\left(N^{\prime}\right) \sigma_{1}\left(N^{\prime}\right)}{24}=\frac{k}{12}\left[\Gamma: \Gamma_{0}\left(N^{\prime}\right)\right] .
$$

If N^{\prime} is not squarefree then write $N^{\prime}=N_{1} N_{2}$ where N_{1} is the largest squarefree divisor of N^{\prime}. Then define the form $f_{N^{\prime}}(z):=f_{N_{1}}(z) \mid V_{N_{2}} \in M_{\alpha \phi\left(N_{1}\right) / 2}\left(\Gamma_{0}\left(N^{\prime}\right)\right)$.

For all $N^{\prime} \geq 1$ it follows that

$$
\begin{equation*}
\operatorname{ord}_{\infty}\left(f_{N^{\prime}}(z)\right)=\frac{k}{12}\left[\Gamma: \Gamma_{0}\left(N^{\prime}\right)\right] . \tag{5.1}
\end{equation*}
$$

If $p \geq k+3$, let $N=p N^{\prime}$. Theorem 1.3 asserts that each non-zero form $f \in M_{k}\left(\Gamma_{0}(N)\right)$ has

$$
\begin{equation*}
\operatorname{ord}_{\infty}(f) \leq \frac{k p}{12}\left[\Gamma: \Gamma_{0}(N)\right] . \tag{5.2}
\end{equation*}
$$

We see from (5.1) that equality holds in (5.2) for the form $f_{N^{\prime}}(p z) \in M_{k}\left(\Gamma_{0}(N)\right)$. Therefore Theorem 1.3 is sharp for these spaces.

We turn to Theorem 1.4. Suppose that $k \geq 2$, and that $p \geq 12 k+1$ is prime. Then the order of vanishing of the form $F(z):=\Delta(p z)^{k}=q^{k p}+\cdots \in S_{12 k}\left(\Gamma_{0}(p)\right)$ agrees with the upper bound provided by Theorem 1.4.

There are other examples where Theorem 1.4 is sharp. For example, define

$$
F(z):=\frac{\eta(6 z) \eta(9 z) \eta^{6}(21 z) \eta^{34}(126 z)}{\eta^{2}(18 z) \eta^{11}(42 z) \eta^{17}(63 z)} \in S_{6}\left(\Gamma_{0}(126)\right) .
$$

Then we have $\alpha_{2}(18,42) / 2=\alpha_{3}(18,42) / 3=0$ and

$$
\operatorname{ord}_{\infty}(F)=119=\frac{6 \cdot 7}{12}\left[\Gamma: \Gamma_{0}(18)\right]-\epsilon_{\infty}(18)+1
$$

Another example is provided by the form

$$
F=2 q^{99}+2 q^{101}-3 q^{104}+\cdots \in S_{6}\left(\Gamma_{0}(175)\right) .
$$

Then, $\alpha_{2}(25,42) / 2=1, \alpha_{3}(25,42) / 3=0$ and

$$
\operatorname{ord}_{\infty}(F)=99=\frac{6 \cdot 7}{12}\left[\Gamma: \Gamma_{0}(25)\right]-\alpha_{2}(25,42) / 2-\alpha_{3}(25,42) / 3-\epsilon_{\infty}(25)+1
$$

In closing, we mention several other forms for which equality holds in Theorem 1.4 (there are other examples of the same sort). For example, this occurs for the following forms:

$$
\begin{gathered}
\frac{\eta(z) \eta^{13}(77 z)}{\eta(7 z) \eta(11 z)} \in S_{6}\left(\Gamma_{0}(77)\right), \\
\frac{\eta^{30}(44 z) \eta^{2}(2 z)}{\eta^{2}(4 z) \eta^{14}(22 z)} \in S_{8}\left(\Gamma_{0}(44)\right), \\
\frac{\eta^{29}(99 z) \eta(3 z)}{\eta^{9}(33 z) \eta(9 z)} \in S_{10}\left(\Gamma_{0}(99)\right), \\
\frac{\eta^{47}(46 z) \eta(z)}{\eta^{23}(23 z) \eta(2 z)} \in S_{12}\left(\Gamma_{0}(46)\right) .
\end{gathered}
$$

References

[1] A. O. L. Atkin. Weierstrass points at cusps of $\Gamma_{0}(n)$. Ann. of Math. (2), 85:42-45, 1967.
[2] A. O. L. Atkin and J. Lehner. Hecke operators on $\Gamma_{0}(m)$. Math. Ann., 185:134-160, 1970.
[3] P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. In Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 143-316. Lecture Notes in Math., Vol. 349. Springer, Berlin, 1973.
[4] Fred Diamond and Jerry Shurman. A first course in modular forms, volume 228 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2005.
[5] Benedict H. Gross. A tameness criterion for Galois representations associated to modular forms (mod p). Duke Math. J., 61(2):445-517, 1990.
[6] Tim Kilbourn. Congruence properties of Fourier coefficients of modular forms. Preprint.
[7] Kilian Kilger. Weierstrass points on $X_{0}(p \ell)$ and arithmetic properties of Fourier coffficients of cusp forms. Ramanujan J.
[8] Winfried Kohnen. A short remark on Weierstrass points at infinity on $X_{0}(N)$. Monatsh. Math., 143(2):163-167, 2004.
[9] J. Lehner and M. Newman. Weierstrass points of $\Gamma_{0}(n)$. Ann. of Math. (2), 79:360-368, 1964.
[10] A. P. Ogg. On the Weierstrass points of $X_{0}(N)$. Illinois J. Math., 22(1):31-35, 1978.
[11] Ken Ono. The web of modularity: arithmetic of the coefficients of modular forms and q-series, volume 102 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004.
[12] Bruno Schoeneberg. Elliptic modular functions: an introduction. Springer-Verlag, New York, 1974. Translated from the German by J. R. Smart and E. A. Schwandt, Die Grundlehren der mathematischen Wissenschaften, Band 203.
[13] Jacob Sturm. On the congruence of modular forms. In Number theory (New York, 1984-1985), volume 1240 of Lecture Notes in Math., pages 275-280. Springer, Berlin, 1987.
[14] R. Weissauer. Integral forms on $\Gamma_{0}(p n)$. Preprint (2002).

Department of Mathematics, University of Illinois, Urbana, IL 61801
E-mail address: ahlgren@math.uiuc.edu
E-mail address: nmasri@math.uiuc.edu
E-mail address: jarouse@math.uiuc.edu

[^0]: Date: April 4, 2008.
 2000 Mathematics Subject Classification. 11F11, 11F33, 14H55.
 The first author thanks the National Science Foundation for its support through grant DMS 01-34577.

