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In this note, we observe that many classical theorems from number theory are simple consequences
of the following combinatorial lemma.

Lemma 1. Let S be a finite set, let p be prime, and suppose f : S → S has the property that
fp(x) = x for any x in S, where fp is the p-fold composition of f . Then |S| ≡ |F | (mod p), where
F is the set of fixed points of f .

Proof. S is the disjoint union of sets of the form {x, f(x), . . . , fp−1(x)}. Since p is prime, each set
either has size one or size p. �

The Lucas numbers, 2, 1, 3, 4, 7, 11, 18, 29, 47, . . . , named in honor of Edouard Lucas (1842-1891),
are defined by L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2 for n ≥ 2. It is easy to show that, for
n ≥ 1, Ln counts the ways to create a bracelet of length n using beads of length one or two, where
bracelets that differ by a rotation or a reflection are still considered distinct. For example, there are
four bracelets of length three. (Such a bracelet can have three beads of length one, or it can have a
bead of length two and a bead of length one, where the bead of length one can be in position one,
two, or three.) Let f act on bracelets of prime length p by rotating each bead clockwise one unit.
Clearly fp leaves any bracelet unchanged. Since f has just one fixed point (when all beads have
length one), we conclude that Lp ≡ 1 (mod p) for each prime p.

More generally, as defined in [4], for nonnegative integers a and b, the Lucas sequence (of the
second kind) is defined by V0 = 2, V1 = a, and Vn = aVn−1 + bVn−2 for n ≥ 2. Again, it is easy to
show [1] that Vn with n ≥ 1 counts colored bracelets of length n, where there are a color choices for
beads of length one and b color choices for beads of length two. By the same argument as earlier,
with the exception of those bracelets consisting of length one beads all of the same color, when p is
prime every bracelet can be rotated to create p distinct bracelets. Thus, for p prime,

Vp ≡ a (mod p).

In the special case where b = 0, it is clear that Vp = ap. Consequently, we have Fermat’s Theorem:
If p is a prime, then

ap ≡ a (mod p).
This combinatorial proof of Fermat’s theorem was originally given in [2].

Next, consider colored bracelets of length pk, where p is prime. If we rotate the beads k units at
a time, then there are exactly Vk fixed points, obtained by taking any colored bracelet of length k
and “replicating” it p times. Our lemma concludes that for p prime

Vpk ≡ Vk (mod p).
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In particular, Vpe ≡ Vpe−1 when e ≥ 1. Consequently, for p prime, and e nonnegative,

Vpe ≡ a (mod p).

Now consider the set S of permutations of {0, 1, . . . , p − 1} with exactly one cycle; thus, |S| =
(p − 1)!. Define f : S → S by f((a0, a1, . . . , ap−1)) = (1 + a0, 1 + a1, . . . , 1 + ap−1), where addition
is done modulo p. For each π in S, fp(π) = π. For a satisfying 1 ≤ a ≤ p− 1 those permutations of
the form πa = (0, a, 2a, 3a, . . . , (p − 1)a) (with multiplication done modulo p) are fixed points of f
since f(πa) remains an “arithmetic progression.” Conversely, if π is a fixed point of f and π(0) = a,
then π = fa(π) must send a to 2a and, in general, π = fka(π) sends ka to (k + 1)a. Thus π = πa,
and f has exactly p− 1 fixed points. This establishes Wilson’s Theorem: If p is a prime, then

(p− 1)! ≡ (p− 1) (mod p).

The same approach can be applied to the set S of k-element subsets of {0, 1, . . . , p − 1}. Define
f : S → S by f({a1, a2, . . . , ak}) = {1+ a1, 1+ a2, . . . , 1+ ak}, where again addition is done modulo
p. When 1 ≤ k ≤ p − 1 there are no fixed points of f . Consequently, for p prime and k satisfying
1 ≤ k ≤ p− 1, (

p

k

)
≡ 0 (mod p).

We conclude with Lucas’s Theorem: For p prime, let n and k have base p notation n =
∑

i≥0 bip
i

and k =
∑

i≥0 cip
i, where 0 ≤ bi, ci < p. Then(

n

k

)
≡

∏
i≥0

(
bi

ci

)
(mod p).

Proof. It suffices to show
(
pn+r
pk+s

)
≡

(
n
k

)(
r
s

)
(mod p), for 0 ≤ r, s < p, and then proceed inductively.

Let S denote the set of ordered pairs (A, v), where A is a binary p × n matrix and v is a binary
r× 1 vector, such that among the pn + r entries of A and v, exactly pk + s are equal to one. Hence
|S| =

(
pn+r
pk+s

)
. Let Q denote the p×p permutation matrix with nonzero entries q1p = 1 and qi,i−1 = 1

for i = 2, 3, . . . , p. Thus QA has the same rows as A, each shifted “down” by one row.
Define f : S → S by f((A, v)) = (QA, v). Thus fp((A, v)) = (QpA, v) = (A, v). There are

(
n
k

)(
r
s

)
fixed points of f , consisting of those pairs (A, v) such that the first row of A contains exactly k ones,
the other rows of A are the same as the first row, and v contains exactly s ones in its r positions.
Note that if s > r, then

(
r
s

)
= 0. Thus, by our lemma,

(
pn+r
pk+s

)
≡

(
n
k

)(
r
s

)
(mod p), as desired. �

For another fine combinatorial proof of Lucas’s theorem, see [3].
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