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Abstract. In this article, we derive explicit bounds on ct(n), the number of t-core partitions
of n. In the case when t = p is prime, we express the generating function f(z) as the sum

f(z) = epE(z) +
∑
i

rigi(z)

of an Eisenstein series and a sum of normalized Hecke eigenforms. We combine the Hardy-
Littlewood circle method with properties of the adjoint square lifting from automorphic forms
on GL(2) to GL(3) to bound R(p) :=

∑
i |ri|, solving a problem raised by Granville and Ono.

In the case of general t, we use a combination of techniques to bound ct(n) and as an
application prove that for all n ≥ 0, n 6= t + 1,

ct+1(n) ≥ ct(n)

provided 4 ≤ t ≤ 198, as conjectured by Stanton.

1. Introduction and Statement of Results

A partition λ is a non-increasing sequence of natural numbers whose sum is n. Partitions
are represented as Ferrers-Young diagrams, where the summands in the partition are arranged
in rows. For example, the Ferrers-Young diagram for 12 = 5 + 4 + 2 + 1 is below.

• • • • •
• • • •
• •
•

The hook number hi,j of a node (i, j) in the Ferrers-Young diagram is the number of nodes in
the hook containing that node. For example, the hook numbers of the nodes in the first row
above are 8, 6, 4, 3, and 1, respectively. If t is a positive integer, a partition is called t-core if
none of the hook numbers are multiples of t. If ct(n) is the number of t-core partitions of n,
then it is well-known [11] that

(1.1)
∞∑
n=0

ct(n)qn =
∞∏
n=1

(1− qtn)t

1− qn
.

One motivation for studying t-core partitions comes from the representation theory of the
symmetric group. Each partition α of n corresponds naturally to an irreducible representation
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ρ : Sn → GLd(C). Here the dimension d is given by the Frame-Thrall-Robinson hook formula
(see [21], Theorem 2.3.21)

(1.2) d =
n!∏
i,j hi,j

,

where the denominator is the product of the hook numbers of the partition α. Alfred Young
showed that a basis can be chosen for the d-dimensional space on which Sn acts so that the
image of ρ lies in GLd(Z) (see [21], Section 3.4). As a consequence, one obtains for each partition
α a representation Sn → GLd(Fp), by composing ρ with the natural map GLd(Z)→ GLd(Fp).
This resulting p-modular representation is irreducible if and only if the power of p dividing d is
equal to the power of p dividing n!. From (1.2), this occurs if and only if the original partition
is a p-core partition.

A number of papers (see [7], [11], [12]) have investigated the combinatorial properties of ct(n).
Of particular note is the paper [11] of Garvan, Kim and Stanton, in which t-core partitions are
used to produce cranks that combinatorially prove Ramanujan’s congruences

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11),

where p(n) is the number of partitions of n.
Because of the connections with representation theory, the positivity of and asymptotics for

ct(n) have been extensively studied (see the papers by Ono [29, 30], Granville and Ono [14],
and by Anderson [1]). In [35], Stanton stated (a slight variant) of the following conjecture.

Conjecture (Stanton’s Conjecture). If t ≥ 4 and n 6= t+ 1, then

ct+1(n) ≥ ct(n).

The restriction on n is necessary since ct+1(t+ 1) = ct(t+ 1)− 1. Motivated by this conjec-
ture, Anderson [1] uses the circle method to establish asymptotics for ct(n) and to verify that
Stanton’s conjecture is true for a fixed t provided n is sufficiently large. In [14], Granville and
Ono prove that if t ≥ 4, then ct(n) > 0 for all n > 0. When t ≥ 17, Granville and Ono use an
expression (due to Garvan, Kim, and Stanton) for ct(n) as the number of representations of n
by a particular quadratic form to prove positivity. The previous papers [29, 30] of Ono estab-
lished positivity in all other cases t ≤ 16 with the exception of t = 13. To describe Granville
and Ono’s approach in this case, we need some notation.

Let p ≥ 5 be prime. Let χp(n) =
(
n
p

)
. The modular form

f(z) :=
ηp(pz)

η(z)
=
∞∑
n=0

ap(n)qn =
∞∑
n=0

cp(n)qn+ p2−1
24 ∈M p−1

2
(Γ0(p), χp)
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is essentially the generating function for cp(n). Let

σ p−1
2
,χp

(n) =
∑
d|n

χp

(n
d

)
d
p−3
2 ,

and

E p−1
2

(z) :=
∞∑
n=1

σ p−1
2
,χp

(n)qn

be one of the Eisenstein series of weight p−1
2

and level p. From the q-expansions of f(z) and
E p−1

2
(z) at the cusp 0, we see that f(z) can be decomposed as

f(z) = epE p−1
2

(z) + g(z)

where g(z) is a cusp form in S p−1
2

(Γ0(p), χp) and ep is the constant defined by

(1.3)
1

ep
=

(
p−3

2

)
!p

p
2

(2π)
p−1
2

L

(
p− 1

2
, χp

)
.

The form g(z) can be expressed as a linear combination

(1.4) g(z) =
s∑
i=1

rigi(z),

of normalized Hecke eigenforms, where s = dimS p−1
2

(Γ0(p), χp). As a consequence of the Weil

conjectures, Deligne proved that the nth Fourier coefficient of gi(z) is bounded by d(n)n
p−3
4 .

To compute an explicit bound on cp(n), the problem is therefore to bound the “cusp constant”

(1.5) R(p) :=
s∑
i=1

|ri|.

In [33], the second author found asymptotics for the cusp constants of powers of ∆(z) =
q
∏∞

n=1(1 − qn)24. The problem of bounding R(p) is significantly more challenging for two
reasons: (i) the levels of the forms in questions are tending to infinity, and (ii) the form f(z)
is not a cusp form, and so we must understand the “size” of the difference between f(z) and
epE p−1

2
(z). In [14], Granville and Ono explicitly calculate R(p) for p = 13 by working in

the 6-dimensional vector space S6(Γ0(13), χ13), and leave the remaining cases as an unsolved
problem. We are able to determine an explicit upper bound on R(p) valid for all primes p. As
a consequence, we obtain the following explicit upper and lower bounds on cp(n).

Theorem 1.1. If p ≥ 5 is an odd prime, ap(n) = cp

(
n− p2−1

24

)
, and ep is defined by (1.3),

then

|ap(n)− epσ p−1
2
,χp

(n)| ≤

98304e6πp4 log(p)
(
e1.5

8π

) p−1
4
d(n)n

p−3
4 if p ≡ 1 (mod 4),

388535e6πp
9
2 log(p)11/4

(
e1.5

8π

) p−1
4
d(n)n

p−3
4 if p ≡ 3 (mod 4).
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Noting that e1.5 ≈ 4.48 < 25.13 ≈ 8π, we immediately see the following.

Corollary 1.2. Under the same assumptions as Theorem 1.1, R(p) =
∑s

i=1 |ri| tends to zero
as p tends to infinity.

Remark. (1) The bound in Theorem 1.1 is far from optimal. Numerical evidence suggests
that R(p) is not too far from the lower bound of about

(2π2/3)(p−3)/4(
p−3

2

)
!

.

(2) When p = 5, e5 = 1 and f(z) is the Eisenstein series E2(z). Therefore, for all n ≥ 1,
a5(n) = σ2,χ5(n).

We briefly describe our approach to the problem. First, we derive bounds on cp(n) using
the circle method. From these bounds, we derive an upper bound A on the Petersson inner
product 〈f, gi〉, defined by

〈f, gi〉 :=
3

π[SL2(Z) : Γ0(p)]

∫
H/Γ0(p)

f(z)gi(z)y
p−1
2
dx dy

y2
.

It is known that the forms {E p−1
2
, g1, . . . , gs} are pairwise orthogonal, and so we have

〈f, gi〉 = ri〈gi, gi〉.
Hence if B is a lower bound for 〈gi, gi〉, then ri ≤ A/B.

To derive a lower bound on 〈gi, gi〉, we use the fact that this quantity is essentially the
special value at s = 1 of the adjoint square L-function associated to gi. Goldfeld, Hoffstein,
and Lieman showed in the appendix to [17] that this L-function has no Siegel zeroes, and we
make their argument effective. An argument of Hoffstein [16] translates this zero-free region
into a lower bound for the special value. In order to do this, we need to compute the local
factors at p of the adjoint square and symmetric fourth powers of the gi. This is done using
the local Langlands correspondence.

As a consequence of Theorem 1.1, we obtain the following more precise version of [14, The-
orem 4]. Recall that there is a bijection between the defect zero p-blocks of Sn and the p-core
partitions of n.

Corollary 1.3. Let p ≥ 5 be an odd prime and let ep and R(p) be the constants defined by (1.3)

and (1.5). Then there are more than 2ep
5
n
p−3
2 p-blocks with defect zero provided n > (10R(p)

ep
)

4
p−5 .

Remark. Note that
(

10R(p)
ep

) 4
p−5 ≤ p4 for large primes p.

As a second application, we will prove an inequality involving cp(n). Recently, many in-
teresting inequalities for the number of p-core partitions have been investigated using either
modular equations or modular forms (see [5], [6], and [23]). The following inequality gives an
explicit version of [23, Theorem 4].
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Corollary 1.4. Let p ≥ 7 is prime, t is a positive integer ≥ 2, and k ≥ 1. Let δp = p2−1
24

, and
ep and R(p) the constants defined by (1.3) and (1.5). Then for all

n >

(
2ζ
(
p−3

2

)
ep

R(p)
(

(k + 1)t
k(p−3)

4 + σ p−1
2
,χp

(tk)− 1
)) 4

p−5

with (n, t) = 1, we have

(1.6) cp(t
kn+ δp(t

k − 1)) >
(
σ p−1

2
,χp

(tk)− 1
)
cp(n).

Remark. For large primes p, the bound on n in Corollary 1.4 is less than or equal to p4+k.

Finally, the bounds we obtain on ct(n) using the circle method allow us to derive an explicit
bound on possible counterexamples to Stanton’s conjecture.

Theorem 1.5. For all integers t ≥ 7, if

n ≥


(

45503t
2t+1

2

(
1

27π3
√
e

) t−1
4

) 4
t−4

, if t ≥ 36,(
288305t

3t+7
4

(
1

4π3
√
e

) t−1
4

) 4
t−4

, if 7 ≤ t ≤ 35,

and n ≥ (t+ 1)2, then ct+1(n) > ct(n).

Applying this theorem when t ≥ 12, as well as more specialized arguments when 4 ≤ t ≤ 11,
we can verify Stanton’s conjecture.

Corollary 1.6. For 4 ≤ t ≤ 198, Stanton’s conjecture holds.

The paper is organized as follows. In Section 2, we will review basic facts on the circle
method and modular forms. In Sections 3, the circle method is used to derive explicit bounds
on ct(n) and also on 〈f, gi〉. In Section 4, the result of Goldfeld, Hoffstein and Lieman is made
effective and a lower bound on 〈gi, gi〉 is computed. In Section 5, we will prove Theorem 1.1
and its corollaries. In Section 6, we will prove Theorem 1.5 and Corollary 1.6. In Section 7, we
raise some questions for future study.

Acknowledgements. The authors would like to thank Ken Ono for helpful discussion about
this project, as well as Scott Ahlgren and the referee for comments on earlier drafts of this
manuscript. This paper was completed while the first author was a graduate student and the
second author was a postdoc at the University of Illinois. We would like to thank the University
of Illinois mathematics department for their hospitality.

2. Preliminaries

In this section, we give a brief background on modular forms and basic tools for the circle
method. For additional properties of modular forms, see [31, Chaps. 1, 2, and 3].
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As usual, let η(z) be Dedekind’s eta function defined by

η(z) = q
1
24

∞∏
n=1

(1− qn),

where q = exp(2πiz) and z is in the complex upper half plane H.

We define Γ = SL2(Z), and Γ0(N) :=

{(
a b
c d

)
∈ Γ : c ≡ 0 (mod N)

}
. For a meromorphic

function f on H, we define the slash operator by

(f |kγ)(z) := (det γ)
k
2 (cz + d)−kf(γz),

where γ =

(
a b
c d

)
∈ GL+

2 (R). Suppose that f is a holomorphic function on H and χ is a

Dirichlet character modulo N . We say f is a holomorphic modular (resp. cusp) form of weight
k on Γ0(N) with character χ if f is holomorphic (resp. vanishing) at the cusps of Γ0(N) and
f |kγ(z) = χ(d)f(z) for all γ ∈ Γ0(N). Let Mk(Γ0(N), χ) (resp. Sk(Γ0(N), χ)) denote the vector
space of holomorphic forms (resp. cusp forms) on Γ0(N) with character χ. It is well-known

that for primes p ≥ 5, we have ηp(pz)
η(z)

∈M(p−1)/2(Γ0(p), χp).

For each prime p, the Hecke operator Tp is a linear operator on Sk(Γ0(N), χ). If f(z) ∈
Sk(Γ0(N), χ) has the Fourier expansion f(z) =

∑
n≥0 a(n)qn, then

Tpf :=
∑
n≥0

(
a(pn) + χ(p)pk−1a

(
n

p

))
qn.

We say that f(z) is an eigenform of Tp if there is a λp ∈ C such that Tpf = λpf . We call
f(z) ∈ Mk(Γ0(N), χ) a Hecke eigenform if f(z) is an eigenform of Tp for all primes p. It is
well-known that Sk(Γ0(p), χp) has basis of Hecke eigenforms (since in this case the old space
is trivial), and these can be normalized so that the leading Fourier coefficient is 1. With
this normalization, these forms are referred to as newforms. The Atkin-Lehner involution on

Mk(Γ0(p), χp) is defined by f |k
(

0 −1
p 0

)
.

Now, we turn to the basic facts about the circle method. If f(z) :=
∑∞

n=0 a(n)qn, then the
residue theorem implies that

(2.1) a(n) =
1

2πi

∫
|q|=r

f(z)

qn+1
dq.

We choose r = e
−2π

N2 := e−2πρ for a positive N to be determined later. By following the dissection
given in [2, chap. 5] or [9, p.115–117] and setting z = k(ρ− iϕ) and τ = h+iz

k
, we arrive at

(2.2) a(n) =
∑

1≤k≤N

∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

f(τ)e2πnρe−2πinϕdϕ,
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where ξh,k = [−θ′h,k, θ′′h,k], and

θ′h,k =
h

k
− h0 + h

k0 + k

θ′′h,k =
h1 + h

k1 + h
− h

k
.

Here h0
k0
, h
k
, h1
k1

are three consecutive terms of the Farey sequence of order N . Note that each θ

satisfies 1
2kN
≤ θ ≤ 1

kN
.

The following transformation formulas for the Dedekind η function will play an important
role in the next section. For a proof of the transformation formulas, see [4, pp. 52-61].

Theorem 2.1. For γ =

(
a b
c d

)
∈ Γ, we have

η(γz) = e−πis(d,c)e
πi(a+d)

12c

√
−i(cz + d)η(z),

where s(d, c) is the Dedekind sum defined by s(d, c) =
∑c−1

r=1

(
r
c
−
[
r
c

]
− 1

2

) (
dr
c
−
[
dr
c

]
− 1

2

)
.

We prove the following two lemmas by using Theorem 2.1. We omit the proofs.

Lemma 2.2. Let h, k be integers such that k > 0 and (h, k) = 1. Let hh′ ≡ −1 (mod k) and
z ∈ H. If τ = h+iz

k
, then

η

(
h′ + iz−1

k

)
= e−πis(−h,k)eπi

h′−h
12k
√
zη (τ) .

Lemma 2.3. Let h, k be integers such that k > 0 and (h, k) = 1. Let hh′ ≡ −1 (mod k),
thh′′ ≡ −(t, k) (mod k), and τ = h+iz

k
. Then

η

(
(t, k)h′′

k
+ i

(t, k)2

ktz

)
= e−πis(−

−th
(t,k)

, k
(t,k)

)e
πi
h′′− th

(t,k)

12 k
(t,k)

√
t

(t, k)
zη (tτ) .

We obtain the following lemma by modifying the argument in [9, Lemma 3.2].

Lemma 2.4. Let

I :=

∫
ξh,k

z−
p−1
2 e2πnρe−2πinϕdϕ.

Then we have

(2.3) I =
(2π)

p−1
2

k
p−1
2 Γ(p−1

2
)
n
p−3
2 + E(I),

where |E(I)| ≤ 2
p+1
2 N

p−1
2

e2πnρ

2πn
.
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The following estimate will play an important role in Sections 3 and 6. Let

F (q) =
∞∏
n=0

(1− qn)−1 =
∞∑
n=0

p(n)qn.

Then from the upper bound

p(n) < eπ
√

2n/3

(see Theorem 14.5 of [4, p. 316]), we have

(2.4) |F (q)| ≤
∞∑
n=0

p(n)|q|n ≤
∞∑
n=0

eπ
√

2n
3 e−2πyn.

It is easy to see that π
√

2n/3− 2πny ≤ −πny if n ≥ 2
3y2

. It follows that

(2.5) |F (q)| ≤
∑

0≤n< 2
3y2

e
π

12y +
∑
n≥ 2

3y2

e−πyn ≤ 2

3y2
e

π
12y +

e−
2π
3y

1− e−πy
.

We will use this estimate with y = 1
2t

. When t is small, we will use the estimate

(2.6)
∞∑
n=0

p(n)e−2πyn ≤ exp

(
e−2πy

(1− e−2πy)2

)
,

given by Chan [9, Equation (3.19)].

3. An upper bound for |〈f, g〉|

Recall that p ≥ 7 is prime, f(z) = ηp(pz)
η(z)

, and g(z) ∈ S p−1
2

(Γ0(p), χp) is a normalized Hecke

eigenform. In this section, we will get an upper bound for

(3.1) 〈f, g〉 =
3

π

1

[Γ : Γ0(p)]

[Γ:Γ0(p)]∑
j=1

∫
F

f |α−1
j

(z)g|α−1
j

(z)y
p−1
2
dx dy

y2
.

Here Γ := SL2(Z) is a union of right cosets Γ =
⋃
j αjΓ0(p) and F is the usual fundamental

domain for SL2(Z).
Note that

(3.2) f | p−1
2

(
0 −1
1 0

)
(z) = (−i)

p−1
2 p

−p
2
ηp(z)

η(pz)
:= (−i)

p−1
2 p−

p
2

∞∑
n=0

bp(n)qnp .

Recall that ap(n) is the n-th Fourier coefficient of f(z). Before calculating |〈f, g〉|, we need
to obtain an upper bound for |ap(n)| and |bp(n)|.
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Lemma 3.1. For all integers n ≥ 1 and odd primes p ≥ 7, we have

|ap(n)| ≤ A∞(p)n
p−3
2 +B∞(p)n

p−1
4 ,(3.3)

|bp(n)| ≤ A0(p)n
p−3
2 +B0(p)n

p−1
4 ,(3.4)

where A∞(p), A0(p), B∞(p), and B0(p) are constants (depending only on p) defined by

A∞(p) = p−
p
2

(2π)
p−1
2 ζ(p−3

2
)

Γ(p−1
2

)
,(3.5)

B∞(p) = e6π

(
2e

π
p (C(p)− 1)

p
p
2

(
p(p− 1)

8πe

) p−1
4

+ 2.1

(
3

eπ(p+ 1)

) p−1
4

+ p−
p
2

2
p−1
2

π

)
,(3.6)

A0(p) =
(2π)

p−1
2 ζ(p−3

2
)

Γ(p−1
2

)
,(3.7)

B0(p) = e6π

2C(p)
√
p

(
3(p− 1)

eπ(p− 1
p
)

) p−1
4

+ 2.1

(
p− 1

8πe

) p−1
4

+
2
p−1
2

π

 ,(3.8)

and C(p) := 8p2

3
e
πp
6 + e

−4πp
3

1−e
−π
2p

.

We will prove this lemma at the end of the section.
Let g(z) =

∑∞
n=1 c(n)qn ∈ S p−1

2
(Γ0(p), χp). If d(n) is the number of divisors of n, then

Deligne’s bound is

|c(n)| ≤ d(n)n
p−3
4 .

Note that g is an eigenform of the Atkin-Lehner involution with eigenvalue λp where |λp| = 1.
Thus,

g| p−1
2

(
0 −1
1 0

)
(z) = λpp

− p−1
4

∞∑
n=1

c(n)qnp .

Now we are ready to calculate an upper bound for |〈f, g〉|. It is well known that αj = I or
T−kS, where k = 0, 1, . . . , p− 1. When we set αj = I in (3.1), we have∣∣∣∣∫

F

f(z)g(z)y
p−1
2
dx dy

y2

∣∣∣∣(3.9)

≤
∫ ∞
√
3

2

∞∑
k=2

(
k−1∑
n=1

|ap(k − n)||c(n)|

)
e−2πkyy

p−5
2 dy

≤ 1

(2π)
p−3
2

∫ ∞
π
√

3

e−uu
p−5
2

∑
k≤u

1

k
p−3
2

(
k−1∑
n=1

|ap(k − n)||c(n)|

)
du.
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By using the summation by parts formula and Lemma 3.1, we obtain

k−1∑
n=1

|ap(k − n)||c(n)| ≤ A∞(p)
k∑

n=1

d(n)(k − n)
p−3
2 n

p−3
4 +B∞(p)

k∑
n=1

d(n)(k − n)
p−1
4 n

p−3
4

≤ A∞(p)
p− 3

2
k

∫ k

1

D(t)t
p−7
4 (k − t)

p−5
2 dt

+B∞(p)
p− 1

4
k

∫ k

1

D(t)t
p−7
4 (k − t)

p−5
4 dt,

where D(t) :=
∑

n≤t d(n). Therefore, by using the Beta integral∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x)Γ(y)

Γ(x+ y)
,

and D(t) ≤ 1.8t5/4 + 3.6t1/4, we arrive at

k−1∑
n=1

|ap(k − n)||c(n)| ≤ A∞(p)
9(p− 3)

10

(
k

3p−4
4

Γ
(
p+2

4

)
Γ
(
p−3

2

)
Γ
(

3p−4
4

) + 2k
3p−8

4
Γ
(
p−2

4

)
Γ
(
p−3

2

)
Γ
(

3p−8
4

) )

+B∞(p)
9(p− 1)

20

(
k

2p+1
4

Γ
(
p+2

4

)
Γ
(
p−1

4

)
Γ
(

2p+1
4

) + 2k
2p−3

4
Γ
(
p−2

4

)
Γ
(
p−1

4

)
Γ
(

2p−3
4

) )
.

Note that for all real numbers x ≥ 1,
∑

k≤u k
x ≤ 1

x+1
ux+1 + ux. Applying this to (3.9), we

arrive at ∣∣∣∣∫
F

f(z)g(z)y
p−1
2
dx dy

y2

∣∣∣∣(3.10)

≤ 36A∞(p)p

5(2π)
p−3
2

Γ

(
p− 2

4

)
Γ

(
p− 3

2

)
+

2B∞(p)p2

7(2π)
p−3
2

Γ

(
p− 2

4

)
Γ

(
p− 1

4

)
:= U∞(p).

Similarly, for other αj,∣∣∣∣∫
F

f(z)|α−1
j
g(z)|α−1

j
y
p−1
2
dx dy

y2

∣∣∣∣
≤ 1

(2π)
p−3
2

(
1

p

) p+5
4
∫ ∞
π
√
3

p

e−uu
p−5
2

∑
k≤u

1

k
p−3
2

(
k∑

n=1

|bp(k − n)||c(n)|

)
du.
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By using a similar argument, we arrive at∣∣∣∣∫
F

f(z)g(z)y
p−1
2
dx dy

y2

∣∣∣∣(3.11)

≤ p−
p+5
4

(2π)
p−3
2

(
36A0(p)p

5
Γ
(
p−2

4

)
Γ
(
p−3

2

)
+

2B0(p)p2

7
Γ
(
p−2

4

)
Γ
(
p−1

4

)
+ Γ

(
p−1

2

))
:= U0(p).

By using Lemma 3.1, (3.10) and (3.11), we obtain the following theorem.

Theorem 3.2. Let f(z) = ηp(pz)
η(z)

∈ M p−1
2

(Γ0(p), χp), and let g(z) be a normalized newform in

S p−1
2

(Γ0(p), χp). Then,

π[Γ : Γ0(p)]

3
|〈f, g〉| ≤161.6 · e6πΓ

(
p− 2

4

)
Γ

(
p− 1

4

)
p

7
2

(
e1.5

32π3

) p−1
4

.

Now we will prove Lemma 3.1 by using the circle method. This is very similar to the argument
of Anderson in [1].

Proof of Lemma 3.1. By (2.2), we have

ap(n) =

 ∑
1≤k≤N
(k,p)=1

+
∑

1≤k≤N
p|k

 ∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

ηp(pτ)

η(τ)
e2πnρe−2πinϕdϕ

=: S1(A) + S2(A),

where A is the integrand.
First, we consider S1(A). By (2.2) and (2.3), we have

(3.12) A = p−
p
2ωh,kz

− p−1
2

ηt
(

exp
(

2πih
′′

k
− 2π 1

kpz

))
η
(

exp
(

2πih
′

k
− 2π 1

pz

)) ,

where ωh,k is a constant depending on h and k with |ωh,k| = 1. Then,

S1(A) = p−
p
2

∑
1≤k≤N
(k,p)=1

∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

ωh,kz
− p−1

2 e2πnρe−2πinϕdϕ

+ p−
p
2

∑
1≤k≤N
(k,p)=1

∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

ωh,k×

ηp
(

exp
(

2πih
′′

k
− 2π 1

kpz

))
η
(
exp

(
2πih

′

k
− 2π 1

kz

)) − 1

 z−
p−1
2 e2πnρe−2πinϕdϕ
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:= T1 + T2.

By Lemma 2.4, we have

|T1| ≤ p−
p
2

(2π)
p−1
2 ζ(p−3

2
)

Γ(p−1
2

)
n
p−3
2 + e6πp−

p
2n

p−1
4

2
p−1
2

π
,

by setting N = [
√
n], because n

[
√
n]2
≤ 3 for all n ≥ 1.

For T2, note that we can set h′ = th′′. Thus, if we set α = h′′

k
+ 2πi 1

kpz
, then we have, by

(2.4) and (2.5),∣∣∣∣∣∣
ηp
(

exp
(

2πih
′′

k
− 2π 1

kpz

))
η
(
exp

(
2πih

′

k
− 2π 1

kz

)) − 1

∣∣∣∣∣∣ ≤
∣∣∣∣∣
∞∏
n=1

(1− qn)p

1− qpn
− 1

∣∣∣∣∣ ≤
∞∑
n=0

aa(n)|q|n − 1

≤ |q|
∞∑
n=1

p(n)|q|n−1 ≤ e−
2π
k

Re 1
pz e

π
p (C(p)− 1) .

Here, q = exp 2πiα and aa(n) is the number of partitions of n such that parts which are not
multiples of p can be repeated up to p times and parts which are a multiple of p can be repeated
at most p− 1 times.

Therefore, we have∣∣∣∣∣∣
∫
ξh,k

ωh,k

ηp
(

exp
(

2πih
′′

k
− 2π 1

kpz

))
η
(
exp

(
2πih

′

k
− 2π 1

kz

)) − 1

 z−
p−1
2 e2πnρdϕ

∣∣∣∣∣∣
≤ e

π
p (C(p)− 1)

∫
ξh,k

|z|−
p−1
2 e−

2π
k

Re 1
pz e2πnρdϕ

= e
π
p (C(p)− 1)

∫
ξh,k

(
p

2πρ

) p−1
4
(

2πρ

pk2(ρ2 + ϕ2)

) p−1
4

exp

(
−2πρ

pk2(ρ2 + ϕ2)

)
e2πnρdϕ

≤ e
π
p (C(p)− 1)

(
p(p− 1)

8πe

) p−1
4

n
p−1
4 e2πnρ 2

kN
,

where for the last inequality, we used the fact that the maximum of x
p−1
4 e−x on [0,∞) is(

p−1
4e

) p−1
4 and the length of path is at most 2

kN
. Thus, by setting N = [

√
n], we arrive at

|T2| ≤
2e

π
p

+6π (C(p)− 1)

p
p
2

(
p(p− 1)

8πe

) p−1
4

n
p−1
4 .
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Similarly, we obtain the following upper bound for |S2(A)|:

|S2(A)| ≤ 2.1e6π

(
3

eπ(p+ 1)

) p−1
4

n
p−1
4 .

In summary, we have deduced that

A∞(p) = p−
p
2

(2π)
p−1
2 ζ(p−3

2
)

Γ(p−1
2

)
, and

B∞(p) = e6π

(
2e

π
p (C(p)− 1)

p
p
2

(
p(p− 1)

8πe

) p−1
4

+ 2.1

(
3

eπ(p+ 1)

) p−1
4

+ p−
p
2

2
p−1
2

π

)
,

as desired. The calculation of A0(p) and B0(p) is analogous, so we omit it. �

4. A lower bound for 〈g, g〉

In this section, we will derive a lower bound for 〈g, g〉, where g ∈ S p−1
2

(Γ0(p), χp) is a

normalized Hecke eigenform. Our approach is to use that the number 〈g, g〉 arises in a formula
for the special value at s = 1 of the adjoint square L-function L(s,Ad2(g)). In the appendix to
[17], Goldfeld, Hoffstein and Lieman proved that this L-function has no zeroes close to s = 1.
We make their argument effective, and use this to derive a lower bound on the special value at
s = 1. In this section, we state all of our results at the beginning and provide proofs later in
the section.

Write

g(z) =
∞∑
n=1

a(n)qn

and for primes q, define αq, βq ∈ C by

αq + βq = a(q)/q
p−3
4 , αqβq = χp(q).

Define the adjoint square L-function by

L(s,Ad2(g)) =
∏
q

(1− α2
qχp(q)q

−s)−1(1− q−s)−1(1− β2
qχp(q)q

−s)−1,

and define the completed L-function by

Λ(s,Ad2(g)) = psπ−3s/2Γ

(
s+ 1

2

)
Γ

(
s+ k − 1

2

)
Γ

(
s+ k

2

)
L(s,Ad2(g)).

In [13], Gelbart and Jacquet show that L(s,Ad2(g)) is the L-function of an automorphic form
on GL(3), and hence that it has an analytic continuation and functional equation of the usual
type. However, it is not immediately clear that the local factors at p and ∞ of Gelbart and
Jacquet’s match the definition given above. The content of the next theorem is a computation
of these local factors using the local Langlands correspondence.
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Theorem 4.1. Assume the notation above. Then, L(s,Ad2(g)) has an analytic continuation
to all of C and satisfies the functional equation

Λ(s,Ad2(g)) = Λ(1− s,Ad2(g)).

The fact that L(s, g ⊗ g) = ζ(s)L(s,Ad2(g)) and the classical Rankin-Selberg theory (see
Chapter 13 of [20]) implies the following special value formula. Recall that

〈g, g〉 =
3

π[Γ : Γ0(p)]

∫
H/Γ0(p)

|g(x+ iy)|2y
p−1
2
dx dy

y2
.

Then

(4.1) L(1,Ad2(g)) =
π

2

(
1 +

1

p

)
(4π)

p−1
2(

p−3
2

)
!
〈g, g〉.

We say that a modular form g(z) =
∑∞

n=1 a(n)qn of weight k ≥ 2 has complex multiplication
(or CM) if there is a Hecke character ξ associated to a quadratic field K so that

g(z) =
∑
a⊆OK

ξ(a)qN(a).

Equivalently, g(z) has CM if and only if there is a discriminant D so that a(p) = 0 whenever(
D
p

)
= −1.

In order to apply Goldfeld, Hoffstein, and Lieman’s argument, we need information about
the symmetric fourth power L-function attached to g. It is defined by

L(s, Sym4(g)) =
∏
q

(1−α4
qq
−s)−1(1−α2

qχp(q)q
−s)−1(1−q−s)−1(1−α−2

q χp(q)q
−s)−1(1−α−4

q q−s)−1,

and the completed L-function is given by

Λ(s, Sym4(g)) :=psπ−3s/2Γ
(s

2

)
Γ

(
s+ p−3

2

2

)
Γ

(
s+ p−1

2

2

)
·

Γ

(
s+ p− 3

2

)
Γ

(
s+ p− 1

2

)
L(s, Sym4(g)).

In [24], H. Kim established the connection between this L-function and an automorphic form
on GL(5). As a consequence, the symmetric fourth power L-function has the desired analytic
properties. Again, we must compute the local factors at p and ∞ using the local Langlands
correspondence.

Theorem 4.2. Assume the notation above. Then L(s, Sym4(g)) has a meromorphic continu-
ation to all of C and satisfies the functional equation

Λ(s, Sym4(g)) = Λ(1− s, Sym4(g)).

Moreover, if g does not have CM, then L(s, Sym4(g)) is entire.
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Remark. When g does have CM and corresponds to a Hecke character ξ, we have

L(s, Sym4(g)) = ζ(s)L(s, ξ2)L(s, ξ4).

Consequently, L(s, Sym4(g)) has a pole at s = 1.

The next result is an explicit version of the result of Goldfeld, Hoffstein, and Lieman.

Theorem 4.3. Assume the notation above. If g does not have CM, then

L(s,Ad2(g)) 6= 0

for s real with

s > 1− 7− 4
√

3

9 log(p)
.

We next translate this zero-free region into a lower bound on L(1,Ad2(g)).

Theorem 4.4. Suppose that g ∈ S p−1
2

(Γ0(p), χp) is a normalized newform. If g has CM, then

L(1,Ad2(g)) ≥ 1

332
√
p log(p)11/4

.

If g does not have CM, then

L(1,Ad2(g)) ≥ 1

84 log(p)
.

Remark. There are CM forms in S p−1
2

(Γ0(p), χp) if and only if p ≡ 3 (mod 4).

Proof of Theorem 4.1. The newform g in the statement of the theorem corresponds to an ir-
reducible cuspidal automorphic representation π of GL2(AQ), where AQ is the adele ring of
Q (for details about this correspondence, see [8], Chapter 7). The representation π admits a
factorization

π = ⊕q≤∞πq,
where each πq is a representation of the group GL2(Qq). In [13], Gelbart and Jacquet prove
that there is an automorphic representation Ad2(π) of GL3(AQ) so that

Ad2(π) = ⊕q≤∞Ad2(πq).

The L-function L(s,Ad2(π)) is defined by
∏

q≤∞ L(s,Ad2(πq)). Let ψ : AQ/Q → C× be a
global additive character. The ε-factor is given by

ε(s,Ad2(π), ψ) =
∏
q≤∞

ε(s,Ad2(πq), ψq).

The above definition does not depend on the choice of ψ. Finally, the functional equation takes
the form

L(s,Ad2(π)) = ε(s, π)L(1− s,Ad2(π)),

since Ad2(π) is self-contragredient.
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The definition of Ad2(πq) is given by the local Langlands correspondence. If F is a local
field, the local Langlands correspondence gives a bijection between the set of smooth, irreducible
representations of GLn(F ), and the set of admissible degree n complex representations of W ′

F ,
the Weil-Deligne group of F . For an introduction to the local Langlands correspondence,
see [26], and Section 10.3 of [8]. The representations of W ′

F that we consider will all be
representations of the Weil group WF , which is a quotient of W ′

F .
The representation πq corresponds to a representation ρq : W ′

F → GL2(C). Using the embed-
ding Ad2 : GL2(C) → GL3(C), one constructs Ad2(ρq) : W ′

F → GL3(C). The local Langlands
correspondence for GL3 associates to Ad2(ρq) a representation Ad2(πq). We shall now compute
this in the cases q =∞ and q = p.

When q = ∞, πq is the discrete series of weight k = p−1
2

(we follow the normalization of
Cogdell [10]). This corresponds by the local Langlands correspondence to a representation of
the Weil group of R. This is the group C× ∪ jC× with j2 = −1 and jzj−1 = z for z in C×.
The representation in question is

ρk(re
iθ) =

[
ei(k−1)θ 0

0 e−i(k−1)θ

]
, ρk(j) =

[
0 (−1)k−1

1 0

]
.

The adjoint square lift of ρ is

Ad2(ρk)(re
iθ) =

1 0 0
0 ei(2k−2)θ 0
0 0 e−i(2k−2)θ

 , Ad2(ρk(j)) =

−1 0 0
0 0 (−1)k−1

0 (−1)k−1 0

 .
One can see that Ad2(ρq) = ρ−0 ⊕ ρ2k−1. Here ρ−0 is the 1-dimensional representation given
by ρ−0 (z) = 1 and ρ−0 (j) = −1. We have L(s,D−0 ) = π−s/2Γ

(
s+1

2

)
, and L(s,D2k−1) =

π−sΓ
(
s+k−1

2

)
Γ
(
s+k

2

)
. The L and ε factors are defined so that they are inductive. In par-

ticular, L(s, ρ1 ⊕ ρ2) = L(s, ρ1)L(s, ρ2), and ε(s, ρ1 ⊕ ρ2, ψq) = ε(s, ρ1, ψq)ε(s, ρ2, ψq). It follows
that

L(s,Ad2(ρ∞)) = L(s,D−0 )L(s,D2k−1).

The local root number is ε(1
2
, D−0 , ψ)ε(1

2
, D2k−1, ψ) = i · i2k−1 = (−1)k. Here, ψ(x) = e2πix is

the standard additive character.
When q = p, the local representation πp has central character χp (the usual Dirichlet character

thought of as a character of Q×p ). The conductor of πp is the power of ps/2 that occurs in the
functional equation for L(s, π), and since the newform g has level p, the conductor of πp is one.
This can be determined from ε(s, πp, ψp), and also from more intrinsic representation-theoretic
data. For any representation σ, we will denote its conductor by c(σ).

In Schmidt [34], a list of possibilities for local representations π together with their conductors
is given. A simple calculation shows that the only possibility for a representation with conductor
one and central character χp is a principal series π(χ1, χ2), where χ1 is unramified, and χ2 =
χ−1

1 χp.

The Weil group WQp can be taken to be the subgroup of Gal(Qp/Qp) consisting of all ele-

ments restricting to some power of the Frobenius on Fp (see [37]). Under the local Langlands
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correspondence, π(χ1, χ2) corresponds to a two-dimensional representation of WQp which is a
direct sum of two characters. These characters ρ1 and ρ2 of WQp are constructed so that

ρi(σ) = χi(r(σ)),

where r : Gal(Qab
p /Qp) → Q×p is the reciprocity law isomorphism of local class field theory,

normalized so that r(Frobp) ∈ p−1Zp.
One can easily compute that Ad2(ρ1 ⊕ ρ2) = 1 ⊕ ρ1ρ

−1
2 ⊕ ρ−1

1 ρ2 (here 1 denotes the trivial
character). Since ρ1ρ

−1
2 and ρ−1

1 ρ2 both have conductor 1, it follows that c(Ad2(πp)) = 2.
From the usual definition of the L-factors, and the compatibility with the local Langlands
correspondence, we see that

L(s,Ad2(πp)) = L(s,Ad2(ρ1 ⊕ ρ2)) = (1− p−s)−1.

Moreover, we have

ε

(
1

2
,Ad2(πp), ψp

)
= ε

(
1

2
, 1, ψp

)
ε

(
1

2
, χ1χ

−1
2 , ψp

)
ε

(
1

2
, χ−1

1 χ2, ψp

)
.

Equation 4 on page 117 of [34] states that if χ and ψp are unramified, then ε
(

1
2
, χ, ψp

)
= 1.

Equation 7 on page 118 of [34] implies that for any character χ,
we have ε

(
1
2
, χ, ψp

)
ε
(

1
2
, χ−1, ψp

)
= χ(−1). It follows that the local root number of Ad2(πp) is

χ1χ
−1
2 (−1). Since χ1 is unramified, χ1(−1) = 1, while χ−1

2 (−1) =
(−1
p

)
.

The global conductor of Ad2(ρ) is therefore p2 and the global root number is (−1)k ·
(−1
p

)
.

Since k = p−1
2

, the global root number is 1. These facts, combined with the meromorphic
continuation and functional equation for L-functions of automorphic representations yield the
desired result. If g does not have CM, then π⊗χ 6∼= π for any character χ of A×Q/Q×, and then

Theorem 9.3 of [13] implies that Ad2(π) is cuspidal, which implies that L(s,Ad2(π)) is entire.
If g does have CM, then g corresponds to a Hecke character ξ, and one can check that

L(s,Ad2(π)) = L(s, χp)L(s, ξ2),

which is again entire. �

Proof of Theorem 4.2. This is entirely analogous to the case of the adjoint square lifting, thanks
to the deep result of Henry Kim on the functoriality of the symmetric fourth power lifting [24].
The local factor at infinity is worked out in [10], with the desired result, and with the local
root number equal to (−1)k.

At q = p, Sym4(ρ1 ⊕ ρ2) is ρ4
1 ⊕ ρ3

1ρ2 ⊕ ρ2
1ρ

2
2 ⊕ ρ1ρ

3
2 ⊕ ρ4

2. Note that ρ2 is ramified, but ρ2
2 is

not. Thus, the local L-factor has degree 3 and is given by

(1− α4
pp
−s)−1(1− p−s)−1(1− α−4

p p−s)−1,

where αp = a(p)/p
p−1
4 . Similar to the above case, the conductor of Sym4(ρ1 ⊕ ρ2) is 2, and the

local root number is
(−1
p

)
= (−1)

p−1
2 = (−1)k. Thus, the global conductor is p2 and the global

root number is 1. Finally, we must show that under the stated hypotheses, Sym4(π) is cuspidal.
The main result of [25] is that Sym4(π) is cuspidal unless π is monomial (equivalently g has
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CM), or π is of tetrahedral or octahedral type. This means that π arises from a representation
of the global Weil group WQ, but this cannot be the case if the weight of g is greater than 1.
The only case when the weight can be one is when p = 3. However in this case, any nonzero
g ∈ S1(Γ0(3), χ3) has f 2 ∈ S2(Γ0(3)), but since dimS2(Γ0(3)) = 0, no such g exists. Thus,
Sym4(π) is cuspidal and L(s, Sym4(π)) = L(s, Sym4(g)) is entire. �

Proof of Theorem 4.3. Let

L(s) = ζ(s)2L(s,Ad2(g))3L(s, Sym4(g)).

Let k = p−1
2

and

G(s) = p4sπ−8sΓ
(
s
2

)3
Γ
(
s+1

2

)3
Γ
(
s+k−1

2

)4
Γ
(
s+k

2

)4
Γ
(
s+2k−2

2

)
Γ
(
s+2k−1

2

)
.

If Λ(s) = s2(1 − s)2G(s)L(s), then Λ(s) is entire and Λ(s) = Λ(1 − s). One may verify from

Theorems 4.1 and 4.2 that if L(s) =
∑∞

n=1
b(n)
ns

, then b(n) ≥ 0 for all n. For the remainder
of the proof, we will take s real and greater than 1. In this region, one has L(s) > 0 and

L′(s) =
∑∞

n=2
−b(n) log(n)

ns
< 0. The function Λ(s) is an entire function of order 1, and so admits

a product expansion

Λ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ.

Taking the logarithmic derivative gives∑
ρ

1

s− ρ
+

1

ρ
=

2

s
− 2

1− s
+
L′(s)

L(s)
+
G′(s)

G(s)
−B.

Taking the real part of both sides and using the relation Re (B) = −
∑

ρ Re
(

1
ρ

)
(see Theorem

5.6, part 3 of [19]), we obtain∑
ρ

Re

(
1

s− ρ

)
≤ 2

s
+

2

s− 1
+
G′(s)

G(s)
.

Suppose that β is a real zero of L(s,Ad2(g)). Then we get

3

s− β
≤ 2

s− 1
+ 2 +

G′(s)

G(s)
.

We have

G′(s)

G(s)
= 4 log(p)− 8 log(π) + 3/2ψ(s/2) + (3/2)ψ((s+ 1)/2) + 2ψ((s+ k − 1)/2)

+ 2ψ((s+ k)/2) +
1

2
ψ((s+ 2k − 2)/2) +

1

2
ψ((s+ 2k − 1)/2),
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where ψ(s) = Γ′(s)
Γ(s)

. The formula ψ(s) = log(s) − 1
2s
−
∫∞

0
2t dt

(s2+t2)(e2πt−1)
(see for example [3],

Exercise 1.43(b)) implies that ψ(s) is increasing as a function of s, and that ψ(s) ≤ log(s)− 1
2s

.

It follows that for 1 < s ≤ 1.1, G′(s)
G(s)
≤ 9 log(p)− 2.

Now, set s = 1 + α, where 0 < α ≤ 0.1. We obtain 3
1+α−β ≤

2
α

+ 9 log(p). Solving for β and

making the optimal choice of α gives α =
√

6−2
9 log(p)

, which is always less than 0.1. This yields

β ≤ 1− 5− 2
√

6

9 log(p)
.

Note that 5− 2
√

6 > 7− 4
√

3, and so the desired result holds. �

Proof of Theorem 4.4. First, assume that g is a CM form corresponding to the Hecke character
ξ. In this case, L(s,Ad2(g)) = L(s, χp)L(s, ξ2). We derive a lower bound on L(1, ξ2) and apply
the Dirichlet class number formula to bound L(1, χp). We wish to bound

logL(1, ξ2) =

∫ ∞
1

−L
′(s, ξ2)

L(s, ξ2)
.

We have the trivial bound

(4.2)

∣∣∣∣L′(s, ξ2)

L(s, ξ2)

∣∣∣∣ ≤ −2ζ ′(s)

ζ(s)
.

Also, a virtually identical argument to that in the proof of Theorem 4.3 establishes a zero-free
region for L(s, ξ2) and gives that

(4.3)
∑
ρ

Re

(
1

s− ρ

)
≤ 3

s− 1
+ 9 log(p)

provided 1 ≤ s ≤ 1.1, where the sum is over non-trivial zeroes of ζ(s)3L(s, ξ2)4L(s, ξ4). It
follows from this, and the equation

(4.4)
∑
ρ

1

s− ρ
=
L′(s, ξ2)

L(s, ξ2)
+
G′(s)

G(s)
,

where G(s) = ps/2(2π)−sΓ
(
s+ p−3

2

)
, that

(4.5)

∣∣∣∣L′(s, ξ2)

L(s, ξ2)

∣∣∣∣ ≤ 3

4(s− 1)
+

15

4
log(p)

for 1 ≤ s ≤ 1.1. Finally, we must derive a bound on L′/L near s = 1.
To do this, we use (4.4) with s = 2 to derive the bound∑

ρ

Re

(
1

2− ρ

)
≤ 3

2
log(p).



20 BYUNGCHAN KIM AND JEREMY ROUSE

By pairing ρ with 1− ρ, we see that∑
ρ

γ≥
√

3/2

1

4 + γ2
+

1/2

1 + γ2
≤ 3

2
log(p).

The equation (4.3) also implies that L(s, ξ2) has no zeroes in the region {σ + it : σ ≥ β0, |t| ≤
s0 − β0}, where s0 = 1 + 2

√
3−3

9 log(p)
and β0 = 1 − 7−4

√
3

9 log(p)
. Plugging this into (4.4) and using the

bounds on sums over zeroes derived above, we obtain

(4.6)

∣∣∣∣L′(s, ξ2)

L(s, ξ2)

∣∣∣∣ ≤ 19

6
log(p) +

30

7− 4
√

3
log2(p).

We apply (4.6) for 1 ≤ s ≤ 1 + 7−4
√

3
40 log2(p)

, (4.5) for s up to 1 + 1
3 log(p)

and (4.2) for the remaining

s to derive a bound on L(1, ξ2). Combining this bound with the bound L(1, χp) ≥ 3π√
p

when

p > 163, we obtain

L(1,Ad2(g)) ≥ 1

332
√
p log(p)11/4

.

One can verify that this bound is satisfied with p ≤ 163 as well.
Now, we assume that g does not have CM. We mimic the argument of Lemma 3 of [33],

which is in turn based on Hoffstein’s argument for Dirichlet L-functions from [16]. Assume
that p ≥ 17 and set

L(s, g ⊗ g) = ζ(s)L(s,Ad2(g)) =
∞∑
n=1

b(n)

ns
.

A careful inspection of the Euler factors given in Theorem 4.1 shows that b(n) ≥ 0 for all n,

and also that b(n2) ≥ 1 for all n. Let β = 1− 7−4
√

3
9 log(p)

and note that 3/4 < β < 1. We set x = pA

and choose A at the end of the proof (we will choose it to be equal to 16/5). Consider

I =
1

2πi

∫ ∞
−∞

L(s+ β, g ⊗ g)xs ds

s
∏10

r=2(s+ r)
.

We use the fact that

1

2πi

∫ 2+i∞

2−i∞

xs ds

s
∏10

r=2(s+ r)
=

{
(x+9)(x−1)9

10!x10
if x > 1

0 if x < 1.

This gives

I =
∑
n≤x

b(n)(x/n+ 9)(x/n− 1)9

10!nβ(x/n)10
.

We consider only those terms where x/n ≥ 44. This gives

I ≥ 1

10!

(44 + 9)(44− 1)9

4410

∑
n≤
√
x/44

1

n2
≥ 1.54354
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for p ≥ 17. We move the contour in I to Re (s) = α := −3/2−β and pick up poles at s = 1−β,
s = 0 and s = −2. This gives

I =
1

2πi

∫ α+i∞

α−i∞

L(s+ β, g ⊗ g)xs ds

s
∏10

r=2(s+ r)
+

L(1,Ad2(g))x1−β

(1− β)
∏10

r=2(1− β + r)

+
L(β, g ⊗ g)

10!
− L(−2 + β, g ⊗ g)x−2

2 · 8!
.

Since g does not have CM, Theorem 4.3 implies that L(s,Ad2(g)) has no real zeroes to the
right of β. Therefore, we have L(β,Ad2(g)) ≥ 0 and since ζ(β) < 0, L(β, g ⊗ g) < 0. Since
β < 1, we have −2 + β < −1 and so L(s,Ad2(g)) < 0. Since ζ(−2 + β) < 0, it follows that
L(−2 + β, g ⊗ g) > 0. This gives

I − I2 ≤
L(1,Ad2(g))x1−β

(1− β)
∏10

r=2(1− β + r)
,

where

I2 =
1

2πi

∫ α+i∞

α−i∞

L(s+ β, g ⊗ g)xs ds

s
∏10

r=2(s+ r)
.

It suffices to bound I2 in the above inequality. Using the functional equation for L(s, g ⊗ g),
we have

|L(−3/2 + it, g ⊗ g)| =p4π−8|1/4 + it/2|2|3/4 + it/2|2|k/2− 1/4− it/2||k/2− 5/4− it/2|
|k/2 + 1/4− it/2||k/2− 3/4− it/2||L(5/2− it, g ⊗ g)|.

We have L(5/2− it, g ⊗ g)| ≤ ζ(5/2)4, and |xs| = pA(−3/2−β). Note that

1

| − 3/2− β + it|
∏10

r=2 |r − 3/2− β + it|
≤ 1

|9/4 + it||1/4 + it|
∏10

r=3 |r − 5/2 + it|
.

Putting these estimates together, we get

|I2| ≤
ζ(5/2)4p8+A(−3/2−β)

213π9
·
∫ ∞
−∞

|1/2 + it|2|3/2 + it|2|1 + it|4

|1/4 + it||9/4 + it|
∏10

r=3 |r − 5/2 + it|
dt

≤ 0.011322p8+A(−3/2−β)

10!
.

Thus, we have

L(1,Ad2(g)) ≥ (1− β)
(
1.54354pA(β−1) − 0.011322p8−5A/2

)
.

Setting A = 16/5, we obtain

L(1,Ad2(g)) ≥ 1

84 log(p)
,

Numerically, we evaluate L(1,Ad2(g)) for all newforms in S p−1
2

(Γ0(p), χp) for p < 17 and check

that the same relation holds. This completes the proof. �
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5. Proof of Theorem 1.1 and its corollaries

Recall that

f(z) =
ηp(pz)

η(z)
=
∞∑
n=0

cp(n)qn+ p2−1
24 .

We decompose

f(z) = epE p−1
2

(z) +
s∑
i=1

rigi(z)

where gi(z) are the normalized Hecke eigenforms in S p−1
2

(Γ0(p), χp). To boundR(p) =
∑s

i=1 |ri|,
we use that

ri =
〈f, gi〉
〈gi, gi〉

.

We derived an upper bound on the numerator in Section 3 and a lower bound on the denomi-
nator in Section 4. Now we prove Theorem 1.1.

Proof of Theorem 1.1. Define

(5.1) L(p) :=


2
π

(
1 + 1

p

)−1 ( p−3
2 )!

(4π)
p−1
2

1
84 log(p)

, if p ≡ 1 (mod 4),

2
π

(
1 + 1

p

)−1 ( p−3
2 )!

(4π)
p−1
2

1
332
√
p log(p)11/4

, if p ≡ 3 (mod 4).

Then, Theorem 4.4 states that 〈gi, gi〉 ≥ L(p) for all i. Sturm’s theorem [36] states that a
modular form f ∈Mk(Γ0(N), χ) is determined by its first k

12
[Γ : Γ0(N)] Fourier coefficients. It

follows that the dimension of S p−1
2

(Γ0(p), χ) ≤ p−1
24

[Γ : Γ0(p)]. In summary, we have

s∑
i=1

|ri| ≤
p− 1

24
[Γ : Γ0(p)]

A

L(p)
,

where A is an upper bound on |〈f, g〉|.
Therefore, by Theorem 3.2 and (5.1) , we arrive at

s∑
i=1

|ri| ≤
(p− 1)π

8

U∞(p) + pU0(p)

L(p)

≤

98304 · e6πp4 log p
(
e1.5

8π

) p−1
4
, if p ≡ 1 (mod 4),

388535 · e6πp
9
2 (log p)

11
4

(
e1.5

8π

) p−1
4
, if p ≡ 3 (mod 4),

where we have used the inequality xx−γ

ex−1 < Γ(x) < xx−
1
2

ex−1 from [27], and γ is the Euler constant.
�
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Before we prove our corollaries, note that for p > 5, we have

(5.2) σ p−1
2
,χp

(n) ≥ n
p−3
2 ζ

(
p− 3

2

)−1

,

where ζ(s) is the Riemann zeta function.

Proof of Corollary 1.3. By Theorem 1.1,

|ap(n)| ≥ ep

ζ
(
p−3

2

)n p−3
2 −R(p)d(n)n

p−3
4

≥ epn
p−3
2

(
1

ζ
(
p−3

2

) − 2R(p)

epn
p−5
4

)
,

where we have used the fact that d(n) ≤ 2
√
n. Since ζ(2)− 1

5
> 2

5
, we arrive at ap(n) > 2ep

5
n
p−3
2

once n ≥ (10R(p)
ep

)
4
p−5 , as desired. �

Proof of Corollary 1.4. Since σ p−1
2
,χp

is multiplicative and n is coprime to t, we have

ap(t
kn)− (σ p−1

2
,χp

(tk)− 1)ap(n)

≥ epσ p−1
2
,χp

(n)−R(p)d(n)n
p−3
4

(
(k + 1)t

k(p−3)
4 + σ p−1

2
,χp

(tk)− 1
)

≥ n
p−1
4

(
epζ

(
p− 3

2

)−1

n
p−5
4 − 2R(p)

(
(k + 1)t

k(p−3)
4 + σ p−1

2
,χp

(tk)− 1
))

.

Thus, for

n >

(
ζ(p−3

2
)

ep
2R(p)

(
(k + 1)t

k(p−3)
4 + σ p−1

2
,χp

(tk)− 1
)) 4

p−5

,

we have

ap(t
kn)− (σ p−1

2
,χp

(tk)− 1)ap(n) > 0.

�

6. Proof of Theorem 1.5

Recall that F (q) = q1/24

η(z)
and that the generating function Ft(q) for the number of t-core

partitions is Ft(q) := F (q)
F (qt)t

. By using the transformation formula for the Dedekind eta function

(Theorem 2.1) we can easily derive the transformation formula for F (q):

F (e2πiτ ) = eπi(τ−γτ)/12e−πis(d,c)eπi(a+d)/12c
√
−i(cτ + d)F (e2πiγτ ), for γ ∈ Γ.

Using this, we can derive a similar transformation formula for Ft(q). By using this transforma-
tion formula and [1, Proposition 6], we can prove the following lemma.
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Lemma 6.1. Let A(t) and B(t) be the constants (depending only on t) defined by

A(t) =


0.05·(2π)

t−1
2

Γ( t−1
2 )t

t
2
, if t = 6,

(2π)
t−1
2

Γ( t−1
2 )t

t
2

(
2− ζ

(
t−3

2

))
, if t ≥ 7,

and

B(t) =
(2π)

t−1
2

Γ
(
t−1

2

)
t
t
2

ζ

(
t− 3

2

)
.

Define e−2π(1+ 2
t
)− π

12
(1− 1

t2
)E(t) by

2e
π
t (C(t)− 1)

t
t
2

(
t(t− 1)

8πe

) t−1
4

+

∑
2≤d|t

(
1

d2 − 1

) t−1
4

d
t
2

 2.1C(t)

t
t
2

(
3(t− 1)

eπ

) t−1
4

+
2
t−1
2

πt
t
2

.

Then for all integers n ≥ t2 and t ≥ 6, we have

A(t)

(
n+

t2 − 1

24

) t−3
2

− E(t)n
t−1
4 ≤ ct(n) ≤ B(t)

(
n+

t2 − 1

24

) t−3
2

+ E(t)n
t−1
4 .

Since the proof of this lemma is identical to Lemma 3.1 (except for the estimate of S2), we
omit it. Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. By Lemma 6.1, for all n ≥ (t+ 1)2, we have

ct+1(n)− ct(n)

≥ A(t+ 1)

(
n+

t2 + 2t

24

) t−2
2

−B(t)

(
n+

t2 − 1

24

) t−3
2

− E(t+ 1)n
t
4 − E(t)n

t−1
4

≥ n
t−3
2

(
A(t+ 1)

√
n−B(t)

)
− n

t
4

(
E(t+ 1) +

E(t)√
t

)
.

Take n1 such that if n > n1, then A(t+ 1)
√
n > 2B(t). We note that

2B(t)

A(t+ 1)
≤

ζ
(
t−3

2

)
√
π(2− ζ

(
t−3

2

)t(1 +
1

t

) t
2

.

Therefore, we can choose n1 = 0.3 · t2. Since n > (t+ 1)2, we always have

ct+1(n)− ct(n) ≥ B(t)n
t−2
2 − n

t
4

(
E(t+ 1) +

E(t)√
t

)
.
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We estimate E(t) as follows

e−2π(1+ 2
t
)− π

12
(1− 1

t2
)E(t) ≤

6t
3
2 e

π
t

(
e1.5

8π

) t−1
4
, if t ≥ 36,

9t
5
2

(
4e1.5

tπ

) t−1
4
, if 7 ≤ t ≤ 36.

Therefore, we have deduced that if

n ≥


(

45503t
2t+1

2

(
1

27π3
√
e

) t−1
4

) 4
t−4

, if t ≥ 36,(
288305t

3t+7
4

(
1

4π3
√
e

) t−1
4

) 4
t−4

, if 7 ≤ t ≤ 35,

and n ≥ (t+ 1)2, then ct+1(n) > ct(n), as desired. �

Now we will prove Stanton’s conjecture in the cases where t ≤ 198. Since the bound in
Theorem 1.5 is quite big for t ≤ 12, we need to get sharper estimates for ct(n) for 4 ≤ t ≤ 13.
We will achieve this goal by using various arguments. For t = 4, we will use the result of Ono
and Sze [32], which relates c4(n) to the class number of an imaginary quadratic field. For t = 5
and t = 7 we use that R(5) = 0 and R(7) = 1/8. For t = 6, we use that the generating function
for c6(n) is a weight 5/2 modular form. For 8 ≤ t ≤ 13, we will use the circle method as in
Lemma 6.1, but we will set N = d

√
2πne and estimate C(t) by (2.6) instead of (2.5) if t ≤ 11.

For the t = 4 case, we first need to find an upper bound for class numbers.

Proposition 6.2. For any discriminant −D < 0, we have

h(−D) ≤ w−D
π

√
D log(D).

Here w−D is half the number of units in the imaginary quadratic order of discriminant −D.
(Note that w−D = 1 if −D > 4).

Proof. One can use the Dirichlet class number formula together with the elementary bound on
the sum of a Dirichlet character mod q∣∣∣∣∣∑

n≤x

χ(n)

∣∣∣∣∣ ≤ min(x mod q, q − x mod q)

to prove this result. �

Now, from Ono and Sze [32], we have

c4(n) =
1

2

∑
d2|8n+5

h

(
−32n− 20

d2

)
.
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Note that (−32n−20)/d2 cannot be equal to −3 or −4, since it is always greater than or equal
to 4, and d2 6= 8n+ 5 since d2 ≡ 0, 1, 4 (mod 8). Thus, we have

c4(n) ≤ 1

2π

∑
d2|8n+5

√
(32n+ 20)/d2 log((32n+ 20)/d2)

≤ 1

2π

√
32n+ 20 log(32n+ 20)

∑
d2|8n+5

1

d
.

If sq(8n+ 5) is the largest positive integer so that sq(8n+ 5)2|8n+ 5, then we have∑
d2|8n+5

1

d
=

∑
d|sq(8n+5)

1

d
=
σ(sq(8n+ 5))

sq(8n+ 5)
.

Combining this with the result of Ivić [18] that σ(n) < 2.59n log(log(n)) for n ≥ 7, we see that

c4(n) ≤ 2.59

π

√
8n+ 5 log(32n+ 20) log(log(8n+ 5)).

Now, we have c5(n) = σ2,χ(n+ 1) ≥ n
∏

p|n

(
1− 1

p

)
= φ(n). Since 6

π2 <
φ(n)σ(n)

n2 , we have

c5(n) >
6

2.59π2

n+ 1

log(log(n+ 1))

for n > 6. It follows from these inequalities that c4(n) < c5(n) provided n ≥ 1750513. A
computation verifies that the desired inequality holds if n < 1750513.

Now, we turn to the t = 5 case. Arguing as above, we have that

σ2,χ(n) ≤ n2

φ(n)
<
π2

6
σ(n) ≤ 2.59

6
π2(n+ 1) log(log(n+ 1))

provided n ≥ 7.
Now we will estimate c6(n). Let

F (z) = η(z)2η(2z)2η(3z)2η(6z)2 =
∞∑
n=1

a(n)qn ∈ S4(Γ0(6))

be the unique weight 4 newform of level 6. If D is a fundamental discriminant, define

L(F ⊗ χD, s) =
∞∑
n=1

a(n)χD(n)

ns+3/2
.
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Proposition 6.3. Let n be a positive integer, and write 72n + 105 = Df 2, where D is a
fundamental discriminant and f ≥ 1. Then,

c6(n) =
D3/2L(2, χD)

240π2

∑
d|f

µ(d)χD(d)dσ3(f/d)

± (D/33)3/4

10

√
L(F ⊗ χD, 1/2)

L(F ⊗ χ33, 1/2)

∑
d|f

µ(d)dχD(d)a(f/d).

Proof. This follows from writing

η(144z)6

η(24z)
= q24

∞∑
n=0

c6(n)q24n+11,

a modular form of weight 5/2 on Γ0(576) with character χ12, as the sum of an Eisenstein series
and a cusp form. Cohen has shown that the coefficients of the Eisenstein series involve the
values at 2 of Dirichlet L-functions, and Waldspurger has shown that the cusp form coefficients
are essentially the square root of the twisted L-value L(F ⊗ χD, 1/2). Combining these two
results, we get the stated formula. �

A simple estimate shows that the first term above is bounded below by 1
40π4 (72n + 105)3/2,

and that ∣∣∣∣∣∣
∑
d|f

µ(d)dχD(d)a(f/d)

∣∣∣∣∣∣ ≤ d(f)f 3/2
∏
p|f

(
1 +

1
√
p

)
.

Next, we need an upper bound on L(F ⊗ χD, 1/2). A variant of the standard convexity bound
(see [15], Theorem F.4.1.9 for example) gives the following result.

Lemma 6.4. Assume the notation above. Suppose that g is a newform in Sk(Γ0(N)), then

L(g, 1/2) ≤ e1/2

(
N

2π

)1/4 Γ
(
k+1

2
+ 1

2α

)
Γ
(
k
2

) (1 + 2α)2,

where α = log
(
N
2π

)
.

Specializing to the case at hand, we have that k = 4 and the conductor of F ⊗χD is bounded
by 2D2. From this we get

|L(F ⊗ χD, 1/2)| ≤ 5.9(2D2)1/4 log2(2D2).

Combining this bound with the elementary bound d(n) ≤
(

1536
35

)1/3
n1/3, we obtain an upper

bound on the second term in Proposition 6.3 of

0.744(72n+ 105) log(72n+ 105).

We see from these bounds that c6(n) > c5(n) provided n ≥ 58000548. We refine this estimate
by using the bounds L(2, χD) ≥ 6

π2 , L(F⊗χD, 1/2) ≤ 5.9(2D2)1/4 log2(2D2), and computing the
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rest of the terms in Proposition 6.3 exactly. This requires knowing the first 12000 coefficients
of F (z), and shows that c6(n) > c5(n) for n > 110868. It is easy to check up to this bound and
verify Stanton’s conjecture in this case.

For t = 7, one can compute that

η7(7z)

η(z)
=

1

8
E3(z)− 1

8
η(z)3η(7z)3.

The latter form is a Hecke eigenform and from this it follows that

3

4π2
(n+ 2)2 − 1

8
d(n)n ≤ c7(n) ≤ π2

48
(n+ 2)2 +

1

8
d(n)n.

This bound makes it easy to check Stanton’s conjecture.
For 8 ≤ t ≤ 13, as we mentioned above, we can get sharper estimates than Lemma 6.1 by

setting N =
√

2πn. For n ≥ t2,

A(t)

(
n+

t2 − 1

24

) t−3
2

− E ′(t)d
√

2πne
t−1
2 ≤ ct(n) ≤ B(t)

(
n+

t2 − 1

24

) t−3
2

+ E ′(t)d
√

2πne
t−1
2 ,

where the A(t) and B(t) are the constants defined in Lemma 6.1 and

E ′(t) := e
25
24 e−2π(1+ 2

t
)− π

12
(1− 1

t2
)E(t).

By using the bounds mentioned above together with MAGMA, we can verify Stanton’s
conjecture for t ≤ 198.

7. Concluding Remarks

For simplicity, we have considered the problem of bounding the coefficients of R(p). Our
work raises two natural questions: (i) Can the bound on R(p) in Theorem 1.1 be sharpened?,
and (ii) What bound can one derive on the constant R(t), for a general odd integer t? The two
primary difficulties that arise in studying this latter question are the presence of old forms, and
the representation theoretic issues involved in determining explicit bounds on L(1,Ad2(g)).

The bound given in Theorem 1.5 shows that Stanton’s conjecture is true provided n is at
least of size about t4. It would be of interest to see if combinatorial methods could prove
Stanton’s conjecture in the range 0 ≤ n ≤ t4.

The same method applied in this paper can be applied to give bounds on the Fourier co-
efficients of any holomorphic modular form (see for example [22] for the case of level 1 cusp
forms). Cases in which partition generating functions are holomorphic modular forms, such
as t-core partitions, seem to be the exception rather than the rule. However, further connec-
tions between partitions and modular forms can be made using the hook length formula due to
Nekrasov and Okounkov or its generalizations (see [28], formula (6.12)). To state this formula,
let P be the set of partitions, and for a partition λ of positive integer k, let |λ| = k, and let
H(λ) be the set of hook lengths of λ. Then for any z ∈ C,∑

λ∈P

q|λ|
∏

h∈H(λ)

(
1− z

h2

)
=
∞∏
n=1

(1− qn)z−1.
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[18] Aleksandar Ivić. Two inequalities for the sum of divisors functions. Univ. u Novom Sadu Zb. Rad. Prirod.-

Mat. Fak., 7:17–22, 1977.
[19] H. Iwaniec and E. Kowalski. Analytic number theory, volume 53 of American Mathematical Society Collo-

quium Publications. American Mathematical Society, Providence, RI, 2004.
[20] Henryk Iwaniec. Topics in classical automorphic forms, volume 17 of Graduate Studies in Mathematics.

American Mathematical Society, Providence, RI, 1997.
[21] G. James and Kerber A. The representation theory of the symmetric group. Addison-Wesley Publishing

Co., Mass., 1981. With a foreword by P. M. Cohn. With an introduction by Gilbert de B. Robinson.
Encyclopedia of Mathematics and its Applications, 16.

[22] Paul Jenkins and Jeremy Rouse. Bounds for coefficients of cusp forms and extremal lattices. Bull. Lond.
Math. Soc., 43(5):927–938, 2011.

[23] Byungchan Kim. On inequalities and linear relations for 7-core partitions. Discrete Math., 310(4):861–868,
2010.



30 BYUNGCHAN KIM AND JEREMY ROUSE

[24] Henry H. Kim. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. J. Amer.
Math. Soc., 16(1):139–183 (electronic), 2003. With appendix 1 by Dinakar Ramakrishnan and appendix 2
by Kim and Peter Sarnak.

[25] Henry H. Kim and Freydoon Shahidi. Cuspidality of symmetric powers with applications. Duke Math. J.,
112(1):177–197, 2002.

[26] Stephen S. Kudla. The local Langlands correspondence: the non-Archimedean case. In Motives (Seattle,
WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 365–391. Amer. Math. Soc., Providence, RI,
1994.

[27] Xin Li and Chao-Ping Chen. Inequalities for the gamma function. JIPAM. J. Inequal. Pure Appl. Math.,
8(1):Article 28, 3 pp. (electronic), 2007.

[28] Nikita A. Nekrasov and Andrei Okounkov. Seiberg-Witten theory and random partitions. In The unity of
mathematics, volume 244 of Progr. Math., pages 525–596. Birkhäuser Boston, Boston, MA, 2006.
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