
CRITICAL L-VALUES OF LEVEL p NEWFORMS (mod p)

SCOTT AHLGREN AND JEREMY ROUSE

Abstract. Suppose that p ≥ 5 is prime, that F(z) ∈ S2k(Γ0(p)) is a newform, that v is a
prime above p in the field generated by the coefficients of F , and that D is a fundamental
discriminant. We prove non-vanishing theorems modulo v for the twisted central critical
values L(F⊗χD, k). For example, we show that if k is odd and not too large compared to p,
then infinitely many of these twisted L-values are nonzero (mod v). We give applications for
elliptic curves. For example, we prove that if E/Q is an elliptic curve of conductor p, where p
is a sufficiently large prime, there there are infinitely many twists D with X(ED/Q)[p] = 0,
assuming the Birch and Swinnerton-Dyer conjecture for curves of rank zero as well as a
weak form of Hall’s conjecture. The results depend on a careful study of the coefficients of
half-integral weight newforms of level 4p, which is of independent interest.

1. Introduction and statement of results

Let k ≥ 1 be an integer and let

f(z) =
∞∑

n=1

a(n)qn ∈ Sk+ 1
2
(Γ0(4N)), q = e2πiz,

be a cusp form of weight k + 1
2

for the group Γ0(4N). If f(z) is orthogonal to the space
of single-variable theta series then the Shimura correspondence [37] associates to f(z) a
cusp form F(z). If f(z) is an eigenform for the Hecke operators Tp2 , then famous theorems
of Kohnen [20], Kohnen and Zagier [17], and Waldspurger [42] relate the numbers a(|D|)2

and L(F⊗χD, k) for fundamental discriminants D (see below for precise statements). Using
these results, a number of recent papers have studied the Fourier coefficients of such forms in
connection with values of modular L-functions ([8], [32], [31], [3]), ranks and Tate-Shafarevich
groups of elliptic curves ([9], [22]), ternary quadratic forms ([33], [16]), and combinatorial
generating functions ([7], [1], [2]).

An important non-vanishing result in characteristic zero is due to Vignéras [41], who
proved that if

f(z) =
m∑

i=1

∞∑
n=1

a(tin
2)qtin

2

,

then k = 0 or 1 and f(z) is a linear combination of single-variable theta series. Suppose now
that f(z) is normalized to have Fourier coefficients that are algebraic integers, and that v is
a prime ideal in the ring of integers of the coefficient field of f(z). In [7], [8] and [31], it is
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shown that if f(z) is not a linear combination of theta series, then a congruence of the form

(1.1) f(z) ≡
m∑

i=1

∞∑
n=1

a(tin
2)qtin

2

(mod v)

can occur for only finitely many v. Precise information about the action of the Hecke algebra
on the form f mod v is determined when a congruence does occur, and this is used to obtain
information about the distribution of the Fourier coefficients a(n) in residue classes mod v.

Theorem 2.2 of [3] shows that if f(z) is a Hecke eigenform modulo v, and (1.1) occurs,
then f(z) is essentially congruent to a single-variable theta series under repeated iteration
of the Θ-operator defined by

Θ
(∑

a(n)qn
)

:=
∑

na(n)qn.

As a consequence, a precise description of the coefficients of f are obtained outside of those
arithmetic progressions which share a factor with the level.

If N is an odd, square-free integer and k is an integer, then we denote by Sk+ 1
2
(4N) the

Kohnen plus-space of forms of weight k+ 1
2

on Γ0(4N). Kohnen [19] showed that these spaces
are isomorphic as Hecke modules to the spaces S2k(Γ0(N)), and that they possess a theory
of newforms analogous to that in the integer weight case (definitions and more details can
be found in the next section). In [4], assuming that f(z) ∈ Sk+ 1

2
(4) satisfies (1.1) (but is not

necessarily a Hecke eigenform), it is shown that if v is a prime above ` and k+ 1
2

< `(`+1+ 1
2
),

then k is even and f(z) ≡ a(1)
∑

nkqn2
(mod v) (the bound on the weight is sharp).

In this paper we obtain results of this type for Kohnen newforms of level 4p modulo primes
above p, and we give applications to modular L-values and to the arithmetic of elliptic curves
of conductor p modulo p. This situation (in which the level and the characteristic are the
same) is quite interesting, and it produces phenomena which do not typically occur. Our
first result is the following.

Theorem 1.1. Suppose that k is a positive integer, that p ≥ 5 is a prime with p > 2k−1
3

,
that K is a number field, and that v is a prime of K above p. Suppose that

f(z) =
∞∑

n=1

a(n)qn ∈ Snew
k+ 1

2
(4p)

is a Kohnen newform normalized to have Fourier coefficients which are algebraic integers in
K, and suppose that f has the form

f(z) ≡
r∑

i=1

∞∑
n=1

a(tin
2)qtin

2 6≡ 0 (mod v).

Then k is even and

f(z) ≡ a(1)
∞∑

n=1

nkqn2

(mod v).

Remark. There are many Kohnen newforms of the type described in the theorem. For
example, in the space Snew

2+ 1
2

(20) there is a single Kohnen newform

f(z) = q − 6q4 + 5q5 − q9 + 16q16 − 10q20 − 30q21 + 20q24 − 5q25 + 20q29 + · · ·
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which visibly satisfies the congruence

f(z) ≡
∞∑

n=1

n2qn2

(mod 5).

We now discuss the connection to the L-values of integer weight newforms. Suppose that
k is a positive integer, that N is an odd, positive, square-free integer, and that

F(z) =
∞∑

n=1

A(n)qn ∈ Snew
2k (Γ0(N))

is a normalized newform. There is a Kohnen newform

f(z) =
∞∑

n=1

a(n)qn ∈ Snew
k+ 1

2
(4N)

which corresponds to F via the Shimura correspondence. We normalize f so that its Fourier
coefficients are relatively prime algebraic integers.

For fundamental discriminants D we will study the central critical values L(F , D, k) of
the twisted modular L-function

L(F , D, s) :=
∞∑

n=1

(
D
n

)
A(n)n−s.

In order to study congruences, we require a slight modification of a fundamental result of
Kohnen [20]. Following the argument used to prove Corollary 1 in that paper gives the
next result (see Section 6 below for a brief discussion). Here 〈f, f〉 and 〈F ,F〉 denote the
Petersson norms of f and F , respectively.

Theorem 1.2. Let the notation be as above. For each p | N , let λp ∈ {±1} be the eigenvalue
of F under the Atkin-Lehner involution WN

p . Suppose that D is a fundamental discriminant

with (−1)kD > 0. Then we have

(1.2) a(|D|)2 =
∏
p|N

(
1 + λp

(
D
p

))
· |D|

k−1/2〈f, f〉(k − 1)!

〈F ,F〉πk
· L(F , D, k).

Remark. The statement of Corollary 1 of [20] involves |a(|D|)|2. However, Proposition 2.3.1
of [39] implies that (with the normalization specified above), the coefficients of f lie in the
field generated by those of F . Since F is a normalized newform for Γ0(N), its coefficients
are totally real algebraic integers, and hence |a(|D|)|2 = a(|D|)2.

Remark. In [20] it is assumed that
(

D
p

)
= λp for each p | N . This produces the term 2ν(N)

which appears in the statement of Corollary 1 loc. cit..

Remark. Working directly from (1.2), it is possible to obtain analogous formulas relating
the values of L(F , D, k) to the coefficients of newforms f(z) ∈ Snew

k+ 1
2

(4N, χ), where χ is any

quadratic character modulo N . For completeness, we state a general result in this direction
in Section 6 below.

Theorem 1.2 provides a convenient normalization of the algebraic parts of the values
L(F , D, k). We now specialize to the case when

N = p is an odd prime ≥ 5.
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Following Theorem 1.2, for a normalized newform F(z) ∈ Snew
k+ 1

2

(Γ0(p)) we define

(1.3) Lalg(F , D, k) =
(
1 + λp

(
D
p

))
· |D|

k−1/2〈f, f〉(k − 1)!

〈F ,F〉πk
· L(F , D, k).

With this definition, and recalling some basic facts (see the discussion on pages 242-243 of
[20]), we have

(1.4) a(|D|) = L(F , D, k) = Lalg(F , D, k) = 0 when
(

D
p

)
= −λp and (−1)kD > 0.

Theorem 1.2 gives the fundamental identity

(1.5) a(|D|)2 = Lalg(F , D, k) for (−1)kD > 0.

In the next two corollaries, we will suppose that

(1) p ≥ 5 is prime, and v is a prime of Q above p.
(2) F ∈ Snew

2k (Γ0(p)) is a normalized newform.
(3) p > 2k−1

3
.

Corollary 1.3. With assumptions (1)–(3) above, suppose also that k is odd. Then there are
infinitely many fundamental discriminants D < 0 such that

Lalg(F , D, k) 6≡ 0 (mod v).

Corollary 1.4. With assumptions (1)–(3) above, suppose also that k is even. Suppose that
there are only finitely many fundamental discriminants D > 0 such that

Lalg(F , D, k) 6≡ 0 (mod v).

Then Lalg(F , 1, k) 6≡ 0 (mod v), and Lalg(F , D, k) ≡ 0 (mod v) for all other fundamental
discriminants D > 0.

Remark. It is clear that a form as in the conclusion of Corollary 1.4 has eigenvalue 1 under
the Aktin-Lehner involution Wp.

Remark. The newform F ∈ S4(Γ0(5)) corresponding to the newform f ∈ S2+ 1
2
(20) described

after Theorem 1.1 gives an example of the phenomenon described in Corollary 1.4.

Next we will consider the particular case when k = 1 and F is a modular form correspond-
ing to an elliptic curve. We recall the famous conjecture of Birch and Swinnerton-Dyer, which
asserts that if E/Q is an elliptic curve and L(E, s) is the L-series of E, then

ords=1L(E, s) = rank E(Q)

and

lim
s→1

L(E, s)

(s− 1)rank E(Q)
=

Ω(E/Q)2rank E(Q)R(E/Q)#X(E/Q)
∏

p cp

(#E(Q)tors)2
.

Here Ω(E/Q) is the real period or twice the real period, depending on whether or not E(R)
is connected, R(E/Q) denotes the elliptic regulator, cp denotes the index in E(Qp) of the
subgroup of points that reduce mod p to a singular point of E(Fp), and X(E/Q) denotes
the Tate-Shafarevich group.

The most notable result in this direction is due to Kolyvagin [24], building on the work of
Gross-Zagier [12]. It states that if E/Q is an elliptic curve and ords=1L(E, s) = 0 or 1, then
ords=1L(E, s) = rank E(Q) and X(E/Q) is finite.
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In [25], Kolyvagin computes explicit upper bounds on the order of X(E/Q) under various
hypotheses, and conjectures that for each elliptic curve E/Q with analytic rank zero or one
and each prime `, there is a twist ED of analytic rank zero so that X(ED/Q)[`] = 0. This
work of Kolyvagin was used in [15] to prove that if E/Q is a fixed elliptic curve and ` is a
sufficiently large prime (depending on E), then

#{|D| < x : L(ED, 1) 6= 0,X(ED/Q)[`] = 0} � x1/2

log x
.

We give two corollaries of Theorem 1.1 regarding the triviality of X(ED/Q)[p] for an
elliptic curve E/Q of conductor p.

Theorem 1.5. Assume that the Birch and Swinnerton-Dyer conjecture is true for elliptic
curves with rank zero. Suppose that E/Q is an elliptic curve of prime conductor p, and that
there exists one fundamental discriminant D such that

(1) D < 0,
(2) L(ED, 1) 6= 0,
(3) X(ED/Q)[p] = 0.

Then there are infinitely many D which satisfy these three conditions.

Of course, one would like to remove the hypothesis of the existence of one suitable dis-
criminant D from this result. With some work, this is possible under the assumption of a
well-known Diophantine inequality. In particular, we recall a conjecture of Hall [26], which
states that for any ε > 0 and x, y ∈ Z with x3 − y2 6= 0, we have

|x3 − y2| � max{|x|1/2−ε, |y|1/3−ε}
(this is known to follow from the ABC conjecture). We will assume a slightly weaker form of
Hall’s conjecture; namely that there exists some δ > 0 such that for x, y ∈ Z with x3−y2 6= 0
we have

(1.6) |x3 − y2| � max{|x|1/3+δ, |y|2/9+δ}.
Combining (1.6) with a result of Serre and the convexity bound for degree 2 L-functions, we
obtain the following.

Theorem 1.6. Assume the Birch and Swinnerton-Dyer conjecture for elliptic curves with
rank zero and the weak Hall conjecture (1.6). Then there is an absolute constant C so that if
p > C is prime and E/Q is an elliptic curve of conductor p, then there are infinitely many
discriminants D < 0 such that L(ED, 1) 6= 0 and X(ED/Q)[p] = 0.

Remark. It would be of interest to remove the assumption of the Birch and Swinnerton-Dyer
conjecture in the above result. A number of bounds on the order of X(E/K) in terms of the
conjectured order have been given by Kolyvagin and others when E/Q is an elliptic curve

and K = Q(
√

D) is a quadratic field satisfying the standard Heegner hypotheses. In order
to apply these results it would be necessary for E/Q to have analytic rank one and to have
some control over X(E/Q)[p].

In the next section we will provide some of the background which is required. In Section 3
we will consider mod p congruences between Kohnen newforms f of level 4Np and cusp
forms of level 4N (these are related to work of Dummigan [11] and McGraw and Ono [28]).
We simultaneously consider congruences for f and f |U(p); the results we obtain are of
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independent interest. Corollary 3.3 describes the implications of these results in regard to
congruences for L-values. In Section 4 we prove Theorem 1.1, and in Section 5 we prove
the two results regarding elliptic curves. In Section 6 we discuss Theorem 1.2 and state a
general version for forms with quadratic character.

2. Preliminaries

If f is a function on the upper half-plane, k ∈ Z, and γ =

(
a b
c d

)
∈ GL+

2 (R), then we

define

(2.1) (f |kγ)(z) := det(γ)
k
2 (cz + d)−kf(γz).

If k is an integer, N is a natural number, and χ is a Dirichlet character defined modulo N ,
then we denote by Mk(N, χ) and Sk(N, χ) the usual spaces of holomorphic modular forms
and cusp forms of weight k and character χ on Γ0(N).

To define the relevant spaces of half-integral weight forms, we follow the exposition in
[19]. If k is an integer, we let Gk+ 1

2
be the group consisting of pairs (γ, φ(z)), where γ =(

a b
c d

)
∈ GL+

2 (R) and φ(z) is a holomorphic function on H such that

|φ(z)| = det(γ)−
k
2
− 1

4 |cz + d|k+ 1
2 .

If f is a function on the upper half-plane and (γ, φ) ∈ Gk+ 1
2
, we define

(2.2) f |(γ, φ) := φ(z)−1f(γz).

Suppose that N is a natural number and that ω is an even Dirichlet character modulo

4N . Then the group Γ̃0(4N, ω)k+ 1
2
⊆ Gk+ 1

2
consists of pairs (γ, φ(z)) with γ ∈ Γ0(4N) and

φ(z) = ω(d)
(

c
d

) (−4
d

)−k− 1
2 (cz + d)k+ 1

2 .

We denote by Gk+ 1
2
(4N, ω) the space of weight k + 1

2
modular forms on Γ0(4N) in the sense

of Shimura [37]. In particular, such forms satisfy

f |γ̃ = f for all γ̃ ∈ Γ̃0(4N, ω)k+ 1
2
.

For the duration, N will denote an odd square-free natural number, and χ will be a real
Dirichlet character modulo N . Define

εχ := χ(−1).

Then the Kohnen plus-space Sk+ 1
2
(4N, χ) is the subspace of Gk+ 1

2

(
4N,

(
4εχ

•

)
χ
)

consisting

of those cusp forms f(z) with a Fourier expansion of the form

(2.3) f(z) =
∑

εχ(−1)kn≡0,1 (mod 4)

a(n)qn.

For natural numbers t we define the operator U(t) on power series via

(2.4)
(∑

a(n)qn
)
|U(t) :=

∑
a(nt)qn.

Proposition 3 of [19] shows that if f is the conductor of χ, then U(f) gives an isomorphism

(2.5) U(f) : Sk+ 1
2
(4N) → Sk+ 1

2
(4N, χ).
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We will now consider levels 4Np, where N is odd and square-free. We will assume through-
out that

p ≥ 5 and p - N.

Until the sixth section, χ will be one of the two characters

(2.6) χ = χtriv or χ :=
(
•
p

)
.

For such a level, define W (p)4Np

k+ 1
2

∈ Gk+ 1
2

by

(2.7) W (p)4Np

k+ 1
2

:=

((
p a

4Np pb

)
,
(
−4
p

)−k− 1
2
p−

k
2
− 1

4 (4Npz + pb)k+ 1
2

)
,

where a and b are integers such that p2b− 4Npa = p. Kohnen (Proposition 2 of [19]) proved

that W (p)4Np

k+ 1
2

maps Sk+ 1
2
(4Np) isomorphically to Sk+ 1

2

(
4Np,

(
•
p

))
. Moreover,

(2.8)
(
−4
p

)− k
2
− 1

4
W (p)4Np

k+ 1
2

is an involution on the sum of these spaces.
We define

(2.9) w4Np

p,k+ 1
2

:= p−
k
2
+ 1

4 U(p)W (p)4Np

k+ 1
2

.

Proposition 4 of [19] shows that w4Np

p,k+ 1
2

is an involution on Sk+ 1
2
(4Np) and that there is a

decomposition

Sk+ 1
2
(4Np) = S+,p

k+ 1
2

(4Np)⊕ S−,p

k+ 1
2

(4Np)

where the two summands are the +1, −1 eigenspaces of w4Np

p,k+ 1
2

, respectively. If ε ∈ {±1}
and f ∈ Sε,p

k+ 1
2

(4Np) then using (2.8) and (2.9) we find that

(2.10) f |W (p)4Np

k+ 1
2

= ε
(
−4
p

)k+ 1
2
p−

k
2
+ 1

4 f |U(p).

We will study the new subspace Snew
k+ 1

2

(4Np, χ) (as in the integral weight case, this is

defined as the orthogonal complement of the space of old forms; see Section 5 of [19] for
details). Theorem 2 of [19] shows that this space maps isomorphically to Snew

2k (Np) through
the Shimura correspondence, while Theorem 1 of [19] asserts that

(2.11) U(p2) = −pk−1w4Np

p,k+ 1
2

on Snew
k+ 1

2
(4Np).

Finally, we recall the trace map

Tr4Np
4N : Sk+ 1

2
(4Np) → Sk+ 1

2
(4N),

whose definition can be found on pages 66-67 of [19]. We have

(2.12) Tr4Np
4N (f) = f +

(
−4
p

)−k− 1
2
p−

k
2
+ 3

4 f |W (p)4Np

k+ 1
2

U(p).

We will require some special modular forms. First we recall that the normalized Eisenstein
series Ep−1 ∈ Mp−1(1) satisfies

Ep−1 ≡ 1 (mod p).
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We recall the fact (see for example Section 3 of [34]) that there is a modular form E ∈ Mp−1(p)
with rational p-integral coefficients and with the properties E ≡ 1 (mod p) and

(2.13) E|p−1

(
0 −1
p 0

)
= p

p+1
2 E ′,

where E ′ ∈ Mp−1(p) has p-integral rational coefficients.
We will also require the form

(2.14) E1(z) :=
ηp(z)

η(pz)
∈ M p−1

2

(
p,

(
•
p

))
.

Here, η(z) = q1/24
∏∞

n=1(1 − qn) is the usual Dedekind eta function. Then E1 has integer
coefficients and E1 ≡ 1 (mod p). Moreover, it can be checked (using the transformation
laws for the eta function) that

(2.15) E1| p−1
2

(
0 −1
p 0

)
= p

p+1
4 i

p−1
4 E ′

1,

where E ′
1 ∈ M p−1

2

(
p,

(
•
p

))
has integer coefficients.

Finally, we recall Kohnen’s refinement [18] of the Shimura lifting for forms of level four.
For each non-negative integer k and each fundamental discriminant D with (−1)kD > 0, we
have a map

ShD,k : Sk+ 1
2
(4) → S2k(1)

defined in the following way. If F (z) =
∑∞

n=1 a(n)qn ∈ Sk+ 1
2
(4), then

(2.16) ShD,k(F ) =
∞∑

n=1

∑
d|n

(
D
d

)
dk−1a

(
n2

d2 |D|
) qn.

3. Results on half-integral weight forms

In this section, we take up the issue of congruences between forms of half-integral weight.
Dummigan’s study [11] of congruences of modular forms and Selmer groups rests on an
example of such a congruence. In particular, if f ∈ S1+ 1

2
(44) and F ∈ S6+ 1

2
(4) are the

unique newforms (normalized suitably) in the respective spaces, then Dummigan proves
that

(3.1) f ≡ F |U(11) (mod 11).

It follows (since all spaces in question are one-dimensional) that the mod 11 congruence be-
tween the newforms g = η2(z)η2(11z) ∈ S2(11) and G = η24(z) ∈ S12(1) “descends” through
the Shimura correspondence to the congruence (3.1). McGraw and Ono [28] generalize (3.1)
in the following way: given a Kohnen newform f ∈ Snew

k+ 1
2

(4Np), they prove the existence of

an integer κ and a form F ∈ Sκ+ 1
2
(4N) such that f ≡ F |U(p) (mod p). Here the weight κ

is typically quite large; it grows like pk with k. Using these congruences, and an unstated
assumption about the uniqueness of half-integral weight modular forms with a given set of
mod p eigenvalues (see the argument in the proof of Theorem 2) they generalize Dummigan’s
example of congruences which descend through the Shimura correspondence.

A special case of our results is a generalization of a natural reinterpretation of (3.1). Note
that the form F above is an eigenform of U(112) (mod 11) (which is the same as the Hecke
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operator T112 (mod 11)), with eigenvalue 1 (mod 11). It follows that (3.1) is equivalent to
the congruence

(3.2) f |U(11) ≡ F (mod 11).

With k = 1, this congruence is predicted by the second part of Corollary 3.2 below. In
general, if f ∈ Snew

k+ 1
2

(4Np) is a newform, then we consider pairs of congruences for the

newforms f and g = f |U(p) (after renormalization). We show that at least one of these
forms can be found modulo p at relatively low weight (by way of contrast, the weights we
obtain are bounded by kp + 1

2
).

To state these results, we introduce some notation. Suppose that N is odd and square-free,
that p ≥ 5 is a prime with p - N , and that K is an algebraic number field containing i and

p
1
4 . Let v be a place of K over p, and let Ov be the local ring consisting of those elements

of K which are integral at K. Let π be a uniformizer for Ov, and let vp be an extension of
the standard p-adic valuation on Q to K. We will consider forms

(3.3) f ∈ Snew
k+ 1

2
(4Np) ∩ Sε,p

k+ 1
2

(4Np) ∩ Ov[[q]]

for some choice of ε ∈ {±1}. Every newform f ∈ Snew
k+ 1

2

(4Np) is an eigenform for all of the

Hecke operators (including those whose index divides the level). In particular, every such
f is an eigenform of U(p2), and so by (2.11) and the remark following Theorem 1.2 we see
that (3.3) holds for suitable K.

We assume that vp(f) = 0, and we define

(3.4) a := vp(f |U(p)) and A := dae.

Choose e ≥ 1 such that

(3.5) vp(π
e) = vp(p) = 1.

Then ae ∈ Z, and we define

(3.6) g =
f |U(p)

πae
.

For the remainder of this section we fix the notation

(3.7) χ :=
(
•
p

)
.

Since U(p) maps Snew
k+ 1

2

(4Np) isomorphically to Snew
k+ 1

2

(4Np, χ) (see the Lemma on page 66 of

[18]), we have

(3.8) g ∈ Snew
k+ 1

2
(4Np, χ) ∩ Ov[[q]].

Since U(p) commutes with all of the relevant Hecke operators, we see that g is a Kohnen
newform whenever f is a Kohnen newform.

Proposition 3.1. Suppose that f , g, Ov, and A are as defined in (3.3), (3.4), and (3.6).
Then the following are true.

(1) There exists F ∈ Sk+(k−A)(p−1)+ 1
2
(4N) ∩ Ov[[q]] such that vp(F − f) > 0.

(2) There exists G ∈ Sk+A(p−1)+ p−1
2

+ 1
2
(4N) ∩ Ov[[q]] such that vp(G− g) > 0.
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Remark. We attempt to motivate the spirit of this result. If f ∈ Snew
k+ 1

2

(4Np) is a newform,

then there is an integral weight newform F ∈ Snew
2k (Np) with the same Hecke eigenvalues.

Using the trace map (see, for example, Theorem 4.1 of [5]) one can construct a form G ∈
Sk(p+1)(N) with G ≡ F (mod p). Since G is an eigenform modulo p, it follows from a result
of Deligne and Serre (Lemme 6.11 of [10]) that there is an eigenform G′ ∈ Sk(p+1)(N) with
the same eigenvalues modulo p (to be precise, modulo some prime over p). This eigenform
lifts through the Shimura correspondence to a form in Sk( p+1

2 )+ 1
2
(4N) with the same Hecke

eigenvalues.
The most natural explanation for this phenomenon would be the existence of a form

g ∈ Sk( p+1
2 )+ 1

2
(4N) such that f ≡ g (mod p). However, examples (see below) show that

such a form need not exist. Proposition 3.1 shows that if f itself is not congruent to a form
of low weight and level 4N , then it must be the case that g = π−aef |U(p) is congruent to
such a form. This result provides a concrete realization of the system of (mod p) eigenvalues
attached to the form G′ at low weight, through a congruence for one of the two newforms f
or g.

Example. We consider the case k = 2, p = 13 and N = 1. There is a newform

F(z) = q − 5q2 − 7q3 + 17q4 − 7q5 + 35q6 + · · · ∈ S4(13).

The Kohnen newform associated to F(z) is

f(z) = q5 − q8 − q13 − 3q20 + 3q21 + q24 − q28 + · · · ∈ S2+ 1
2
(52).

Since the coefficient of q13 is coprime to 13, we see that A = 0. The form

G(z) = ∆(z)E4(z)E6(z)2 − 6∆(z)2E4(z)

= q − 798q2 − 1476q3 + 67639888q4 + 3213736350q5 + 38635573752q6 − · · ·

lies in S28(1), and F(z) ≡ G(z) (mod 13). The Kohnen newform g(z) ∈ S14+ 1
2
(4) given by

g(z) = q + (−12332 + 108
√

18209)q4 + (123360− 1080
√

18209)q5

+ (1126824− 10152
√

18209)q8 + (−2237463 + 20736
√

18209)q9 + · · ·

has the same Hecke eigenvalues as f(z) when reduced modulo one of the prime ideals p above

13 in Z
[

1+
√

18209
2

]
. However, the Fourier expansion

g(z) ≡ q + 6q4 + 3q9 + 10q12 + 7q13 + q16 + · · · (mod p)

is different. Indeed, there is no form g(z) ∈ S14+ 1
2
(4) congruent to f(z) mod p.

On the other hand, since A = 0, Proposition 3.1 implies that there is a form

F (z) = q5 + 12q8 − 104q9 − 33800q12 + 134757q13 − 2650752q16 + · · · ∈ S26+ 1
2
(4)

with F (z) ≡ f(z) (mod 13), and a form

G(z) = q + 88q4 − 336q5 + 3696q8 − 5535q9 + 6048q12 + · · · ∈ S8+ 1
2
(4)

with G(z) ≡ f(z)|U(13) (mod 13). A simple check shows that the weights 26 + 1
2

and 8 + 1
2

are optimal for f(z) mod 13 and f(z)|U(p) mod 13 at level 4.
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Remark. We use the computer algebra package MAGMA ([6] version 2.15-11) for compu-
tations. To compute Kohnen newforms, we use built-in routines in MAGMA to compute
a basis for the full half-integer weight space of cusp forms. We then manually intersect
with the Kohnen plus space, and repeatedly diagonalize each Hecke operator on this space,
extending the base field as necessary. To check that a form is an eigenform, we identify a
collection of Shimura lifts whose kernel has trivial intersection, and check that the image of
our form under each Shimura lift is proportional to the same integer weight eigenform.

Before proceeding with the proof of Proposition 3.1, we give two corollaries. We note
that, since f |U(p2) = −εpk−1f , we always have A ≤ k− 1. Using this fact together with the
Eisenstein series E from (2.13), we have the following result.

Corollary 3.2. If f , g, and Ov are as in Proposition 3.1, then the following are true.

(1) There exists F ∈ Skp+ 1
2
(4N) ∩ Ov[[q]] such that vp(F − f) > 0.

(2) There exists G ∈ Skp− p−1
2

+ 1
2
(4N) ∩ Ov[[q]] such that vp(G− g) > 0.

In view of Proposition 3.1 and Theorem 6.1 below, it is clear that the twisted L-values
of a newform F(z) ∈ Snew

2k (Np) are interpolated modulo p by the squares of coefficients of
half-integral weight forms of level 4N . The corollary which follows makes this precise.

Corollary 3.3. Suppose that N is a positive, odd, square-free integer and that p ≥ 5 is a
prime with p - N . Suppose that F(z) ∈ Snew

2k (Np) is a newform and that f ∈ Snew
k+ 1

2

(4Np)

is the newform (normalized as in the introduction) corresponding to F under the Shimura
correspondence. Let χ be the quadratic character with conductor p. With the notations from
(3.3), (3.4), and (3.6), write

f(z) =
∞∑

n=1

a(n)qn ∈ Ov[[q]]

and

g(z) =
f |U(p)

πae
=

∞∑
n=1

b(n)qn ∈ Snew
k+ 1

2
(4Np, χ) ∩ Ov[[q]].

Moreover, let

F (z) =
∞∑

n=1

A(n)qn ∈ Sk+(k−A)(p−1)+ 1
2
(4N)

and

G(z) =
∞∑

n=1

B(n)qn ∈ Sk+A(p−1)+ p−1
2

+ 1
2
(4N)

be as in the conclusion of Proposition 3.1. Then for all fundamental discriminants D with
(−1)kD > 0 we have

A(|D|)2 ≡
∏
p|N

(
1 + λp

(
D
p

))
· |D|

k−1/2〈f, f〉(k − 1)!

〈F ,F〉πk
· L(F , D, k) (mod v),

and for all fundamental discriminants D with (−1)kχ(−1) ·D > 0 and (D, p) = 1 we have

B(|D|)2 ≡
∏
p|N

(
1 + λpχ(p)

(
D
p

))
· |D|

k−1/2〈g, g〉(k − 1)!

〈F ,F〉πk
· L

(
F ⊗ χ

(
D
·

)
, k

)
(mod v).
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Proof of Corollary 3.3. This follows immediately by combining the results which are men-
tioned. �

Proof of Proposition 3.1. Let f , g, K, Ov, A, π, and e be as defined in (3.3), (3.4), (3.6),
and (3.5). Using (2.11) we find that

(3.9) vp(g|U(p)) = vp

(
f |U(p2)

πae

)
= k − 1− a.

Now write

(3.10) a = A− s/e, 0 ≤ s/e < 1

and define

(3.11) f ′ := πsf.

Let E ∈ Mp−1(p) be as in (2.13). Then we have

f ′ · E(4z)k−A ∈ Sk+(k−A)(p−1)+ 1
2
(4Np),

and therefore
F ′ := Tr4Np

4N

(
f ′ · E(4z)k−A

)
∈ Sk+(k−A)(p−1)+ 1

2
(4N).

We claim that F ′ ∈ K[[q]] and that

(3.12) vp(F
′ − f ′) ≥ 1.

Setting F := π−sF ′ and using (3.11), the first statement of the proposition follows from
(3.12).

To prove (3.12), we see from the definition (2.12) that it will suffice to show that

(3.13) vp

(
p−

k
2
−(k−A)( p−1

2 )+ 3
4 (f ′ · E(4z)k−A)|W (p)4Np

k+(k−A)(p−1)+ 1
2

|U(p)
)
≥ 1.

A calculation using (2.7), (2.1), and (2.2) gives

(3.14) (f ′ · E(4z)k−A)|W (p)4Np

k+(k−A)(p−1)+ 1
2

= f ′|W (p)4Np

k+ 1
2

·
(

E|p−1

(
p 4a

Np pb

)
|V (4)

)k−A

.

By (2.10) we see that f ′|W (p)4Np

k+ 1
2

has coefficients in K, and by (2.12) we conclude that F ′

also has coefficients in K. Using (3.4) and (3.11) we find that

vp

(
f ′|W (p)4Np

k+ 1
2

)
= −k

2
+ 1

4
+ A,

and by (2.13) (using the fact that

(
p 4a

Np pb

)
and

(
0 −1
p 0

)
are Γ0(p)-equivalent) we see

that the terms containing E in (3.14) contribute the power p(k−A)( p+1
2 ). From this we find

that the quantity in (3.13) is at least equal to

−k
2
− (k − A)

(
p−1
2

)
+ 3

4
− k

2
+ 1

4
+ A + (k − A)

(
p+1
2

)
= 1,

as desired. This establishes the first claim of the proposition.

We turn to the second claim. Recall the definition (2.14) of the form E1 ∈ M p−1
2

(
p,

(
•
p

))
.

Using the definition (3.6) of the form g, and taking care with the computation of the char-
acters and the plus-space condition, we find that

g · E1(4z) · E(4z)A ∈ Sk+A(p−1)+ p−1
2

+ 1
2
(4Np),
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and therefore that

G := Tr4Np
4N

(
g · E1(4z) · E(4z)A

)
∈ Sk+A(p−1)+ p−1

2
+ 1

2
(4N).

As above, we have G ∈ K[[q]]. Using (2.12), it will be enough to show that

(3.15) vp

(
p−

k
2
−A( p−1

2 )− p−1
4

+ 3
4

[
(g · E1(4z) · E(4z)A)|W (p)4Np

k+A(p−1)+ p−1
2

+ 1
2

]
|U(p)

)
> 0.

Using (2.13) and (2.15), and arguing as above, we find that the terms containing E1 and E

contribute the powers p
p+1
4 and pA( p+1

2 ) respectively. Using (2.9) and (3.6), we have

g|W (p)4Np

k+ 1
2

= π−aef |U(p)W (p)4Np

k+ 1
2

= π−aep
k
2
− 1

4 · εf.

Combining all of the contributions and recalling that a = A − s/e with 0 ≤ s/e < 1, we
find that the quantity in (3.15) is at least

−k
2
− A

(
p−1
2

)
− p−1

4
+ 3

4
+ p+1

4
+ A

(
p+1
2

)
− A + s

e
+ k

2
− 1

4
≥ 1 + s

e
> 0.

The proposition follows. �

4. Proof of Theorem 1.1

We begin with a proposition which follows from our work in the last section, together with
the results of [4].

Proposition 4.1. Suppose that ε ∈ {±1}, that p is an odd prime, that K is a number field
which is Galois over Q, and that v is a place of K above p. Suppose that p > 2k−1

3
, and that

f ∈ Sε,p

k+ 1
2

(4p) ∩ Snew
k+ 1

2

(4p) ∩ Ov[[q]] satisfies

(4.1) f(z) ≡
r∑

i=1

∞∑
n=1

a(tin
2)qtin

2 6≡ 0 (mod v).

Then Θ(f) 6≡ 0 (mod v).

Proof. Suppose that f has the form (4.1) and that Θ(f) ≡ 0 (mod v). By Corollary 3.2,
there exists a form F ∈ Skp+ 1

2
(4) with F ≡ f (mod v). Proposition 5.1 of [4] implies that F

(and hence f) has the form

f ≡
∑

a(n2)qn2

+
∑

a(pn2)qpn2

(mod v).

Since Θ(f) ≡ 0 (mod v), it follows that

(4.2) f ≡
∑

a(p2n2)qp2n2

+
∑

a(pn2)qpn2

(mod v).

If k = 1, then F ∈ Sp+ 1
2
(4) and the first p − 1 Fourier coefficients are all zero modulo v.

Since p− 1 >
p+ 1

2

12
· [Γ0(1) : Γ0(4)], a theorem of Sturm [40] implies that f ≡ F ≡ 0 (mod v),

which provides the desired contradiction.
We may therefore assume that k ≥ 2. By (2.11), we have

f |U(p2) = −pk−1εf ≡ 0 (mod pk−1).

Therefore (4.2) becomes

(4.3) F ≡ f ≡
∑
p-n

a(pn2)qpn2

(mod v).
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By Lemma 4.2 of [4] (see in particular equation (4.1)) there exists a form g ∈ Sλ1+ 1
2
(4)

such that

(4.4) g ≡ F |U(p) ≡
∑
p-n

a(pn2)qn2

(mod v),

where for some α ≥ 0 we have

(4.5) λ1 + 1 =
2 [kp− α(p− 1)] + p + 1

2p
.

Since λ1 ∈ Z, we have α ≡ p−1
2

(mod p). It follows that α ≥ p−1
2

; since also p > 2k−1
3

, we
find from (4.5) that λ1 ≤ p. It follows from Proposition 5.4 of [4] that g ≡ 0 (mod v), from
which f ≡ 0 (mod v), against the hypotheses. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let f and K be as in the statement of the theorem, and suppose
that p > 2k−1

3
. We may suppose without loss of generality that K is Galois over Q. By

Proposition 3.1, there is an F ∈ Spk+ 1
2
(4) with F ≡ f (mod v). By Proposition 5.1 of [4],

we may conclude that

f ≡ F ≡
∑

a(n2)qn2

+
∑

a(pn2)qpn2

(mod v).

If k is odd, then Theorem 5.3 of [4] implies that Θ(f) ≡ 0 (mod v), while Proposition 4.1
implies that Θ(f) 6≡ 0 (mod v). Therefore k must be even. In this case, part 1 of Theorem 2.2
of [3] implies that either

f ≡
∑

a(n2)qn2

(mod v)

or

f ≡
∑

a(pn2)qpn2

(mod v).

In the second case we have Θ(f) ≡ 0 (mod v), which contradicts Proposition 4.1. We must
therefore be in the first case. Since k ≥ 2 we have f |U(p2) ≡ 0 (mod p); it follows that

(4.6) f ≡ F ≡
∑
p-n

a(n2)qn2

(mod v).

To prove that

f ≡ a(1)
∞∑

n=1

nkqn2

we appeal to part 2 of Theorem 2.2 of [3], setting m0 = n1 = 1. From this result together
with (4.6) we conclude that∑

n odd

a(n2)qn2 ≡ a(1)
∑

n odd

nkqn2

(mod v).

Note that if θ0(z) = 1 + 2
∑∞

n=1 qn2 ∈ G 1
2
(4), then by Lemma 4.1 of [4], there is a form

F1(z) ≡ 1
2
Θ

k
2 (θ0(z)) · Ep−1(4z)

k
2 ≡

∞∑
n=1

nkqn2

(mod v)
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with F1(z) ∈ Skp+ 1
2
(4). We have

a(1)F1(z)− F (z) ≡
∑

b(4n2)q4n2

(mod v).

Taking the D = 1 Shimura lift (see (2.16)) shows that there is an integer weight form

F2(z) = Sh1,kp(a(1)F1(z)− F (z)) ≡
∑

c(2n)q2n (mod v)

with F2(z) ∈ S2kp(1). Theorem 3.1 of [4] now implies that F2(z) ≡ 0 (mod v). Working
through (2.16), we find that a(1)F1(z)− F (z) ≡ 0 (mod v). Thus,

f(z) ≡ F (z) ≡ a(1)F1(z) ≡ a(1)
∞∑

n=1

nkqn2

(mod v),

as desired. �

Corollaries 1.3 and 1.4 follow from the main theorem.

Proof of Corollary 1.3. Let f =
∑

a(n)qn ∈ Snew
k+ 1

2

(4p) be the newform corresponding to

F , normalized as in the introduction, and assume that conditions (1)-(3) are satisfied. By
Theorem 1.1 we find that there are infinitely many positive square-free t such that a(tn2

t ) 6≡ 0
(mod v) for some nt. Using the plus-space condition we see that tn2

t ≡ 0, 3 (mod 4) for each
such t. Therefore for each such t there is a fundamental discriminant Dt < 0 such that
tn2

t = |Dt|n′t
2. Using equation (11) of [20] we see that a(|Dt|) 6≡ 0 (mod v). The corollary

then follows from (1.5). �

Proof of Corollary 1.4. Let f =
∑

a(n)qn ∈ Snew
k+ 1

2

(4p) be the newform corresponding to

F , normalized as in the introduction, and assume that conditions (1)-(3) are satisfied. If
there are infinitely many positive square-free t such that a(tn2

t ) 6≡ 0 (mod v) for some nt,
then arguing as in the odd case we find that there are infinitely many positive D such that
Lalg(F , D, k) 6≡ 0 (mod v).

If there are only finitely many such t, then Theorem 1.1 implies that D = 1 is the only
positive fundamental discriminant for which a(D) 6≡ 0 (mod v). Then (1.5) shows that we
have Lalg(F , D, k) ≡ 0 (mod v) for all positive fundamental discriminants D 6= 1. �

5. Proofs of results on elliptic curves

Suppose that E/Q is an elliptic curve of prime conductor p; this implies that p ≥ 11. By
Wiles’ work on the modularity of semistable elliptic curves, there exists a newform F ∈ S2(p)
with L(F , s) = L(E, s). We let λp ∈ {±1} be the eigenvalue of F under the Atkin-Lehner
involution Wp. There exists a newform f ∈ Snew

3/2 (4p) which corresponds to F via the Shimura
correspondence. By the remark following Theorem 1.2, the form

f(z) =
∞∑

n=1

a(n)qn

can be taken to have rational integer Fourier coefficients.
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Combining (1.5) with the Birch and Swinnerton-Dyer Conjecture, we obtain, for each

D < 0 with L(ED, 1) 6= 0 (from which necessarily
(

D
p

)
6= −λp) the formula

#X(ED) =
1(

1 + λp

(
D
p

)) · (#ED(Q)tors)
2

Ω(ED)
∏

q cq(ED)
· 〈F ,F〉π
〈f, f〉

√
−D

a(−D)2.

Using the fact that

Ω(ED) =
Ω(E−4)√
−D0

,

where

D0 =

{
D if D is odd

D/4 if D is even,

we conclude that if D < 0 and L(ED, 1) 6= 0, then

(5.1) #X(ED) = C · 1(
1 + λp

(
D
p

)) · (#ED(Q)tors)
2∏

q cq(ED)
·
√
−D0√
−D

· a(−D)2,

where C is a positive rational number that does not depend on D. Mazur’s classification
[27] of the torsion subgroups for elliptic curves over Q implies that p does not divide the
order of the torsion subgroup. If F(z) =

∑
A(n)qn, then A(p) = −λp. It follows that the

pth Fourier coefficient of F ⊗χD equals −1 or 0. This in turn implies that ED has non-split
multiplicative reduction or additive reduction at p and additive reduction at primes q | D.
From Corollary 15.2.1 of Appendix C of [38], we see that all Tamagawa numbers cq divide 3
or 4, and hence that they are coprime to p. It follows that for every D < 0 with a(−D) 6= 0
(which is the same as L(ED, 1) 6= 0), we have

(5.2) ordp(#X(ED)) = ordp(C) + 2ordp(a(−D)).

The first result now follows easily.

Proof of Theorem 1.5. If there is a single D < 0 with a(−D) 6≡ 0 (mod p) for which
X(ED)[p] = 0, then the constant C in (5.2) has ordp(C) = 0. Corollary 1.3 implies that
there are infinitely many D < 0 with ordp(a(−D)) = 0. Theorem 1.5 follows from (5.2). �

The second result is more involved.

Proof of Theorem 1.6. In light of Theorem 1.5 it suffices to demonstrate the existence of a
single D∗ satisfying the three conditions of Theorem 1.5. Applying Sturm’s theorem (see [40])
to the form f(z), we find that for each curve E of conductor p, there there is a discriminant
D∗ = D∗(E) such that D∗ < 0, a(−D∗) 6≡ 0 (mod p), and

(5.3) 0 < −D∗ ≤ (p + 1)

8
< p.

The Birch and Swinnerton-Dyer conjecture gives

#X(ED∗)
∏

q cq(ED∗)

#(ED∗(Q)tors)2
=

L(E, D∗, 1)

Ω(ED∗)
.
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Since
∏

q cq(ED∗) ≥ 1 and #(ED∗(Q)tors)
2 ≤ 256, we have

#X(ED∗) � L(E, D∗, 1)

Ω(ED∗)
.

(Note: Here and in what follows, the constants implied by the notation � do not depend
on the prime p, and the inequalities are valid for curves of sufficiently large conductor p.)

We have Ω(ED∗) = Ω(E−4)√
−D∗

0

, and so

(5.4) #X(ED∗) � L(E, D∗, 1)|D∗|1/2

Ω(E−4)
.

We require the convexity bound for degree 2 L-functions (see [14], p. 100-101, or [13],
Theorem F.4.1.9 for an explicit version for elliptic curves), which implies that for a degree 2
L-function L(f, s) of conductor N , we have |L(f, 1)| � N1/4+ε. The conductor of L(E, D, 1)
is pD2. So from (5.4) and the convexity bound, we obtain

(5.5) #X(ED∗) � p1/4+ε|D∗|1+ε

Ω(E−4)
� p5/4+ε

Ω(E−4)
.

To finish, we must determine a lower bound for Ω(E−4). In [26], it is shown that for any
elliptic curve A written in the form

A : y2 = x3 + ax + b,

we have

Ω(A) � 1

max{|a|1/4, |b|1/6}
.

In this case, the discriminant is given by

∆(A) = −16(4a3 + 27b2) =
1

27
((−12a)3 − (216b)2).

Assuming the weak version (1.6) of Hall’s conjecture, we have |∆(A)| � max{a1/3+δ, b2/9+δ},
and so

Ω(A) � |∆(A)|−3/4+δ.

The minimal model for the curve E−4 may not have the form y2 = x3 + ax + b, but there
is a model E ′ which does have this form. It follows that there is a positive integer v (which
divides 6) for which

(5.6) ∆(E ′) = v12∆(E−4) and Ω(E ′) =
1

v
Ω(E−4).

Applying these relations, together with the fact that |∆(E−4)| � |∆min(E)|, we get

#X(ED∗) � p5/4+ε|∆min(E)|3/4−δ.

Under the assumption (no longer required) that E is modular, Serre ([35] Proposition
8) showed that for p > 37, either |∆min(E)| = p, or |∆min(E)| = p2 and E has a rational
two-torsion point. In the first case, it follows that for some δ′ > 0 we have

#X(ED∗) � p2−δ′ .

Therefore for all sufficiently large p we have

(5.7) #X(ED∗) < p2.
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In the second case, E is one of two curves considered by Neumann and Setzer (see [29],
[30], [36]). It follows that p = u2 + 64, where u is an integer which we take to be congruent
to 3 (mod 4). We have

E : y2 + xy = x3 − u + 1

4
x2 + 4x− u,

and |∆min(E)| = p2. A (not necessarily minimal) model of E−4 is given by

E ′ : y2 = x3 − (−27u2 + 5184) + (−54u3 − 31104u),

from which we obtain |Ω(E ′)| � p−1/4. Then from (5.6), we obtain

#X(ED∗) �
p5/4+ε

Ω(E−4)
� p3/2+ε.

In either case, we conclude that for all sufficiently large p, there exists a discriminant
D∗ = D∗(E, p) such that D∗ < 0, a(−D∗) 6= 0, and such that (5.7) holds. The Cassels pairing
implies that if X(ED∗) is finite, its order is a perfect square, and so if #X(ED∗) < p2, its
order is coprime to p. This proves that X(ED∗)[p] = 0, which concludes the proof. �

6. Remarks on formulas for L-values

We begin with a brief explanation of the formula in Theorem 1.2. To see that this formula
holds, we follow the argument on page 243 of [20], keeping in mind the correct orientation of
the geodesics CQ which is described in Section 1 of [21]. We see that the sum

∑
t|N 1 in [20]

can be replaced by the more general quantity
∑

t|N λt

(
D
t

)
(where λt denotes the eigenvalue

of F under the Atkin-Lehner involution WN
t ). Using multiplicativity, this sum is seen to be

equal to the product which appears as a normalizing factor in (1.2).
We record a general formula for L-values which follows easily from Theorem 1.2. Suppose

that N is odd and square-free and that F ∈ Snew
2k (N) is a normalized newform. Suppose

that χ is a quadratic character with conductor f | N . Via Kohnen’s theory, there is a unique
(up to normalization) newform

g =
∞∑

n=1

b(n)qn ∈ Snew
k+ 1

2
(4N, χ)

associated to F via the Shimura correspondence. As above, we may assume that the coef-
ficients lie in the field generated by the coefficients of F . With this notation, we have the
following extension of Theorem 1.2.

Theorem 6.1. Let the notation be as in the last paragraph. Suppose that D is a fundamental
discriminant with

(6.1) (−1)kχ(−1) ·D > 0 and (D, f) = 1.

Then we have

(6.2) b(|D|)2 =
∏
p|N

(
1 + λpχ(p)

(
D
p

))
· |D|

k−1/2〈g, g〉(k − 1)!

〈F ,F〉πk
· L

(
F ⊗ χ

(
D
·

)
, k

)
.

Remark. This does not agree with the formula given by Theorem 4.2 of [23] applied to this
case.
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Example. We illustrate Theorem 1.2 with a numerical example. There is a newform

F(z) = q − 2q2 − 9q3 − 28q4 − 25q5 + 18q6 − 132q7 + · · · ∈ Snew
6 (15).

Let

f(z) = 2q11 − q15 − 2q20 − 4q24 + 4q35 + 6q39 + 4q44 − · · · ∈ Snew
7/2 (60)

be the Kohnen newform which corresponds to it. We see that λ3 = λ5 = 1. Expressing f as
a linear combination of Poincaré series, and using the well-known relation between the nth
coefficient of a form and its inner product with a Poincaré series, we compute that

〈f, f〉 ≈ 0.0000001926781582

(this is only accurate to about 7 significant digits). Computing the special value of the
adjoint square L-function of F and using the relation between this value and the Petersson
norm of F , we find that 〈F ,F〉 ≈ 0.00001361809013. We can then compute the following
table of data involving fundamental discriminants D < 0 for which

∏
p|15(1 + λp

(
D
p

)
) 6= 0.

D a(|D|)2 Right hand side of (1.2)
−11 4 4.000000207
−15 1 1.000000052
−20 4 4.000000207
−24 16 16.00000083
−35 16 16.00000083
−39 36 36.00000186
−51 4 4.000000207
−56 64 64.00000331
−59 36 36.00000186
−71 64 64.00000331
−84 144 144.0000074
−95 196 196.0000101
−104 64 64.00000331
−111 36 36.00000186
−116 1936 1936.000100
−119 144 144.0000074
−120 576 576.0000297

Proof of Theorem 6.1. Let

f =
∞∑

n=1

a(n)qn ∈ Snew
k+ 1

2
(4N)

be the form associated to F as in Theorem 1.2. By (2.5) and the following discussion, and
noting that the truth of (6.2) is independent of the normalization of g, we may assume that

g = f |U(f).

For a fundamental discriminant D as in (6.1) we define the fundamental discriminant D∗ by

(6.3) D∗ := χ(−1) · fD.

We have

b(|D|) = a(|D∗|) and (−1)kD∗ > 0.
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Applying Theorem 1.2, we find that for all D as in (6.1) we have

(6.4) b(|D|)2 =
∏
p|N

(
1 + λp

(
D∗

p

))
· |D

∗|k−1/2〈f, f〉(k − 1)!

〈F ,F〉πk
· L(F , D∗, k).

Note that χ =
(

χ(−1)f
·

)
; it follows that for each p, we have

(6.5)
(

D∗

p

)
= χ(p)

(
D
p

)
.

We recall (see the discussion preceding Proposition 2 of [19]) that if φ is any quadratic

character modulo Np, then
(
−1
p

)− k
2
− 1

4
W (p)4Np

k+ 1
2

is a unitary involution on the sum of the

spaces Sk+ 1
2
(4Np, φ) and Sk+ 1

2

(
4Np, φ

(
·
p

))
. Also (see the proof of Proposition 3 of [19]),

if p - cond(φ), then p−k/2+1/4U(p)W (p)4Np

k+ 1
2

is a Hermitian involution on Sk+ 1
2
(4Np, φ).

Suppose that h ∈ Sk+ 1
2
(4Np, φ) and that p - cond(φ). Combining the facts in the last

paragraph (and recalling that the inner product is conjugate linear in the second entry) we
see that

〈h|U(p), h|U(p)〉 =
〈
h|U(p)W (p)4Np

k+ 1
2

, h|U(p)W (p)4Np

k+ 1
2

〉
= pk− 1

2 〈h, h〉.

Arguing inductively using the last formula, we find that with f and g = f |U(f) as above, we

have 〈g, g〉 = fk−
1
2 〈f, f〉. Using this together with (6.5), the result follows from (6.4). �
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