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Abstract. For k ≥ 1, let
∑∞

n=k τk(n)qn = qk
∏∞

n=1(1 − qn)24k. It follows from
Deligne’s proof of the Weil conjectures that there is a constant Ck so that |τk(n)| ≤
Ckd(n)n(12k−1)/2. We study the value of Ck as a function of k, and show that it
tends to zero very rapidly.

1. Introduction and Statement of Results

For an integer r, define the numbers pr(n) by
∞∑

n=0

pr(n)qn =
∞∏

n=1

(1− qn)r.

For various values of r, these numbers capture important arithmetic objects. For
example, when r = −1, we recover the classical partition generating function

∞∑
n=0

p(n)qn =
∞∏

n=1

1

1− qn
,

while for r = 1 and r = 3 we recover the identities of Euler and Jacobi,
∞∑

n=0

p1(n)qn =
∞∏

n=1

(1− qn) =
∞∑

n=−∞

(−1)nq(3n2+n)/2

∞∑
n=0

p3(n)qn =
∞∏

n=1

(1− qn)3 =
∞∑

n=0

(−1)n(2n + 1)q(n2+n)/2.

In a series of papers ([9], [10], [11], [12]), Newman studied the function pr(n), and
proved a number of identities for it. Newman was particularly interested in when
the function pr(n) is zero and computed pr(n) for small n (as a polynomial in r).
These coefficients were later considered by many authors, including Gupta, Atkin,
Costello, Gordon, and finally Serre. Serre showed in [16] that if r is an even integer,
{n : pr(n) = 0} has density zero if and only if r = 2, 4, 6, 8, 10, 14, or 26.

Another natural question is about how large (as a function of r and n) the coef-
ficients pr(n) are. In this regard, Newman’s approach of expressing the coefficients
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pr(n) as polynomials in r is very ineffective. A stronger result follows from work of
Deligne [2] (at least when r is even) and gives that pr(n) � n(r−1)/2+ε. In the case of
r = 24, it implies Ramanujan’s famous conjecture that if

∞∑
n=1

p24(n− 1)qn = q

∞∏
n=1

(1− qn)24

is the Fourier expansion of the weight 12 cusp form ∆(z), then

|p24(n− 1)| ≤ d(n)n11/2,

where d(n) is the number of divisors of n.
Deligne’s bound applies to cuspidal Hecke eigenforms of all weights. Hence, if

f(z) =
∑∞

n=1 a(n)qn ∈ Sm is any cusp form of weight m, then by writing f(z) =∑dim Sm

i=1 cifi, where the fi are normalized Hecke eigenforms, we have that |a(n)| ≤
Cd(n)n(m−1)/2, where C =

∑dim Sm

i=1 |ci|.
For example, we may write

∆2(z) =
∞∑

n=2

p48(n− 2)qn = q2 − 48q3 + 1080q4 + · · · ∈ S24

as a linear combination of the Hecke eigenforms

f1(z) = q + (540 + 12
√

144169)q2 + (169740− 576
√

144169)q3 + · · ·

f2(z) = q + (540− 12
√

144169)q2 + (169740 + 576
√

144169)q3 + · · · .

We have then that

∆2(z) =
f1 − f2

24
√

144169
,

and hence |p48(n − 2)| ≤ 1
12
√

144169
d(n)n23/2. Note that 1

12
√

144169
≈ 0.000219 is quite

small.
The goal of this paper is to compute explicit bounds for the coefficients pr(n), when

r ≥ 0 and is a multiple of 24. We then have that

∆k(z) :=
∞∑

n=k

p24k(n− k)qn.

Let Ck :=
∑k

i=1 |ci|, where ∆k(z) =
∑k

i=1 cifi is the representation of ∆k as a sum of
Hecke eigenforms. Then,

|p24k(n− k)| ≤ Ckd(n)n(12k−1)/2.

It suffices therefore to bound Ck. Our main result is the following.
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Theorem 1. For k ≥ 2, we have

log(Ck) = −6k log(k) + 6k log

(
2π3e

27Γ(2/3)6

)
+ O(log(k)).

This result follows from explicit upper and lower bounds on Ck derived below. Our
approach is the following. For f, g ∈ Sk, let

〈f, g〉k =
3

π

∫
SL2(Z)\H

f(x + iy)g(x + iy)yk dx dy

y2

be the normalized Petersson inner product of f and g. Elementary considerations
provide bounds on 〈∆k, ∆k〉12k. If fi ∈ S12k is a normalized Hecke eigenform, then
〈fi, fi〉12k is essentially the special value at s = 1 of the symmetric square L-function
associated to fi. Goldfeld, Hoffstein, and Lieman showed in the appendix to [5], that
such an L-function can have no Siegel zero. We make their argument explicit and
derive an explicit lower bound on 〈fi, fi〉12k.

These bounds are translated to bounds on Ck using the well-known fact (see The-
orem 6.12 of [6]) that if fi 6= fj are Hecke eigenforms, then 〈fi, fj〉12k = 0.

Remark. It is plausible that in fact,

Ck = sup
n≥1

|p24k(n− k)|
d(n)n(12k−1)/2

.

This would follow if for each eigenform fi =
∑∞

n=1 ai(n)qn, we have
|ai(p)| ≥ (2 − ε)p(12k−1)/2 for a positive density set of primes, and if the coefficients
a1(p), a2(p), . . . , ak(p) are “independent.” The first statement would follow from the
Sato-Tate conjecture. Recently, Richard Taylor has achieved an important break-
through by proving the Sato-Tate conjecture for a wide class of elliptic curves. Tay-
lor’s work establishes the automorphy of symmetric power L-functions, which can be
used (as in [14]) to produce lower bounds for Hecke eigenvalues.

Remark. The approach given here readily generalizes to powers of any fixed modular
form, provided the powers are orthogonal to CM forms. One cannot (at present)
exclude the possible existence of a Siegel zero for the symmetric square of a CM form.
For r ≡ 0, 12, 16 (mod 24),

∑
pr(n)qn can be related to a modular form lying in a

space with no CM forms.

In Section 2 we derive upper and lower bounds on the Petersson norms
〈∆k, ∆k〉12k and 〈fi, fi〉12k. In Section 3 we use the results derived in Section 2 to
prove Theorem 1, and in Section 4 we present some numerical data.

Acknowledgements. The author would like to thank Sharon Garthwaite, Ken Ono,
and the anonymous referee for helpful comments that have improved the paper.
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2. Petersson norm bounds

First, we will compute bounds for the Petersson norm of Hecke eigenforms fi ∈ S12k.
We will repeatedly use the fact (see the second equation on pg. 251 of [6]) that

L(Sym2fi, 1) =
6

π2
· (4π)12k〈fi, fi〉12k

Γ(12k)
.

If the normalized L-function of fi =
∑∞

n=1 ai(n)qn is

L(fi, s) =
∏

p

(1− αpp
−s)−1(1− βpp

−s)−1,

where αp + βp = ai(p)/p(12k−1)/2 and αpβp = 1, then

L(Sym2fi, s) =
∏

p

(1− α2
pp
−s)−1(1− p−s)−1(1− β2

pp
−s)−1.

This L-function is known by work of Gelbart and Jacquet [3] to be the L-function of
a cuspidal automorphic representation on GL(3). Hence, it is entire and if

Λ(Sym2fi, s) = π−3s/2Γ((s + 1)/2)Γ((s + (12k − 1))/2)Γ((s + 12k)/2)L(Sym2fi, s),

then Λ(Sym2fi, s) = Λ(Sym2fi, 1− s).

Lemma 2. If fi ∈ S12k is a normalized Hecke eigenform, then

L(Sym2fi, s) 6= 0

for s > 1− 5−2
√

6
10 log(12k)

.

Proof. Goldfeld, Hoffstein and Lieman introduce the auxiliary function

L(s) = ζ(s)2L(Sym2fi, s)
3L(Sym4fi, s).

Here,

L(Sym4fi, s) =
∏

p

(1−α4
pp
−s)−1(1−α2

pp
−s)−1(1−p−s)−1(1−α−2

p p−s)−1(1−α−4
p p−s)−1.

Work of Kim [7] implies that this is the L-function of a cuspidal automorphic represen-
tation on GL(5). From this, it follows that L(Sym4fi, s) has an analytic continuation
and functional equation of the usual type (see the paper of Cogdell and Michel [1]
for details about computing the sign of the functional equation and the Γ-factors of
symmetric power L-functions using the local Langlands correspondence for GL(n)).

If we let Λ(s) = s2(1− s)2G(s)L(s), where

G(s) = π−16s/2Γ(s/2)3Γ((s + 1)/2)3Γ((s + (12k − 1))/2)4

Γ((s + 12k)/2)4Γ((s + (24k − 2))/2)Γ((s + (24k − 1))/2),
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then Λ(1− s) = Λ(s). Writing Λ(s) = eA+Bs
∏

ρ

(
1− s

ρ

)
es/ρ and taking the logarith-

mic derivative gives∑
ρ

1

s− ρ
+

1

ρ
=

2

s
+

2

1− s
+

L′(s)

L(s)
+

G′(s)

G(s)
−B.

Now, the Dirichlet coefficients of L(s) are non-negative. This implies that for Re (s) >
1, L′(s)/L(s) < 0. Taking the real part of this equation and noting that Re (B) =
−
∑

ρ Re (1/ρ) gives ∑
ρ

Re

(
1

s− ρ

)
≤ 2

s
+

2

1− s
+

G′(s)

G(s)
.

Assume that s = 1 + α, where 0 < α ≤ 1/2 will be chosen later. Noting that
Γ′(s)/Γ(s) ≤ log(s) for s ≥ 1 gives that in this range, G′(s)/G(s) ≤ 10 log(12k)− 2.

Suppose that L(Sym2f, β) = 0. Then, we have

3

α + 1− β
≤ 2

α
+ 10 log(12k).

Solving for β and choosing α optimally yields the desired result. �

Next, we follow the argument of Hoffstein in [4] to translate this into an explicit
lower bound on L(Sym2fi, 1).

Lemma 3. If f ∈ S12k is a normalized Hecke eigenform, then

L(Sym2f, 1) >
1

64 log(12k)
.

Proof. Let

L(f ⊗ f, s) = ζ(s)L(Sym2f, s) =
∞∑

n=1

a(n)

ns
.

Then, a(n) ≥ 0 for all n ≥ 1. Also, its functional equation is well-known (for example,
it follows from that of L(Sym2f, s)).

Let β = 1 − 5−2
√

6
10 log(12k)

. We set x = (12k)A. It will turn out that the optimal A is

about 8/5 and we choose A = 8
5

+ 10
log(12k)

. We consider

I =
1

2πi

∫ 2+i∞

2−i∞

L(f ⊗ f, s + β)xs ds

s
∏10

k=2(s + k)
.

We use the fact that

1

2πi

∫ 2+i∞

2−i∞

xs ds

s
∏10

k=2(s + k)
=

{
(x+9)(x−1)9

10!x10 x > 1

0 x < 1,
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and conclude that

I =
1

2πi

∫ 2+i∞

2−i∞

L(f ⊗ f, s + β)xs

s
∏10

k=2(s + k)
=
∑
n≤x

a(n)
(

x
n

+ 9
) (

x
n
− 1
)9

10!nβ(x/n)10
.

One can easily show that a(n2) ≥ 1. We consider only those terms for which x/n ≥
559. This gives a lower bound on the integral of 1.6442234

10!
.

Now, we move the contour to Re (s) = α, where α = −3/2− β. We pick up poles
at s = 1− β, s = 0 and s = −2. This gives

I =
1

2πi

∫ α+i∞

α−i∞

L(f ⊗ f, s + β)xs ds

s
∏10

k=2(s + k)
+

L(Sym2f, 1)x1−β

(1− β)
∏10

k=2(1− β + k)

+
L(f ⊗ f, β)

10!
+

L(f ⊗ f,−2 + β)x−2

2 · 8!
.

There are no zeroes of L(Sym2f, s) to the right of β and hence L(Sym2f, β) ≥ 0.
Since ζ(β) < 0, it follows that L(f ⊗ f, β) ≤ 0. Also, L(f ⊗ f,−2+β) < 0. It follows
that

(1)
1.6442234

10!
− 1

2πi

∫ α+i∞

α−i∞

L(f ⊗ f, s + β)xs ds

s
∏10

k=2(s + k)
≤ L(Sym2f, 1)x1−β

(1− β)
∏10

k=2(1− β + k)
.

Now, we bound the integral in the above inequality. The functional equation for
L(f ⊗ f, s) implies that

|L(f ⊗ f,−3/2 + it)|
|L(f ⊗ f, 5/2− it)|

= |1/2 + it|2|3/2 + it|2
4∏

m=1

|12k − 3 + m/2 + it|.

Also, |L(f ⊗ f, 5/2− it)| ≤ ζ(5/2)4. Hence, |I| is bounded above by

ζ(5/2)4

29π9
(12k)A(−3/2−β)·∫ ∞

−∞

|1/2 + it|2|3/2 + it|2
∏4

m=1 |12k − 3 + m/2 + it| dt

|9/4 + it||1/4 + it|
∏∞

n=3 |n− 5/2 + it|

≤ ζ(5/2)4(12k)4−A(3/2+β)

29π9

∫ ∞

−∞

|1/2 + it||3/2 + it||1 + it|3|25/24 + it|
|1/4 + it||9/4 + it|

∏7
n=2 |n + 1/2 + it|

≤ (12k)4−A(3/2+β) · .181266

10!
.

Hence, returning to equation (1), we have

L(Sym2f, 1) ≥ (1− β)

(
1.6442234

(12k)A(1−β)
− .181266

(12k)(5/2)A−4

)
.

We choose A = 8
5

+ 10
log(12k)

and obtain the desired result. �
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Next, we use an elementary argument to obtain an upper bound for 〈fi, fi〉12k.

Lemma 4. If fi is a normalized Hecke eigenform of weight k and k ≥ 48, then

〈fi, fi〉k ≤ 3.182
Γ(k) log3(k)

(4π)k
.

Remark. This result could also be obtained from the convexity bound for L(Sym2fi, s).

Proof. For brevity we will explain only the main ideas. One can extend the integral
for 〈fi, fi〉k to the region {x + iy : −1/2 ≤ x ≤ 1/2, y ≥

√
3/2}. If

fi(z) =
∞∑

n=1

ai(n)qn,

and we replace fi(z) by its Fourier expansion, then we obtain the upper bound

〈fi, fi〉k ≤
3

π

∞∑
n=1

|ai(n)|2
∫ ∞

√
3/2

e−4πnyyk−2 dy.

Changing variables, we get

1

(4π)k−1

∞∑
n=1

|ai(n)|2

nk−1

∫ ∞

π
√

3n

e−uuk−2 du.

The Deligne bound implies that |ai(n)|2/nk−1 ≤ d(n)2. The integrand also does not
depend on n. Replacing the order of the sum and the integral we obtain

1

(4π)k−1

∫ ∞

π
√

3

uk−2e−u
∑
n≤u

d(n)2 du.

An asymptotic for
∑

n≤u d(n)2 was given by Ramanujan ([13], equation (B)). The

elementary proof of
∑

n≤u d(n)2 ∼ 1
π2 u log3(u) in ([8], Theorem 7.8) can be easily

modified to show that
∑

n≤u d(n)2 ≤ 19
3 log3(6)

u log3(u) for all u ≥ 1. Hence, it suffices

to estimate ∫ ∞

π
√

3

e−uuk−2 log3(u) du.

One can easily check that the integrand decays rapidly for u � k log(k). The remain-
der is easy to estimate by comparison with the Γ-function. �

The next result is of independent interest and is useful in bounding 〈∆k, ∆k〉12k.

Lemma 5. Let f(x, y) = |∆(x + iy)|2y12. Then, for y > 0 we have

f(x, y) ≤ B :=

( √
2π

3Γ(2/3)3

)24
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with equality if and only if x + iy = aω+b
cω+d

for a, b, c, d ∈ Z with ad − bc = 1 and

ω = −1+i
√

3
2

.

Proof. First, the equality when x = −1/2 and y =
√

3/2 is very classical (see for
example equation 2 on pg. 110 of [15]).

Next, the function |∆(z)|2Im (z)12 is invariant under the action of SL2(Z). It suffices
therefore to find its maximum on the usual fundamental domain for SL2(Z), namely
{z ∈ C : −1/2 ≤ Re (z) ≤ 1/2 and |z| ≥ 1}. Moreover, since the Fourier coefficients

of ∆(z) are real, it follows that ∆(x + iy) = ∆(−x + iy). Thus, f(x, y) = f(1− x, y)
and it suffices to consider −1/2 ≤ x ≤ 0.

We approximate the size of |∆(x+iy)| by
∣∣∑4

n=1 τ(n)qn
∣∣. We can easily see that for

any y this is maximized when x = −1/2. One can also show that y6
∣∣∑4

n=1 τ(n)qn
∣∣ is

maximized when y =
√

3/2. It follows from this that if f(x, y) ≥ f(−1/2,
√

3/2) for
x + iy in the fundamental domain, then y ≤ 0.8676 and hence −1/2 ≤ x ≤ −0.497.

Differentiating the equality f(x, y) = f(1 − x, y) with respect to x and setting
x = −1/2 shows that fx(−1/2, y) = 0 for all y. Using the transformation law with

the matrix

[
−1 −1
1 0

]
shows that

f

(
−x2 − y2 − x

x2 + y2
,

y

x2 + y2

)
= f(x, y).

Differentiating this with respect to x, setting x = −1/2, y =
√

3/2 and using that
fx(−1/2,

√
3/2) = 0 shows that fy(−1/2,

√
3/2) = 0. Since the maximum of f(x, y)

occurs where fx and fy both vanish, it suffices to show that this does not occur

elsewhere in the box −1/2 ≤ x ≤ −0.497,
√

3/2 ≤ y ≤ 0.8676.
Next, we use the product expansion f(x, y) = y12

∏∞
n=1 |1−qn|48. This implies that

fx

f
= 24

∞∑
n=1

2πn sin(2πnx)e−2πny

1− 2 cos(2πnx)e−2πny + e−4πny
.

We note that

fxx

f
=

d

dx

(
fx

f

)
+

(
fx

f

)2

.

Trivially estimating fx/f , we see that |fx/f | ≤ 0.665 in this box. We estimate all but
the first two terms of d

dx
(fx/f) trivially and obtain the bound fxx/f ≤ −1.9.

Now, we assume x = −1/2. Using

fy

f
=

12

y
− 4π + 96π

∞∑
n=1

(−1)nne−2πny

1− (−1)ne−2πny
,



BOUNDS FOR THE COEFFICIENTS OF POWERS OF THE ∆-FUNCTION 9

we will estimate
fyy

f
=

d

dy

(
fy

f

)
+

(
fy

f

)2

.

We see that |fy/f | ≤ 0.048. The main term is −12/y2, and for y ≤ 1.1, this dominates
and fyy/f < 0. This establishes the desired result since we have fx < 0 for x 6= −1/2

and if x = −1/2 we have fx = 0 and fy < 0 unless y =
√

3/2. �

With a little bit of work, the above lemma can be translated into bounds on
〈∆k, ∆k〉12k.

Lemma 6. For k ≥ 1, we have

0.08906Bk

k
≤ 〈∆k, ∆k〉12k ≤

76.4Bk

k
.

Proof. For the lower bound, similar arguments to those in the proof of Lemma 5 imply
that for all x and y, fxx ≥ −4.251 · f and for x = −1/2, fyy ≥ −8.652 · f . Using
the upper bound on f established above, we obtain that if C := −3.555 · 10−5, then
fxx ≥ C for all x and y and fyy ≥ C for x = −1/2 and y ≥

√
3/2. Integrating from

(−1/2,
√

3/2) to (−1/2, y) and then to (x, y) shows that

f(x, y)− f(−1/2,
√

3/2) ≤ −(C/2)((x + 1/2)2 + (y −
√

3/2)2).

If we fix ε > 0 it follows that f(x, y) ≥ B− ε on a set of measure at least 2π
3(3.555·10−5)

ε.

This gives a lower bound for the Petersson norm of

2π

3(3.555 · 10−5)
ε(B − ε)k.

This is maximized with ε = B
k+1

and this gives the desired result.
For the upper bound, we let

Sε = {(x, y) : −1/2 ≤ x ≤ 1/2, x2 + y2 ≥ 1, and f(x, y) ≤ B − ε}.
One can check that there is a constant C2 so that if ε is small enough then µ(Sε) ≤ C2ε,
where µ = 3

π
dx dy

y2 . Choose ε small enough so that µ(Sδ) ≤ C2δ for all δ ≤ ε and let

n be a positive integer. For (x, y) ∈ S(l+1)ε/n − Slε/n, we have f(x, y) ≤ B − εl
n
. It

follows that

〈∆k, ∆k〉12k ≤
n−1∑
l=0

µ
(
S(l+1)ε/n − Slε/n

)(
B − εl

n

)k

+
3

π
(B − ε)k.

Let al = µ
(
S(l+1)ε/n − Slε/n

)
and bl =

(
B − εl

n

)k
. Notice that b0 ≥ b1 ≥ · · · ≥ bn−1.

Also for 0 ≤ m ≤ n− 1,
m∑

l=0

al = µ
(
S(m+1)ε/n

)
≤ C2(m + 1)ε/n.
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Since the bl are decreasing, the sum
∑n−1

l=0 albl ≤
∑n−1

l=0 (C2ε/n)bl. It follows that

〈∆k, ∆k〉12k ≤ C2

n−1∑
l=0

ε

n

(
B − εl

n

)k

+
3

π
(B − ε)k.

Taking the limit as n →∞ gives that the first term above is∫ ε

0

C2(B − x)k dx =
C2

k + 1

[
Bk+1 − (B − ε)k+1

]
.

Hence, we have

〈∆k, ∆k〉12k ≤
C2B

k+1

k + 1

[
1− (1− ε/B)k+1 +

3(k + 1)

πBC2

(1− ε/B)k

]
.

Computations similar to those above show that we may take ε = 1.93553 · 10−8, and
C2 = 729582. This gives that for k ≥ 1,

〈∆k, ∆k〉12k ≤
76.4Bk

k
.

Note however, that for small k and for k ≥ 300 the above inequality is better. �

3. Proof of Theorem 1

Proof. We assume that k ≥ 4 and write

∆k =
k∑

i=1

cifi,

where the fi are normalized Hecke eigenforms. Since the Fourier coefficients of the
fi are real, the ci are real. As noted in the introduction, if i 6= j, then 〈fi, fj〉 = 0.
Computing the inner product of ∆k with itself, we obtain

〈∆k, ∆k〉12k =
k∑

i=1

c2
i 〈fi, fi〉12k.

Let B1 and B2 be the lower and upper bounds on 〈fi, fi〉12k furnished by Lemmas 3
and 4, respectively. We obtain

〈∆k, ∆k〉12k

B2

≤
k∑

i=1

c2
i ≤

〈∆k, ∆k〉12k

B1

.

We use Lemma 6 together with the simple inequalities√√√√ k∑
i=1

c2
i ≤

k∑
i=1

|ci| ≤
√

k

√√√√ k∑
i=1

c2
i



BOUNDS FOR THE COEFFICIENTS OF POWERS OF THE ∆-FUNCTION 11

to complete the proof. This gives the explicit bound

(4π)6kBk/2

6
√

(12k − 1)!
√

k log3/2(12k)
≤ Ck ≤

55(4π)6kBk/2 log1/2(12k)√
(12k − 1)!

Taking logarithms easily yields the desired result. �

4. Appendix - Numerical Data

Using MAGMA, if k is small, we can compute the Fourier expansions of the nor-
malized Hecke eigenforms fi and hence compute Ck =

∑k
i=1 |ci|. The table below is

a list of k and the logarithms of the bounds derived in this paper.

k log(lower bound) log(Ck) log(upper bound)

1 −2.9232 0.0000 2.7527
2 −11.706 −8.4243 −4.8448
3 −23.369 −19.657 −15.862
4 −36.977 −33.072 −29.028
5 −52.053 −47.874 −43.769
6 −68.308 −64.102 −59.754
7 −85.549 −81.120 −76.771
8 −103.64 −99.160 −94.665
9 −122.46 −117.84 −113.33
10 −141.96 −137.40 −132.66
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