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1. Introduction and Statement of Results

If λ ∈ C− {0, 1}, then let Eλ be the elliptic curve

Eλ : y2 = x(x− 1)(x− λ)

in Legendre normal form. A simple change of variables yields an equation for the
curve of the form

y2 = 4x3 − g2x− g3.

Such curves parametrized by (℘(z, Λ), ℘′(z, Λ)) for z ∈ C, where ℘(z, Λ) is the Weier-
strass ℘-function with period lattice Λ.

It is a classical problem (see [4] Ch. 6, Sec. 5-9, [7] Ch. 6, Sec. 5) to find a suitable
lattice Λ given an elliptic curve. In the case when λ ∈ R, Λ can be chosen to be of the
form Λ = Ω(Eλ)Z + Ω′(Eλ)Z, where Ω(Eλ) is real and Ω′(Eλ) is strictly imaginary.
Here Ω(Eλ) is called the “real period” of Eλ.

If λ ∈ Q − {0, 1}, then Eλ(Q), the group of rational points on Eλ, is finitely
generated. For such λ, the Hasse-Weil L-function of Eλ is

L(Eλ, s) =
∏
p-∆

1

1− ap(Eλ)p−s + p1−2s

∏
p|∆

1

1− ap(Eλ)p−s
.

Here ∆ is the discriminant of Eλ and ap(Eλ) is the trace of Frobenius. The Birch and
Swinnerton-Dyer conjecture predicts that ords=1 (L(Eλ, s)) = rk(Eλ(Q)), the rank of
Eλ(Q). Moreover it predicts that

lim
s→1

L(Eλ, s)

(s− 1)rk(Eλ(Q))

is an explicit multiple of Ω(Eλ) depending on the arithmetic invariants of Eλ/Q.
Therefore, given Eλ, computing Ω(Eλ) and ap(Eλ) is an important task. Here we
give analogous formulas for Ω(Eλ) and ap(Eλ) in terms of hypergeometric functions.

If a ∈ R and n is a non-negative integer, then

(a)n :=

{
a(a + 1)(a + 2) · · · (a + n− 1) n > 0

1 n = 0.
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The ordinary hypergeometric function 2F1 is given by

2F1

(
a, b

c
; x

)
:=

∞∑
n=0

(a)n(b)n

(c)n

xn

n!
.

First we observe that Ω(Eλ) can be expressed in terms of ordinary hypergeometric
functions. For our purposes, we slightly abuse terminology by defining Ω(Eλ) to be
the real period of the curve y2 = 4x3 − g2x− g3 which is obtained from the equation
of Eλ in the usual way.

Theorem 1. If 0 < λ < 1, then the real period Ω(Eλ) is given by

Ω(Eλ)

π
= 2F1

(
1/2, 1/2

1
; λ

)
.

If λ ∈ Q and p is a prime of good reduction for Eλ, then the number of points on
Eλ over Fp (including the point at infinity) is given by

|Eλ(Fp)| = 1 +

p−1∑
x=0

(1 + φp(x(x− 1)(x− λ))) = p + 1− ap(Eλ).

Here φp denotes the Legendre symbol over p, and ap(Eλ) is the trace of Frobenius.
If A and B are Dirichlet characters mod p, we define the normalized Jacobi sum(

A
B

)
as

(1)

(
A

B

)
:=

B(−1)

p
J(A, B) =

B(−1)

p

∑
x∈Fp

A(x)B(1− x).

Throughout, we will let εp denote the trivial character mod p. Greene [2] used these
binomial symbols to define Gaussian hypergeometric functions, as follows. If A, B,
and C are Dirichlet characters mod p, then

2F1

(
A, B

C
; x

)
p

:=
p

p− 1

∑
χ

(
Aχ

χ

)(
Bχ

Cχ

)
χ(x),

where the sum is taken over all Dirichlet characters mod p. These hypergeometric
functions are analogues of the ordinary hypergeometric functions. They are also
considered in [6] and [5]. Next we observe that the trace of Frobenius, ap(Eλ), can
be computed in terms of Gaussian hypergeometric functions. This result is a special
case of Thm 11.6 of [6] and of Thm 3.6 of [2].

Theorem 2. If λ ∈ Q − {0, 1} and p is a prime with ordp(λ(λ − 1)) = 0, then the
trace of Frobenius on Eλ satisfies

−φp(−1)ap(Eλ)

p
= 2F1

(
φp, φp

εp
; λ

)
p

.
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Notice the similarity in the two expressions

Ω(Eλ)

π
= 2F1

(
1/2, 1/2

1
; λ

)
and

−φp(−1)ap(Eλ)

p
= 2F1

(
φp, φp

εp
; λ

)
p

.

Replacing π with φp(−1)p, Ω(Eλ) with ap(Eλ), and 1, 1/2 with Dirichlet characters
of orders 1 and 2, respectively, and swapping ordinary and Gaussian hypergeometric
functions turns the expression for the real period into the expression for the trace
of Frobenius, up to sign. This sign is inherent in the definition of the Gaussian
hypergeometric functions. This correspondence is further clarified by the fact that π
and φp(−1)p naturally correspond since

G(φp) =
√

φp(−1)p

Γ(1/2) =
√

π,

where G(χ) is the classical Gauss sum of χ (see [3], Thm. 6.1, pg. 75). This
suggests a striking correspondence between hypergeometric functions and Gaussian
hypergeometric functions.

For further evidence of this correspondence, we will consider the special case when
λ = 1/2. In this case, simpler expressions for both hypergeometric functions are
known. In particular, it can be shown (see Section 2) that

√
2

2π
· 2F1

(
1/2, 1/2

1
;
1

2

)
=

Γ(5/4)

Γ(3/2)Γ(3/4)
.

Now, the binomial coefficient
(

n
k

)
= n!

k!(n−k)!
. Since Γ(n) = (n − 1)!, the right hand

side could be interpreted as
(
1/4
1/2

)
. A similar evaluation of the relevant Gaussian

hypergeometric function yields the following result.

Theorem 3. If λ = 1/2, then
√

2

2π
· Ω(Eλ) = Re

(
1/4

1/2

)
and

−φp(−2)

2p
· ap(Eλ) = Re

(
χ4

φp

)
,

where χ4 is a Dirichlet character of order 4.
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Notice that replacing
√

2 with φp(2), π with φp(−1)p, χ4 and φp (Dirichlet charac-
ters of order 4 and 2, respectively) with 1/4 and 1/2, and Ω(Eλ) with ap(Eλ) turns
the second formula into the first, up to sign. This provides more evidence that there
is a natural correspondence between ordinary hypergeometric functions and Gaussian
hypergeometric functions.

2. Proofs

Proof of Theorem 1. The change of variables (x, y) 7→
(
x + 1+λ

3
, y/2

)
takes the elliptic

curve Eλ to
E : y2 = 4x3 − g2x− g3 = 4(x− a)(x− b)(x− c),

where a = −λ+1
3

, b = 2λ−1
3

, and c = 2−λ
3

. Knapp ([4], Prop. 6.33) shows that the
periods of the elliptic curve E may be taken to be

ω1 =

∫ b

a

dx√
(x− a)(x− b)(x− c)

ω2 =

∫ c

b

dx√
(x− a)(x− b)(x− c)

.

Note that for a < x < b, (x − a) is positive, while (x − b) and (x − c) are negative.
Hence, ω1 is the real period.

Making the substitution
√

x− a =
√

b− a · sin θ in the first integral yields the
following formula:

Ω(E) = 2

∫ π/2

0

dθ√
(c− a)− (b− a) sin2 θ

.

Now, noting that b− a = λ and c− a = 1 gives

Ω(E) = 2

∫ π/2

0

dθ√
1− λ sin2 θ

.

Using the binomial expansion for 1√
1−λ sin2 θ

and integrating termwise yields

Ω(E) = 2
∞∑

n=0

n−1∏
i=0

(
i +

1

2

)
λn

n!

∫ π/2

0

sin2n θ dθ.

Note that if n is a non-negative integer, then∫ π/2

0

sin2n θ dθ =
2π

4n+1

(
2n

n

)
.

Also, (
2n

n

)
1

n!4n
=

(2n)!

(n!)34n
=

∏n−1
i=0

(
1
2

+ i
)

n!
∏n−1

i=0 (1 + i)
.
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These formulas yield that

Ω(Eλ)

π
=

Ω(E)

π
=

∞∑
n=0

∏n−1
i=0

(
1
2

+ i
)2

n!
∏n−1

i=0 (1 + i)
λn

=
∞∑

n=0

(
1
2

)
n

(
1
2

)
n

(1)n

λn

n!

= 2F1

(
1/2, 1/2

1
; λ

)
,

as desired. �

Proof of Theorem 3. First we establish that

Ω(E1/2) = π
√

2
Γ(5/4)

Γ(3/2)Γ(3/4)
.

As shown in the proof of Theorem 1,

Ω(Eλ) = 2

∫ π/2

0

dθ√
1− λ sin2 θ

.

With λ = 1/2, multiplying the numerator and denominator by
√

2 and setting sin2 θ =
1− cos2 θ gives

Ω(E1/2) = 2
√

2

∫ π/2

0

dθ√
1 + cos2 θ

.

Making the change of variables t = cos θ gives

Ω(Eλ) = 2
√

2

∫ 1

0

dt√
1− t4

.

Again, making the change of variables u = t4 gives

Ω(E1/2) =

√
2

2

∫ 1

0

u−3/4(1− u)−1/2 du.

It is well-known that if a, b ∈ R, a, b ≥ 0, then∫ 1

0

ta−1(1− t)b−1 =
Γ(a)Γ(b)

Γ(a + b)
.

Hence,

Ω(E1/2) =

√
2

2

Γ(1/4)Γ(1/2)

Γ(3/4)
.

Now, using that Γ(1/2) =
√

π, and sΓ(s) = Γ(s + 1), it is easy to see that
√

2

2

Γ(1/4)Γ(1/2)

Γ(3/4)
=
√

2π
Γ(5/4)

Γ(3/2)Γ(3/4)
,
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and the first result follows.
For the second result, note that making the change of variables x1 = 1/x in Eλ

gives

y2 = (1/x1)(1/x1 − 1)(1/x1 − λ)

y2 =
λ

x4
1

x1(x1 − 1)(x1 − 1/λ).

Thus,

−ap(E1/λ) =
∑
x∈Fp

φp (λx1(x1 − 1)(x1 − λ)) = −φp(λ)ap(Eλ).

Similarly, making the change of variables x1 = 1− x in Eλ gives

y2 = (1− x1)(1− x1 − 1)(1− x1 − λ)

y2 = −x1(x1 − 1)(x1 − (1− λ)).

Thus,

−ap(E1−λ) =
∑
x∈Fp

φp (−x1(x1 − 1)(x1 − λ)) = −φp(−1)ap(Eλ).

These two results yield that −ap(E1/2) = −φp(1/2)ap(E2) = −φp(−1/2)ap(E−1).
Since φp(−1/2) = φp(−2), it suffices to show that

−ap(E−1) = 2p Re

(
χ4

φp

)
.

First, suppose that p ≡ 3 (mod 4). It is easy to see that in this case

−ap(E−1) =

p−1∑
x=0

φp(x
3 − x) =

p−1∑
x=0

φp((−x)3 − (−x))

=

p−1∑
x=0

φp(−x3 + x) = φp(−1)

p−1∑
x=0

φp(x
3 − x).

Since φp(−1) = −1, −ap(E−1) = 0. Now, if p ≡ 3 (mod 4), then χ4 = χ(p−1)/4, for

some primitive character χ. Since 4 does not divide p−1, we take χ4 =
(
χ(p−1)/2

)1/2
=
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φp. Thus,

2 Re (J(χ4, φp)) = 2 Re

(
p−1∑
x=1

√
φp(x)φp(1− x)

)

= 2 Re

 ∑
φp(x)=1

φp(1− x) + i
∑

φp(x)=−1

φp(1− x)


= 2

∑
φp(x)=1

φp(1− x) =

p−1∑
x=1

φp(1− x2)

= −
p−1∑
x=1

φp(x
2 − 1) = φp(−1)−

p−1∑
x=0

φp(x
2 − 1)

It is easy to see that the number of solutions to x2 − y2 = 1 is given by

p−1∑
x=0

(
1 + φp(x

2 − 1)
)
.

It is also easy to see that the number of solutions is p− 1. This gives

p−1∑
x=0

φp(x
2 − 1) = −1,

so

2 Re (J(χ4, φp)) = φp(−1)−
p−1∑
x=0

φp(x
2 − 1) = −1− (−1) = 0.

Thus, 0 = 2 Re (J(χ4, φp)) = 2p Re
(

χ4

φp

)
, so the result holds when p ≡ 3 (mod 4).

Now, suppose p ≡ 1 (mod 4). From [3], pg. 306-307, the number of points on E−1

mod p is one more than the number of points on u2 = v4 + 4. The number of points
on this latter curve (counting the point at infinity) is

1 +
(
p− 1 + χ4(−4)J(φp, χ4) + χ4(−4)J(φp, χ4)

)
.

Since J(φp, χ4) = J(χ4, φp), the number of points on E−1 is

p + 1 + 2 Re
(
χ4(−4)J(χ4, φp)

)
.

Note that

χ4(−4) = χ4(−1) (χ4(2))
2 = χ4(−1)φp(2).

Recall that χ4 = χ
p−1
4 , where χ is a Dirichlet character of order p − 1. Let g be a

primitive root modulo p such that χ(g) = e2πi/(p−1). Then, g
p−1
2 = −1 so χ(g

p−1
2 ) =
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χ(−1) = −1. Thus,

χ4(−1) = (χ(−1))
p−1
4 = (−1)

p−1
4 .

If p ≡ 1 (mod 8) then χ4(−1) = 1 and φp(2) = 1. If p ≡ 5 (mod 8) then χ4(−1) = −1
and φp(2) = −1. Thus, the number of points on E−1 mod p is

p + 1 + 2 Re (J(χ4, φp)) = p + 1− ap(E−1),

and hence −ap(E−1) = 2 Re (J(χ4, φp)), as desired. �
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