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In [4], Carlitz demonstrates

(1) FL
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= F(n+1)L,

using sophisticated matrix methods and Binet’s formula. Nevertheless, the pres-

ence of binomial coefficients suggests that an elementary combinatorial proof

should be possible. In this paper, we present such a proof, leading to other

Fibonacci identities.

Proof: Recall that for m ≥ 1, Fm counts the number of ways to tile a length

m − 1 board with squares and dominoes (see [1],[2],[3]). Hence the right side of

equation (1) counts the number of tilings of a board with length (n + 1)L− 1.

Before explaining the left side of equation (1), we first demonstrate that any

such tiling can be created in a unique way using n+1 supertiles of length L. Given

a tiled board of length (n + 1)L− 1, with cells numbered 1 through (n + 1)L− 1,

we break the tiling into n+1 supertiles S1, S2, . . . , Sn+1 by cutting the board after

cells L, 2L, 3L, . . . , nL. See Figure 1.

Notice that a supertile may begin or end with a half-domino. For instance, if a

domino covers cells L and L + 1, then S1 ends with a half-domino, and S2 begins

with a half-domino. A supertile that begins with a half-domino is called open on
1
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S1 S2 S3 Sn+1Sn· · ·� -� -� -� -

1 L L + 1 2L 2L + 1 · · · nLnL + 1 (n + 1)L− 1· · · · · · · · · · · · · · ·

Figure 1. A board of length (n + 1)L − 1 (with a half-domino
attached) can be split into n + 1 supertiles of length L.

the left; otherwise it is closed on the left. Likewise a supertile is either open or

closed on the right. Naturally, S1 must be closed on the left.

For convenience, we append a half-domino to the last supertile so that Sn+1

has length L, like all the other supertiles, and is open on the right. Notice that

S1, . . . , Sn+1 must obey the following “following” rule:

For 1 ≤ i ≤ n, Si is open on the right iff Si+1 is open on the left.

Given supertiles S1, . . . , Sn+1, we can extract subsequences O1, . . . , Ot and C1, . . . , Cn+1−t

for some 0 ≤ t ≤ n, where O1, . . . , Ot are open on the left, and C1, . . . , Cn+1−t are

closed on the left. By the “following” rule, there are exactly t + 1 supertiles that

are open on the right, necessarily including Cn+1−t. Conversely, given 0 ≤ t ≤ n

and O1, . . . , Ot, C1, . . . , Cn+1−t, there is a unique way to reconstruct the sequence

S1, . . . , Sn+1 that preserves the relative order of the O’s and C’s. Specifically, we

must have S1 = C1, and for 1 ≤ i ≤ n, if Si is closed on the right then Si+1 is the

lowest numbered unused Cj; else Si+1 is the lowest numbered unused Oj.

To summarize, F(n+1)L counts the number of ways to create, for all 0 ≤ t ≤

n, length L supertiles O1, . . . , Ot, open on the left, and length L supertiles

C1, . . . , Cn+1−t closed on the left, where Cn+1−t is open on the right and exactly t

of the other supertiles are open on the right. It remains to show that the left side
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of equation (1) counts the number of ways that such a collection of supertiles can

be constructed.

Given 0 ≤ t ≤ n, we begin by tiling Cn+1−t. Since it must end with a half-

domino and has L − 1 free cells, it can be tiled FL ways. Now for any non-

negative integers x1 . . . , xL−1, we prove that the remaining supertiles can be cre-

ated
(

n−xL

x1

)(
n−x1

x2

)
· · ·

(
n−xL−1

xL

)
ways, where xL = t and for 1 ≤ i ≤ L− 1, exactly

xi of these n supertiles have a domino beginning at its i-th cell.

Since t of the supertiles (excluding Cn+1−t) must be open on the right, xL = t

of these n supertiles have half-dominoes beginning at their L-th cells. Now there

are
(

n−t
x1

)
=

(
n−xL

x1

)
ways to pick x1 supertiles among {C1, . . . , Cn−t} to begin

with a domino. (The remaining n − t − x1 Cj’s (other than Cn+1−t) begin with

a square and all of the Oj’s begin with a half-domino.) Next there are
(

n−x1

x2

)
ways to pick x2 supertiles to have a domino covering the second and third cell

among those not chosen in the last step to have a domino covering the first and

second cell. The unchosen n − x1 − x2 supertiles have a square on the second

cell. Continuing in this fashion, there are
(

n−xi−1

xi

)
ways to pick which supertiles

have a domino beginning at the i-th cell for 1 ≤ i ≤ L. Hence O1, . . . , Ot and

C1, . . . , Cn−t, Cn+1−t can be created in exactly FL

(
n−xL

x1

)(
n−x1

x2

)
· · ·

(
n−xL−1

xL

)
ways.

Summing over all values of xi gives us the left side of equation (1). �

By counting our tilings in a slightly different way, we combinatorially obtain

another identity presented in [4]:
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∑
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L+1 = F(n+1)L.

Proof: FL(n+1) counts the number of ways to create supertiles S1, . . . , Sn+1

subject to the same conditions as before. This time, we classify supertiles in

four ways, depending on whether we are closed on the left only, right only, both,

or neither. If, for some 0 ≤ j ≤ bn
2
c, S1, . . . , Sn+1 contains exactly j super-

tiles R1, . . . , Rj closed on the right only there must be exactly j + 1 supertiles

L1, . . . , Lj+1 closed on the left only. Subsequently, S1, . . . , Sn+1 has subsequence

L1, R1, L2, R2, . . . , Lj, Rj, Lj+1.

For example, see Figure 2. Since each of the supertiles above has length L with

one half-domino and L−1 free cells, this subsequence can be tiled (FL)2j+1 ways.

4 8 12 16 19
S1 S2 S3 S4

� -� -� -�

closed L1 open R1

S5
�- -

L2

Figure 2. When this length 19 board (plus half-domino) is split
after every 4 cells, we create 5 supertiles that are closed, respec-
tively, on both sides, left side, neither side, right side, and left side.

Now suppose S1, . . . , Sn+1 is to have exactly i supertiles that are open at both

ends, where 0 ≤ i ≤ n − 2j. We first place these supertiles, like i identical balls

to be placed in j +1 distinct buckets, between any Lk and Rk or after Lj+1. Since

there are
(

a+b−1
a

)
ways to place a identical balls into b distinct buckets, there are(

i+j
i

)
ways to do this. Once placed, since each has L − 2 free cells, they can be

tiled (FL−1)
i ways.
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Finally, the remaining n − 2j − i supertiles that are closed on both ends can

be placed into j + 1 different buckets (before L1 or between any Rk and Lk+1) in(
n−j−i
n−2j−i

)
=

(
n−j−i

j

)
ways. Once placed, they can be tiled (FL+1)

n−2j−i ways.

Consequently, the number of legal ways to choose supertiles S1, . . . , Sn+1 with

exactly j supertiles closed on the right only and i supertiles open on both ends is(
i+j
i

)(
n−j−i

j

)
F i

L−1F
2j+1
L F n−2j−i

L+1 . (Notice that the second binomial coefficient causes

this quantity to be zero whenever n− j − i < j, i.e., when 2j + i > n.) Summing

over all i and j proves equation (2). �

Notice that both equations (1) and (2) imply that for all n ≥ 1, FL divides

FnL. However, a more direct combinatorial proof is possible, without invoking

supertiles. Specifically, we have:

(3) FL

n∑
j=1

(FL−1)
j−1F(n−j)L+1 = FnL.

Proof: The right side counts the number of ways to tile a board of length

nL− 1. The left side of (3) counts this by conditioning on the first j, 1 ≤ j ≤ n,

for which the tiling has a square or domino ending at cell jL − 1. Such a tiling

consists of j − 1 tilings of length L − 2, each followed by a domino. This is

followed by a tiling of the next L − 1 cells (cells (j − 1)L + 1 through jL − 1),

followed by a tiling of the remaining nL − jL cells. This can be accomplished

(FL−1)
j−1FLF(n−j)L+1 ways, and the identity follows. �
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