When does F_{m}^{L} divide F_{n} ? A combinatorial solution

June 23, 2003

Arthur T. Benjamin
Dept. of Mathematics, Harvey Mudd College, Claremont, CA 91711
benjamin@hmc.edu
Jeremy A. Rouse
Dept. of Mathematics, Harvey Mudd College, Claremont, CA 91711
jrouse@hmc.edu

1 Introduction

One of the oldest theorems about Fibonacci numbers states that for $F_{m}>1$,

$$
\begin{equation*}
F_{m} \mid F_{n} \text { if and only if } m \mid n . \tag{1}
\end{equation*}
$$

Indeed, Edouard Lucas proved in his classic paper [4] that this theorem remains true even when we replace the Fibonacci sequence with any Lucas sequence of the first kind defined recursively by $u_{0}=0, u_{1}=1$ and for any all $n \geq 2$ $u_{n}=a u_{n-1}+b u_{n-2}$, where a and b are arbitrary integers. In 1970, Yuri Matijasevič [5] proved that for $F_{m}>1$,

$$
\begin{equation*}
F_{m}^{2} \mid F_{m r} \text { if and only if } F_{m} \mid r . \tag{2}
\end{equation*}
$$

which led to his solution to Hilbert's 10th Problem.
In this paper, we first present combinatorial proofs of (1) and (2), then extend our argument to characterize when F_{m}^{3} divides F_{n}. Next, we give a combinatorial proof of

$$
F_{m r}=\sum_{j=1}^{r}\binom{r}{j} F_{j} F_{m}^{j} F_{m-1}^{j-1}
$$

which leads to a characterization of when F_{m}^{L} divides F_{n} for all $L \geq 1$. Finally, we generalize these results to any Lucas sequences of the first kind that are generated by non-negative integers.

2 Divisibility by F_{m}, F_{m}^{2} and F_{m}^{3}

To introduce our main ideas, we begin with a combinatorial proof of statement (1). It is well known $[1,7]$ that for $n \geq 0, F_{n}$ counts the number of ways to tile a board of length $n-1$ with squares and dominoes. Now suppose that $m \mid n$. Thus $F_{n}=F_{m r}$ counts the number of ways to tile a board of length $m r-1$ with squares and dominoes. Such a tiled board can be broken into r segments (called supertiles) $S_{1}, S_{2}, \ldots, S_{r}$ by chopping the board immediately to the right of cells $m, 2 m, 3 m, \ldots,(r-1) m$. Notice that this chopping can result in a domino being split into two "half-dominoes" (not the same as two squares) whenever a domino covers cells $j m$ and $j m+1$ for some $1 \leq j \leq r-1$. When this happens, we say that supertile S_{j} is open on the right and that S_{j+1} is open on the left. Otherwise we say that S_{j} is closed on the right and S_{j+1} is closed on the left. See Figure 1.

Figure 1: A board of length $r m-1$ (with a half-domino attached) can be split into r supertiles of length m.

For convenience, we append a half-domino to the end of our board so that S_{r} is open on the right. By doing so, all supertiles have length m, and this guarantees the existence of at least one supertile S_{j} that is closed on the left and open on the right. For $1 \leq j \leq r$, the number of tilings where supertile S_{j} is the first supertile of this form is $F_{m+1}^{j-1} F_{m} F_{(r-j) m-1}$ since the first $j-1$ supertiles can each be tiled F_{m+1} ways, S_{j} can be tiled F_{m} ways, a domino must cover cells $j m$ and $j m+1$, and the remaining $(r-j) m-1$ cells can be covered $F_{(r-j) m-1}$ ways and end with a half-domino. (A slightly modified argument is needed when $j=r$ but since $F_{-1}=1$, the formula remains valid.) Altogether, we have

$$
F_{n}=F_{m r}=F_{m} \sum_{j=1}^{r} F_{(m+1)}^{j-1} F_{(r-j) m-1}
$$

Thus we have combinatorially demonstrated that if $m \mid n$, then $F_{m} \mid F_{n}$. For a slightly different combinatorial proof, see [2].

To prove the converse statement, suppose $n=m r+s$, where $0<s<m$, and $F_{m}>1$. We apply the same argument as before, but now we end with a length s supertile S_{r+1}. Adjusting the previous argument for this, we obtain

$$
F_{n}=F_{m r+s}=F_{m+1}^{r} F_{s}+F_{m} \sum_{j=1}^{r} F_{(m+1)}^{j-1} F_{(r-j) m+s-1}
$$

where the $F_{m+1}^{r} F_{s}$ term accounts for those tilings where supertiles $S_{1}, S_{2}, \ldots, S_{r}$ are all closed on the left and right. Consequently, $F_{n} \equiv F_{m+1}^{r} F_{s} \not \equiv 0\left(\bmod F_{m}\right)$, since F_{m+1} is relatively prime to F_{m} and $0<F_{s}<F_{m}$.

A similar argument leads to divisibility criteria for F_{m}^{2} and F_{m}^{3}. By statement (1), we need only consider situations where $n=m r$ for some non-negative integer r. Begin by observing that any tiling of length $m r$ ending with a half-domino must contain an odd number of supertiles that are closed on one end and open on the other. The number of ways to create a tiling with 3 or more of these supertiles is a multiple of F_{m}^{3} since the first 3 of these supertiles can each be independently tiled in F_{m} ways. Thus to determine $F_{m r}\left(\bmod F_{m}^{2}\right)$, we need only count those tilings that have exactly one supertile S_{j} that is closed on the left and open on the right and therefore have no supertiles that are closed on the right and open on the left. All of the supertiles that precede S_{j} are necessarily closed on both sides and all supertiles that come after S_{j} are necessarily open on both sides. If at least one of the supertiles S_{i} preceding S_{j} is to end with a square then S_{i} and S_{j} can each be independently tiled F_{m} ways; consequently the number of ways for this to occur must be a multiple of F_{m}^{2}. Thus $F_{m r}$ must be congruent $\left(\bmod F_{m}^{2}\right)$ to the number of tilings with only one half-open supertile S_{j} and where all supertiles that precede it end with a domino. Since j can be chosen r ways, and all of the supertiles, besides S_{j} can each be tiled F_{m-1} ways, there are $r F_{m} F_{m-1}^{r-1}$ such tilings. Since F_{m} is relatively prime to F_{m-1}, we conclude that $F_{m r}$ is divisible by F_{m}^{2} if and only if F_{m} divides r.

To determine divisibility by F_{m}^{3}, we proceed exactly as above, but with one modification. This time we must also count those tilings with exactly one halfopen supertile S_{j} that is preceded by exactly one closed supertile S_{k} which ends with a square. Thus for $1 \leq i \leq j-1$ and $i \neq k, S_{i}$ is closed and ends with a domino. Since S_{j} and S_{k} can be chosen $\binom{r}{2}$ ways and can each be tiled F_{m} ways,
and since all other supertiles can each be tiled F_{m-1} ways, it follows that

$$
F_{m r} \equiv r F_{m} F_{m-1}^{r-1}+\binom{r}{2} F_{m}^{2} F_{m-1}^{r-2} \quad\left(\bmod F_{m}^{3}\right)
$$

Factoring out F_{m-1}^{r-2} (which is relatively prime to F_{m}) and dividing everything (including the modulus) by F_{m}^{2}, gives us the following theorem.

Theorem 1. F_{m}^{3} divides $F_{m r}$ if and only if F_{m} divides $\binom{r}{2}+r \frac{F_{m-1}}{F_{m}}$.
We point out that the quantity $\binom{r}{2}+r \frac{F_{m-1}}{F_{m}}$ is an integer if and only if F_{m} divides r, i.e., when F_{m}^{2} divides F_{n}. Thus, our theorem is equivalent to saying that F_{m} divides F_{n} if and only if $n=m r$ for some integer r and F_{m} divides r and F_{m} divides $\binom{r}{2}+r \frac{F_{m-1}}{F_{m}}$. Notice that when r is a multiple of F_{m}^{2} then $\binom{r}{2}+r \frac{F_{m-1}}{F_{m}}$ is a multiple of F_{m}, resulting in the following corollary.

Corollary 2. For $m, r \geq 0$, If F_{m}^{2} divides r, then F_{m}^{3} divides $F_{m r}$.

3 Divisibility by F_{m}^{L}

Our general result will depend on the following theorem, [3] which we prove combinatorially.

Theorem 3. For $m, r \geq 0$,

$$
F_{m r}=\sum_{j=1}^{r}\binom{r}{j} F_{j} F_{m}^{j} F_{m-1}^{r-j} .
$$

Proof. As in the proof of Theorem 1, $F_{m r}$ counts the number of ways to tile a board of length $m r$ with squares and dominoes such that the last cell ends with a half-domino. Such a tiled board can be broken into r supertiles $S_{1}, S_{2}, \ldots, S_{r}$, each of length m. We observe that supertiles can be partitioned into 5 types:
A) Closed on the left and open on the right,
B) Open on the left and closed on the right,
C) Closed on both sides and ending with a square,
D) Closed on both sides and ending with a domino, or
E) Open on both sides.

The crucial observation here is that all supertiles of type A, B, or C have one restricted cell and $m-1$ cells that can be tiled freely in F_{m} ways. Supertiles of type D or E have two restricted cells and $m-2$ cells that can be tiled freely in F_{m-1} ways.

We claim that for $1 \leq j \leq r$, the summand $\binom{r}{j} F_{j} F_{m}^{j} F_{m-1}^{r-j}$ counts the number of tilings that have exactly j supertiles of type A, B, or C . To count such a tiling, we must first select which supertiles will be of type A, B, or C. This can be done $\binom{r}{j}$ ways. Call these supertiles $S_{i_{1}}, \ldots, S_{i_{j}}$, listed from left to right. Next we must designate which of these supertiles are of type A, which are of type B, and which are of type C. We claim this can be done exactly F_{j} ways by creating a bijection between all possible designations and the set \mathcal{T} of length j tilings that end with a half-domino. Specifically, let T be a tiling in \mathcal{T}. For $1 \leq k \leq j$, if cell k is covered by the first half of a domino, then $S_{i_{k}}$ is designated type A, if cell k is covered by the second half of a domino, then $S_{i_{k}}$ is designated type B , and if cell k is covered by a square, then $S_{i_{k}}$ is designated type C. (Notice that $S_{i_{1}}$ is guaranteed to be of type A or C and that $S_{i_{j}}$ is guaranteed to be of type A and that $S_{i_{k}}$ is closed on the right if and only if $S_{i_{k+1}}$ is closed on the left.) Thus, since $|\mathcal{T}|=F_{j}$, supertiles $S_{i_{1}}, \ldots, S_{i_{j}}$ can be designated F_{j} ways. Once this is done, the other supertiles of type D and E can be designated in precisely one way. (Specifically, before $S_{i_{1}}$, all supertiles must be of type D , all supertiles after $S_{i_{j}}$ are of type E , and if $i_{k}<i<i_{k+1}, S_{i}$ is of type D if and only if $S_{i_{k}}$ is closed on the right.) Finally, with the type of each supertile designated, the tiling can be constructed in $F_{m}^{j} F_{m-1}^{r-j}$ ways.

As a simple consequence of this theorem, we obtain the following sufficient condition.

Corollary 4. For $L, m, r \geq 0$, If F_{m}^{L} divides r, then F_{m}^{L+1} divides $F_{m r}$.
Proof. By the previous theorem, it suffices to show that for each $1 \leq j \leq r$, the summand $\frac{r(r-1) \cdots(r-j+1) F_{j} F_{m}^{j} F_{m-1}^{r-j}}{j!}$ is divisible by F_{m}^{L+1}. Since $F_{m}^{L} \mid r$, the numerator is divisible by F_{m}^{L+j}. For any prime factor p of F_{m}, the largest power of p to divide j ! is p^{α} where $\alpha=\sum_{k=1}^{\infty}\left|\frac{j}{p^{k}}\right|<\sum_{k=1}^{\infty} \frac{j}{p^{k}} \leq \sum_{k=1}^{\infty} \frac{j}{2^{k}}=j$. Thus, since $\alpha \leq j-1$, the fraction is divisible by F_{m}^{L+1} as desired.

For a necessary and sufficient condition, we utilize the following definition.

Definition For $m, r \geq 1$, let $r_{0}=0$ and for $k \geq 1$,

$$
\begin{equation*}
r_{k}=F_{k}\binom{r}{k}+\frac{F_{m-1}}{F_{m}} r_{k-1} \tag{3}
\end{equation*}
$$

For example, $r_{0}=0, r_{1}=r, r_{2}=\binom{r}{2}+r \frac{F_{m-1}}{F_{m}}, r_{3}=2\binom{r}{3}+\binom{r}{2} \frac{F_{m-1}}{F_{m}}+r\left(\frac{F_{m-1}}{F_{m}}\right)^{2}$. Continuing in this way, it is easy to see that for $0 \leq k \leq r$,

$$
r_{k}=\sum_{j=1}^{k} F_{j}\binom{r}{j}\left(\frac{F_{m-1}}{F_{m}}\right)^{k-j} \quad \text { for } 0 \leq k \leq r
$$

When $k>r,\binom{r}{k}=0$. Thus equation (3) implies

$$
r_{k}=\left(\frac{F_{m-1}}{F_{m}}\right)^{k-r} \quad r^{*} \quad \text { for } k \geq r
$$

where

$$
r^{*}=r_{r}=\sum_{j=1}^{r} F_{j}\binom{r}{j}\left(\frac{F_{m-1}}{F_{m}}\right)^{r-j}
$$

Theorem 5. For $L, m, r \geq 1, F_{m}^{L} \mid F_{m r}$ if and only if $F_{m} \mid r_{L-1}$.
Proof. Using Theorem 3, and ignoring all factors of F_{m}^{L} and higher, we have, for $1 \leq L \leq r+1$,

$$
\begin{aligned}
F_{m r} & \equiv \sum_{j=1}^{L-1} F_{j}\binom{r}{j} F_{m}^{j} F_{m-1}^{r-j} \quad\left(\bmod F_{m}^{L}\right) \\
& =F_{m}^{L-1} F_{m-1}^{r+1-L} \sum_{j=1}^{L-1} F_{j}\binom{r}{j}\left(\frac{F_{m-1}}{F_{m}}\right)^{L-1-j} \\
& =F_{m}^{L-1} F_{m-1}^{r+1-L} r_{L-1} .
\end{aligned}
$$

Thus, since F_{m} is relatively prime to F_{m-1} we have, for $1 \leq L \leq r+1$,

$$
F_{m}^{L} \mid F_{m r} \text { if and only if } F_{m} \mid r_{L-1}
$$

as desired.
To prove the theorem when $L>r+1$, observe that Theorem 3 says $F_{m r}=$ $F_{m}^{r} r^{*}$. Thus for $L \geq r+1, F_{m}^{L} \mid F_{m r}$ if and only if $F_{m} \left\lvert\, \frac{F_{m r}}{F_{m}^{L-1}}=\frac{r^{*}}{F_{m}^{L-1-r}}\right.$. And since F_{m} is relatively prime to F_{m-1}, this is equivalent to the condition that $F_{m} \left\lvert\,\left(\frac{F_{m-1}}{F_{m}}\right)^{L-1-r} r^{*}=r_{L-1}\right.$ as desired.

4 Lucas sequences

The results and arguments of the last section can be generalized to Lucas sequences of the first kind, with non-negative integer coefficients a and b. Here, u_{n} is defined recursively by $u_{0}=0, u_{1}=1$, and for $n \geq 2 u_{n}=a u_{n-1}+b u_{n-2}$. It is easy to see that u_{n} counts the number of colored tilings of a length n board ending with a half-domino, where all tiles (except for the terminating half-domino) are assigned a color. For each square, we have a choices of color, and for each domino, we have b choices of color. Using this interpretation, we present a combinatorial proof of the following generalization [6] of Theorem 3.

Theorem 6. For $m, r \geq 0$,

$$
u_{m r}=\sum_{j=1}^{r}\binom{r}{j} u_{j} u_{m}^{j} b^{r-j} u_{m-1}^{r-j}
$$

Proof. Here $u_{m r}$ counts the number of colored tilings of length $m r$ that end with an uncolored half-domino. As in the proof of Theorem 3, we claim that for $1 \leq j \leq r,\binom{r}{j} u_{j} u_{m}^{j} b^{r-j} u_{m-1}^{r-j}$ counts the number of tilings that have exactly j supertiles of type A, B, or C. There are $\binom{r}{j}$ ways to choose which supertiles $S_{i_{1}}, \ldots, S_{i_{j}}$ will be of type A, B, or C. Next for any colored tiling T of length j that ends with an uncolored half-domino, we proceed as follows. If the k-th cell of T is covered by a colored square, then $S_{i_{k}}$ is designated type C and its terminal square is given the same color as the square on the k-th cell of T. The rest of $S_{i_{k}}$ can be tiled in u_{m} ways. If the k-th cell of T is covered by the beginning of a half-domino, then $S_{i_{k}}$ is designated type A, temporarily ending with an uncolored half-domino. (Unless $i_{k}=r$, the color of this last half-domino will be assigned the same color as its second half. If $i_{k}=r$, then this half-domino will remain uncolored.) The rest of $S_{i_{k}}$ can be tiled in u_{m} ways. If the k-th cell of T is covered by the second half of a domino, then $S_{i_{k}}$ is of type B, with its initial half-domino given the same color as the domino ending on the k-th cell of T. The first half of this half-domino, at the end of supertile $S_{i_{k}-1}$, will also be given the same color. The rest of $S_{i_{k}}$ can be tiled in u_{m} ways. Each of the remaining $r-j$ supertiles is designated to be either type D or type E (depending on the same criteria as in the proof of Theorem 3.) If the supertile is of type D, then the color of its terminating domino can be chosen in b ways, and the rest of it can be tiled in u_{m-1} ways. If the supertile is of type E, then the color of its initial half-domino
can be chosen b ways, the color of its terminating half-domino is determined by its second half, and the rest of the supertile can be tiled in u_{m-1} ways. Summarizing, for $1 \leq j \leq r$, a colored tiling of length $m r$ ending with an uncolored half-domino with exactly j supertiles of type A, B, or C can be created $\binom{r}{j} u_{j} u_{m}^{j}\left(b u_{m-1}\right)^{r-j}$ ways, as desired.

Replacing F with u, Corollary 4 and its proof immediately generalize to Corollary 7. If u_{m}^{L} divides r, then u_{m}^{L+1} divides $u_{m r}$.

Finally, suppose that our Lucas sequence has a and b relatively prime. Then, inductively, for all $m \geq 1, u_{m}$ and $b u_{m-1}$ are relatively prime. For such a Lucas sequence, define,
Definition For $m, r \geq 1$, let $r_{0}=0$ and for $k \geq 1$,

$$
\begin{equation*}
r_{k}=u_{k}\binom{r}{k}+\frac{b u_{m-1}}{u_{m}} r_{k-1} . \tag{4}
\end{equation*}
$$

After we substitute $F_{m r}, F_{j}, F_{m}$, and F_{m-1} with $u_{m r}, u_{j}, u_{m}$, and $b u_{m-1}$, respectively, throughout the proof of Theorem 5, we immediately obtain the following generalization.

Theorem 8. For $L, m, r \geq 1, u_{m}^{L} \mid u_{m r}$ if and only if $u_{m} \mid r_{L-1}$.
Acknowledgment We thank Peter G. Anderson for his helpful suggestions.

References

[1] A.T. Benjamin and J.J. Quinn, "Recounting Fibonacci and Lucas Identities." College Math. J., 30.5 (1999): 359-366.
[2] A.T. Benjamin and J.A. Rouse, "Recounting binomial Fibonacci identities." Proceedings of the 10th International Conference on Fibonacci Numbers and Their Applications, to appear.
[3] H.W. Gould and V.E. Hoggatt, Jr., "Problem H-13". The Fibonacci Quarterly 1.2 (1963): 54.
[4] E. Lucas, The Theory of Simply Periodic Numerical Functions, translated from the French by Sidney Kravitz, The Fibonacci Association, (1969).
[5] Y. Matijasevič, "Enumerable Sets are Diophantine." Proc. of the Academy of Sciences of the USSR 11 (1970): No. 2.
[6] S. Rabinowitz, "Generalized Lucas Sequences", preprint, (1998).
[7] J. Riordan, An Introduction to Combinatorial Analysis. John Wiley and Sons, New York, (1958).

AMS Subject Classification Numbers: 05A19, 11B39.

