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Abstract. We give a classification of all possible 2-adic images of Galois representations
associated to elliptic curves over Q. To this end, we compute the ‘arithmetically maximal’
tower of 2-power level modular curves, develop techniques to compute their equations, and
classify the rational points on these curves.

1. Introduction

Serre proved in [Ser72] that, for an elliptic curve E over a number field K without complex
multiplication, the index of the mod n Galois representation ρE,n associated to E is bounded
– there is an integer NE such that for any n, the index of ρE,n(GK) in GL2(Z/nZ) is at
most NE (equivalently, the mod ` representation is surjective for large `). Serre’s proof is
ineffective in the sense that it does not compute NE explicitly; in fact one conjectures that
for ` > 37, ρE,` is surjective. The early progress on this problem [Maz78] has recently been
vastly extended [BPR11], but a proof in the remaining case – to show that the image cannot
be contained in the normalizer of a non-split Cartan – is elusive and inaccessible through
refinements of Mazur’s method.

Mazur’s Program B [Maz77] (given an open subgroup H ⊂ GL2(Ẑ), classify all elliptic
curves E/K such that the image of ρE = lim←−n ρE,n is contained in H) suggests a more general
uniformity conjecture – one expects that for every number field K, there exists a constant
B(K) such that for every elliptic curve E/K without complex multiplication, the index of

ρE(GK) in GL2(Ẑ) is bounded by B(K).
Computational evidence supports the uniformity conjecture – for any given E, [Zyw11]

gives an algorithm (implemented in Sage) to compute the set of primes ` such that ρE,`
is not surjective, and verifies for non-CM E with NE ≤ 350000 that ρE,` is surjective for
` > 37. Similarly, for small ` one can compute im ρE,` directly; [Sut15] has computed im ρE,`
for every elliptic curve in the Cremona and Stein-Watkins databases for all primes ` < 80.
This is a total of 139 million curves, and Sutherland’s results are now listed in Cremona’s
tables. In Appendix A, we describe a method using [DD13] that can often provably compute
the mod n image of Galois for any elliptic curve.

Complementing this are various results (going as far back as Fricke, possibly earlier; see
[Maz77, Footnote 1]) computing equations for the modular curve XH parameterizing E with
ρE(GK) ⊂ H (see Section 2 for a definition). For instance, [BLS12] have extended the
range of ` such that one can compute the modular polynomial Φ`(X, Y ) to ` ≈ 10,000 and
Sutherland now maintains tables of equations for modular curves (see e.g. [Sut], [Sut12]).
Recently [DD12] (inspired by the earlier 3-adic analogue [Elk06]) computed equations for
the modular curves necessary to compute whether the mod 8, and thus the 2-adic, image
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of Galois is surjective (i.e. equations for XH with reduction H(8) ⊂ GL2(Z/8Z) a maximal
subgroup). (See Remark 4.1 for more such examples.)

In many cases these equations have been used to compute the rational points on the
corresponding curves; see Remark 4.1 for some examples. Applications abound. In addition
to verifying low level cases of known classification theorems such as [Maz78] (in this spirit
we note the outstanding case of the “cursed” genus 3 curve X+

ns(13) [BPR11, Remark 4.10],
[Bar14]) and verifying special cases of the uniformity problem, various authors have used the
link between integral points on modular curves and the class number one problem to give
new solutions to the class number one problem; see [Ser97, A.5], and more recently [Bar10],
[Bar09], [Che99], [ST12], and [Ken85].

Main theorem. In the spirit of Mazur’s ‘Program B’, we consider a “vertical” variant of
the uniformity problem. For any prime ` and number field K, it follows from Falting’s The-
orem and a short argument (e.g. [Ara08, Theorem 1.2] plus Goursats Lemma) that there is a
bound N`,K on the index of the image of the `-adic representation associated to any elliptic
curve over K. The uniformity conjecture implies that for ` > 37, N`,Q = 1, but N` can of
course be larger for ` ≤ 37. Actually even more is true – the uniformity conjecture would
imply the existence of a universal constant N bounding the index of ρE,n(GQ) for every n
(equivalently, bounding the index of ρE(GQ); see [Ara08]).

In this spirit, we give a complete classification of the possible 2-adic images of Galois
representations associated to non-CM elliptic curves over Q and, in particular, compute
N2,Q.

Theorem 1.1. Let H ⊆ GL2(Z2) be a subgroup, and E be an elliptic curve whose 2-adic
image is contained in H. Then one of the following holds:

• The modular curve XH has infinitely many rational points.
• The curve E has complex multiplication.
• The j-invariant of E appears in the following table 1 below.

Remark 1.2. The level of a subgroup H is the smallest integer 2k so that H contains all
matrices M ≡ I (mod 2k). Also, we consider action of the matrices in GL2(Z2) on the right.
That is, we represent elements of E[2k] as row vectors ~x, and the image of Galois on an
element of E[2k] corresponds to ~xM .

Corollary 1.3. Let E be an elliptic curve over Q without complex multiplication. Then
the index of ρE,2∞(GQ) divides 64 or 96; all such indices occur. Moreover, the image of
ρE,2∞(GQ) is the inverse image in GL2(Z2) of the image of ρE,32(GQ). For non-CM elliptic
curves E/Q, there are precisely 1208 possible images for ρE,2∞.

Remark 1.4. The earlier paper [Nis83] of Nishioka studied the case of an elliptic curve E/Q
with full rational 2-torsion. Nishioka proved that ρE,2∞(G) contains the kernel of reduction
modulo 128, and also that if E has torsion subgroup Z/2Z×Z/8Z, then ρE,2∞(G) is conjugate

to

{[
a b
c d

]
∈ GL2(Z2) : a ≡ 1 (mod 8), b ≡ 0 (mod 2), c ≡ 0 (mod 8) and d ≡ 1 (mod 2)

}
.

Remark 1.5. All indices dividing 96 occur for infinitely many elliptic curves. For the first
six j-invariants in the table above, the index of the image is 96, and for these, −I ∈ H and
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j-invariant level of H Generators of image

211 16

[
7 14
0 1

]
,

[
1 5
6 11

]
,

[
3 0
0 7

]
24 · 173 16

[
7 0
0 3

]
,

[
3 5
14 7

]
,

[
7 7
2 1

]
40973

24
16

[
3 5
6 3

]
,

[
3 5
14 7

]
,

[
7 7
2 1

]
2573

28
16

[
7 14
0 1

]
,

[
5 0
0 1

]
,

[
1 5
6 3

]
−8579853

628
32

[
25 18
2 7

]
,

[
25 25
2 7

]
,

[
1 0
8 1

]
,

[
25 11
2 7

]
9194253

4964
32

[
29 0
4 1

]
,

[
31 27
0 1

]
,

[
1 4
0 1

]
,

[
31 31
2 1

]
−3·182499203

1716
16

[
4 7
15 12

]
,

[
7 14
7 9

]
,

[
2 1
11 9

]
−7·17231878060803

7916
16

[
4 7
15 12

]
,

[
7 14
7 9

]
,

[
2 1
11 9

]
Table 1. Exceptional j-invariants from Theorem 1.1

this index occurs for all quadratic twists. Additionally, there are several subgroups H with
−I 6∈ H and XH

∼= P1, so that the there are infinitely many j-invariants such that the index
is 96. Index 64 only occurs for the last two j-invariants in the above table, which occur as
the two non-cuspidal non-CM rational points on the genus 2 curve X+

ns(16) (X441 on our list;
see the analysis of Subsection 8.3), which classifies E whose mod 16 image is contained in
the normalizer of a non-split Cartan. (The second j-invariant was missed in [Bar10], because
the map from X+

ns(16) to the j-line was not correctly computed. In this computation, Baran
relied on earlier computations of Heegner, and the error could be due to either of them.)
The smallest conductor of an elliptic curve with this second j-invariant is 72 · 79 · 1061232

(which is greater than 4 · 1013).

Remark 1.6. An application of the classification is an answer to the following question of
Stevenhagen: when can one have Q(E[2n+1]) = Q(E[2n]) for a non-CM curve E? The
answer is that if n > 1, Q(E[2n+1]) is larger than Q(E[2n]). On the other hand, there is a
one-parameter family of curves for which Q(E[2]) = Q(E[4]). These are parametrized by
the modular curve X20b, and one example is the curve E : y2 + xy + y = x3 − x2 + 4x− 1.

Remark 1.7. The classification above plays a role in González-Jiménez and Lozano-Robledo’s
classification of all cases in which Q(E[n])/Q is an abelian extension of Q. See [GJLR].

Remark 1.8 (Failure of Hilbert irreducibility for a non-rational base). A surprising fact is
that not every subgroup H such that XH(Q) is infinite occurs as the image of Galois of an
elliptic curve over Q; see Section 6.
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Remark 1.9 (Related work). In preparation by other authors is a related result [SZ] – for

every subgroup H ⊂ GL2(Z`) such that −I ∈ H, det(H) = Ẑ×, and XH has genus 0,
they compute equations for XH , whether XH(Q) = ∅ and, if not, equations for the map
XH → X(1).

Remark 1.10 (Connection to arithmetic dynamics). The image of the 2-adic representation
is connected with the following problem in arithmetic dynamics. Given an elliptic E/Q and
a point α ∈ E(Q) of infinite order, what is the density of primes p for which the order of the
reduction α̃ ∈ E(Fp) is odd?

In [JR10], Rafe Jones and the first author study this question, and show (see [JR10,
Theorem 3.8]) that if for each n, βn is a chosen preimage of α with 2nβn = α and the fields
Q(βn) and Q(E[2n]) are linearly disjoint for all n, then this density is given by∫

im ρE,2∞

| det(M − I)|` dµ,

an integral over the 2-adic image. In the case that ρE,2∞ is surjective, this density equals
11
21
≈ 0.5238. Our calculations show that for a non-CM elliptic curve E, this generic density

can be as large as 121
168
≈ 0.7202 (corresponding to elliptic curves with no rational 2-torsion,

square discriminant, whose mod 4 image does not contain −I, namely curves parametrized
by X2a), and as small as 1

28
≈ 0.0357 which is attained for several 2-adic images, including

elliptic curves whose torsion subgroup is Z/2Z× Z/8Z. The generic density is listed on the
summary page for each subgroup.

We now give a brief outline of the proof of Theorem 1.1. For a subgroup H of GL2(Z2) of
finite index, there is some k such that Γ(2k) ⊂ H. The non-cuspidal points of the modular
curve XH := X(2k)/H then roughly classify elliptic curves whose 2-adic image of Galois is
contained in H; see Section 2 for a more precise definition.

The idea of this paper is to find all of the rational points on the “tower” of 2-power level
modular curves (see Figure 1). We only consider subgroups H such that H has surjective
determinant and contains an element with determinant −1 and trace zero (these conditions
are necessary for XH(Q) to be non-empty). In our proof, we will handle the case −I ∈ H
first; see Subsection 2.3 for a discussion of XH and the distinction between the cases −I ∈ H
and −I 6∈ H.

Proof of Theorem 1.1. The proof naturally breaks into the following steps.

(1) (Section 3.) First we compute a collection C of open subgroups H ⊂ GL2(Z2) such
that every open K ⊂ GL2(Z2) which satisfies the above necessary conditions and
which is not in C is contained in some H ∈ C such that XH(Q) is finite. (See Figure
1 for those with −I ∈ H.)

(2) (Section 4.) Next, we compute, for each H ∈ C equations for (the coarse space of)
XH and, for any K such that H ⊂ K, the corresponding map XH → XK .

(3) (Section 5.) Then, for H ∈ C such that −I 6∈ H we compute equations for the
universal curve E → U , where U ⊂ XH is the locus of points with j 6= 0, 1728 or ∞.

(4) (Remainder of paper.) Finally, with the equations in hand, we determine XH(Q) for
each H ∈ C. The genus of XH can be as large as 7.
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(5) (Appendix.) If we find a non-cuspidal, non-CM rational point on a curve XH with
genus ≥ 2, we use computations of resolvent polynomials (as described in [DD13]) to
prove that the 2-adic image for the corresponding elliptic curve E is H.

�

Remark 1.11 (Étale descent via group theory). The analysis of rational points on the collec-
tion of XH involves a variety of techniques, including local methods, Chabauty and elliptic
curve Chabauty, and étale descent.

To determine the rational points on some of the genus 5 and 7 curves we invoke a par-
ticularly novel (and to our knowledge new) argument, combining étale descent with group
theory. In short, some of the XH admit an étale double cover Y → XH such that Y is
isomorphic to XH′ for some subgroup H ′ of H. More coincidentally, each of the twists Yd
relevant to the étale descent are also isomorphic to modular curves XH′d

for some group H ′d.
And finally, each group H ′d is a subgroup of some additional larger group H ′′d such that XH′′d
is a curve with finitely many rational points we already understand (e.g. a rank 0 elliptic
curve), and the map XH′d

→ XH′′d
determines XH′d

(Q) and thus, by étale descent XH(Q).
This method is applicable to 20 out of the 24 curves of genus greater than 3 that we must
consider. See Subsection 7.6.

Acknowledgements. We thank Jeff Achter, Nils Bruin, Tim Dokchitser, Bjorn Poonen,
William Stein, Michael Stoll, Drew Sutherland, and David Zywina for useful conversations
and University of Wisconsin-Madison’s Spring 2011 CURL (Collaborative undergraduate
research Labs) students (Eugene Yoong, Collin Smith, Dylan Blanchard) for doing initial
group theoretical computations. The second author is supported by an NSA Young Inves-
tigator grant. We would also like to thank anonymous referees for helpful comments and
suggestions that have improved the paper.

2. The Modular curves XH

Given a basis (P1, P2) of E(Q)[N ] we identify ψ : (Z/NZ)2 ∼= E(Q)[N ] via the map ψ(ei) =
Pi. This gives rise to two isomorphisms ι1, ι2 : AutE(Q)[N ] ∼= GL2(Z/NZ) (corresponding
to a choice of left vs right actions) as follows: if φ ∈ AutE(Q)[N ] satisfies

φ(P1) = aP1 + cP2

φ(P2) = bP1 + dP2,

then we define

ι1(φ) :=

[
a b
c d

]
and ι2(φ) :=

[
a c
b d

]
.

These correspond respectively to left (via column vectors) and right (via row vectors) actions
of GL2(Z/NZ) on (Z/NZ)2. Alternatively, ιi(φ) is defined by commutativity of the diagram

(Z/NZ)2 ψ //

ιi(φ)
��

E[N ]

φ

��
(Z/NZ)2

ψ
// E[N ]
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where we consider ιi(φ) acting on the left (via column vectors) for i = 1 and on the right
(via row vectors) for i = 2.

Throughout this paper we use only right actions, and in particular define ρE,N : GK →
GL2(Z/NZ) as ρE,N(σ) := ι2(σ) (this is consistent with, for instance, [Shi71]). Many sources
are ambiguous about this choice, but the ambiguity usually does not matter (see Remark
2.2).

For an integer N , we define the modular curve Y (N)/Q to be the moduli space param-
eterizing pairs (E/S, ι), where E is an elliptic curve over some base scheme S/Q and ι is
an isomorphism MS := (Z/NZ)2

S
∼= E[N ], and define X(N) to be its smooth compact-

ification (see [DR73, II] for a modular interpretation of the cusps). Note that X(N) is
not geometrically connected (and thus differs from the geometrically connected variant of
[Maz77, Section 2] where ι is “canonical” in that it respects the Weil pairing), and that a
matrix A ∈ GL2(Z/NZ) acts on X(N) (on the right) via precomposition with

M
A−→M, ~v 7→ ~vA

so that A · (E, ι) := (E, ι ◦ A).

Following [DR73], for a subgroup H of GL2(Ẑ) and an integer N such that H contains the

kernel of the reduction map GL2(Ẑ)→ GL2(Z/NZ), we define XH to be the quotient of the
modular curve X(N) by the image H(N) of H in GL2(Z/NZ). This quotient is independent

of N , is geometrically connected if det(H) = Ẑ×, and roughly classifies elliptic curves whose
adelic image of Galois is contained in H. By the definition of XH as a quotient, the non-
cuspidal K-rational points of XH correspond to GK-stable H-orbits of pairs (E, ι); we make
the translation to the image of Galois more precise in the following lemma.

Lemma 2.1. Let E be an elliptic curve over a number field K. Then there exists an ι such
that (E, ι) ∈ XH(K) if and only if im ρE,n is contained in a subgroup conjugate to H.

Proof. For σ ∈ GK and (E, ι) ∈ XH(K), ισ is defined to be the composition MK
ι−→ E[N ]

σ−→
E[N ]. If (E, ι) ∈ XH(K), then for every σ ∈ GK , there is some A ∈ H such that ισ = ι ◦A.

Set Pi := ι(ei) and suppose that A =

[
a c
b d

]
. Then

(ι ◦ A)(e1) = ι(e1A) = ι(ae1 + ce2) = aP1 + cP2 = P σ
1

(ι ◦ A)(e2) = ι(e2A) = ι(be1 + de2) = bP1 + dP2 = P σ
2 ,

so ρE,N(σ) = A and im ρE,N ⊂ H as claimed.
Conversely, let P1, P2 be a basis of E(K)[N ] such that im ρE,N ⊂ H with respect to this

basis, and define ι by ι(ei) := Pi. For σ ∈ GK , ρE,N(σ) = A where

A :=

[
a c
b d

]
and

P σ
1 := aP1 + cP2

P σ
2 := bP1 + dP2.
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By assumption, A ∈ H; moreover

ισ(e1) = ι(ae1 + ce2) = aP1 + cP2

ισ(e2) = ι(be1 + de2) = bP1 + dP2

and so ισ = ι ◦ A, which proves the converse. �

Remark 2.2. As discussed above, a choice of basis for E[N ] gives rise to two isomorphisms
ι1, ι2 : AutE[N ] ∼= GL2(Z/NZ), via column and row vectors. Given K ⊂ AutE[N ], the
images ιi(K) generally differ; in fact, ι1(K) = ι2(K)T , where we define the transpose HT :=
{AT : A ∈ H}. In the literature the choice of left or right action is often ambiguous, but
usually does not matter: for many common H (e.g. the normalizer of a Cartan subgroup)
H is conjugate to HT and the modular curves XH and XHT are thus isomorphic. This is an
issue in this paper; if instead we use ι1, then XH parametrizes E with image contained in
HT rather than H, and in general HT and H are not conjugate.

In general XH is a stack, and if −I ∈ H, then the stabilizer of every point contains Z/2Z.
(Some, but not all, of the CM points with j = 0 or 123 will have larger stabilizers.) In
contrast, when −I 6∈ H, XH no longer has a generic stabilizer, but is generally still a stack
since the CM points may have stabilizers. When −I ∈ H, quadratic twisting preserves the
property that im ρE,N ⊂ H; in contrast, when −I 6∈ H, given a non-CM elliptic curve E/K
such that j(E) is in the image of the map j : XH(K)→ P1(K), there is a unique quadratic
twist Ed of E such that im ρE,N ⊂ H (see Lemma 5.1 below).

There exists a coarse space morphism, i.e. a morphism π : XH → X, where X is a scheme,
such the map XH(Q) → X(Q) is a bijection, and any map from XH to a scheme uniquely
factors through this morphism. We compute equations for the coarse space of XH (and with
no confusion will use the same notation XH for the coarse space). The coarse space has
the following moduli interpretation – given a number field K and a K-point t of the coarse
space, there exists an elliptic curve with j-invariant j(t) (where j is the map X → X(1))
satisfying im ρE,N ⊂ H, and conversely, for any E/K such that im ρE,n ⊂ H, there exists a
K-point t of the coarse space of XH such that j(t) = j(E).

For more details see [DR73, IV-3]; alternatively, for a shorter discussion see [Bar10, Section
3], [Ser97, A.5], or [Maz77, Section 2].

2.3. Universal curves. Suppose that −I 6∈ H. Since we are not interested in the CM
points anyway, we consider the complement U ⊂ XH of the cusps and preimages on XH of
j = 0 and j = 1728. Then U is a scheme, so there exists a universal curve E → U ; i.e. a
surface E with a map E → U such that for every t ∈ U(K), the fiber Et is an elliptic curve
over K without CM such that im ρE,n ⊂ H, and conversely for any elliptic curve E over a
field K such that im ρE,n ⊂ H there exists a (non-unique) t ∈ U(K) such that the E ∼= Et.

In preparation for Section 5 (where we compute equations for E → U), we prove a pre-
liminary lemma on the shape of the defining equations of E .

Lemma 2.4. Let f : E → U be as above and assume that U ⊂ A1. Then there exists a
closed immersion E ↪→ P2

U given by a homogeneous polynomial

Y 2Z −X3 − aXZ2 − bZ3

where a, b ∈ Z[t].
7



Proof. The identity section e : U → E is a closed immersion whose image e(U) is thus a
divisor on E isomorphic to U . By Riemann-Roch, the fibers of the pushforward f∗O(3e(U))
are all 3-dimensional, so by the theorem on cohomology and base change f∗O(3e(U)) is a
rank 3 vector bundle on U . Since U ⊂ A1, U has no non-trivial vector bundles and so
f∗O(3e(U)) is trivial. Let O⊕3

U
∼= f∗O(3e(U)) be a trivialization given by sections 1, x, y,

where 1 is the constant section 1 (given by adjunction), x has order 2 along e(U), and y
has order 3. These sections determine a surjection f ∗f∗O(3e(U)) → O(3e(U)) and thus
a morphism E → P2

U which, since the fibers over U are closed immersions, is also a closed
immersion; 1, x, y satisfy a cubic equation (this is true over the generic point, so true globally)
and, since we are working in characteristic 0, can be simplified to short Weierstrass form as
desired. �

3. Subgroups of GL2(Z2)

Definition 3.1. Define a subgroup H ⊂ GL2(Z2) to be arithmetically maximal if

(1) det : H → Z×2 is surjective,
(2) there is an M ∈ H with determinant −1 and trace zero, and
(3) there is no subgroup K satisfying (1) and (2) with H ⊆ K so that XK has genus
≥ 2.

If E/Q is an elliptic curve and H = ρE,2∞(GQ), then the properties of the Weil pairing
prove that det : H → Z×2 is surjective. Also, the image of complex conjugation in H must be
a matrix M with M2 = I and det(M) = −1. This implies that the trace of M equals zero.

Remark 3.2. After the subgroup and model computations were complete, David Zywina and
Andrew Sutherland pointed out that if E/Q is an elliptic curve, complex conjugation fixes
an element of E[n]. This gives further conditions on a matrix M that could be the image of
complex conjugation, and rules out a handful of other subgroups.

We enumerate all of the arithmetically maximal subgroups of GL2(Z2) by initializing a
queue containing only H = GL2(Z2). We then remove a subgroup H from the queue,
compute all of the open maximal subgroups M ⊆ H. We add M to our list of potential
subgroups if (i) det : M → Z×2 is surjective, (ii) −I ∈ M , (iii) M contains a matrix with
determinant −1 and trace zero, and (iv) if M is not conjugate in GL2(Z2) to a subgroup
already in our list. If the genus of XM is zero or one, we also add M to the queue. We
proceed until the queue is empty.

To enumerate the maximal subgroups, we use the following results. Recall that if G is
a profinite group, then Φ(G), the Frattini subgroup of G, is the intersection of all open
maximal subgroups of G. Proposition 2.5.1(c) of [Wil98] states that if K E G, H ⊆ G and
K ⊆ Φ(H), then K ⊆ Φ(G). Applying this with H = N E G and K = Φ(N), we see that
Φ(N) ⊆ Φ(G).

Lemma 3.3. Suppose that Γ(2k) ⊆ H ⊆ G and k ≥ 2. If K is a maximal subgroup of H,
then Γ(2k+1) ⊆ K.

Proof. We have that Γ(2k)EH and by the above argument, we have

Φ(Γ(2k)) ⊆ Φ(H).
8



Now, Γ(2k) is a pro-2 group and this implies that every open maximal subgroup of Γ(2k) has
index 2. Hence,

Φ(Γ(2k)) ⊇ Γ(2k)2.

If g ∈ Γ(2k), g = I + 2kM for some M ∈M2(Z2). Then,

g2 = I + 2k+1M + 22kM2 ≡ I + 2k+1M (mod 2k+2)

provided k ≥ 2. Hence, the squaring map gives a surjective homomorphism Γ(2k)/Γ(2k+1)→
Γ(2k+1)/Γ(2k+2) for all k ≥ 2. It follows that an element in Γ(2k+1) can be written as a
product of squares in every quotient Γ(2k)/Γ(2n+k) and since the Γ(2n+k) form a base for
the open neighborhoods of the identity in G, we have that Γ(2k+1) ⊆ Φ(Γ(2k)). This yields
the desired result. �

The enumeration of the subgroups is accomplished using Magma. The initial enumera-
tion produces 1619 conjugacy classes of subgroups. The computation of the lattice of such
subgroups finds that many of these are contained in subgroups H where the genus of XH

is ≥ 2. These are then removed, resulting in 727 arithmetically maximal subgroups. The
arithmetically maximal subgroups can have genus as large as 7 and index as large as 192.

4. Computing equations for XH with −I ∈ H

Here we discuss the computation of equations for XH as H ranges over the arithmetically
maximal subgroups of GL2(Z2).

Remark 4.1. Equations for some of these curves already appear in the literature; see [Sut],
[Sut12], [GJG03], [Hee52], [Kna92, Table 12.1], [Shi95], [DD12], [Mom84, Proof of Lemma
3.2], [Bar10], [Hee52] [McM], [Zyw11, 3.2] for equations of X0(N) for N = 2, 4, 8, 16, 32, 64,
X1(N) for N = 2, 4, 8, 16, XH with H ⊂ GL2(Z/8Z) maximal, X+

ns(N) for N = 2, 4, 8, 16,
and various other small genus modular curves.

We first assume that −I ∈ H. Let Hn be the nth subgroup in our list of 727 (as given in
the file gl2data.txt), and let Xn = XHn . Instead of constructing the coverings Xn → X1

directly, we will instead construct coverings Xn → Xm so that Hn is a maximal subgroup of
Hm and compose to get Xn → X1. In almost all cases the degree of the covering Xn → Xm

is 2. (The exceptions are X6 → X1, which has degree 3, and X7 → X1, X55 → X7, and
X441 → X55 which all have degree 4. The curves X1, X7, X55 and X441 are the curves X+

ns(2
k)

for 1 ≤ k ≤ 4.)
In this process, if we find that Xn is a pointless conic, a pointless genus one curve, or an

elliptic curve of rank zero, we do not compute any further coverings of Xn. For this reason,
it is only necessary for us to compute models of Xn for 345 choices of n.

In Section 6.2 of [Shi71], Shimura shows that the field L of modular functions on X(N)
whose Fourier coefficients at the cusp at infinity are contained in Q(ζN) is generated by

f~a(z) =
9

π2

E4(z)E6(z)

∆(z)
℘z

(
cz + d

N

)
where ~a = (c, d) and (c, d) ∈ (Z/NZ)2 has order N . Here, ℘z(τ) is the classical Weierstrass
℘-function attached to the lattice 〈1, z〉.
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g1

g2 g3g4 g5

g6

g7

g11

g21

g8

g20

g18 g15

g22

g9g10 g12 g13g14g16 g17g19

g23

g55

g26g34 g25 g27g29g31 g40g41g42g43g45 g46g47 g48 g52 g54g24g28g30 g37g38 g39g50 g36 g44g32 g35g49g51 g53 g33

g58

g180

g59

g56 g57

g101

g179

g99 g100g136g145g60g61g62g63g64 g68 g69g70 g139g140 g65 g66g67 g125 g138g71 g72g73 g126g129 g78 g81g82 g83g88 g102g132 g142g143 g147g79 g80 g134 g146g84 g85 g86g87 g127 g128g130 g141 g104g110g74 g75g76 g77 g119g121g149 g163 g165g167g169 g171g111 g112g151g155 g89g91 g94g133g92 g135g90g93 g113g114 g150g154g159 g161g172 g174g115g116 g117g118g137 g144 g162g164 g166 g168g131 g148g120 g122 g123 g124g156 g157g158g160g95g96 g97g98 g103g105g106 g107g108 g109g152 g153g170 g173 g175 g176

g274

g441

g391

g440

g177g178

g397

g439

g266g269g188 g189g190g191 g253 g255g262g264 g357g194g198 g199 g201 g267g192 g193 g204g206g268 g186 g187 g260g261g271 g272g181 g183g184g185g228g237 g313g314 g316g318 g386 g388 g227 g250g279 g393g394 g225 g226 g395g396g256 g257g270 g258g273 g248 g221g224 g246g277g361 g368 g217 g359g379g200g202 g213g301 g302 g360 g252 g249 g290 g292 g294g296g289g291g293 g295 g244 g247g251 g254g283 g284g285g286 g287g288g195g196 g223g329 g330 g222 g263 g265 g278g370g372 g245 g281 g282g275g203g205g209 g210g331 g332 g214g333 g334 g366g367 g276g216 g218g364 g365g219g362 g363 g280g297 g298g299g300 g303g307 g312 g315 g317g319 g320g387 g390g304 g310 g321g322g323g324 g305 g309 g311 g325g326g327g328 g352g306 g308g215g230 g339 g347 g208g220g229g233 g335g337 g342g344 g212g235 g340 g346g207g211g234 g236 g336g338 g343 g345 g259g348g349 g350g351g231 g232 g182 g197 g238g239g240 g353 g354 g355g356 g405 g406 g243g241 g242 g407 g408 g373g382 g389g398g401g403 g381 g383 g392g402 g399g400g375g385 g371g376 g377 g384g358g369 g378 g404g374 g380 g415 g426 g409g424 g412g423g341 g422g425 g410 g411g413 g414g416 g417g418g419 g420g421g434 g435 g436 g437g427 g428 g429 g430 g431 g432 g433 g438

g718g719

g543 g539g444 g446g470 g475 g508 g509 g510 g519 g443g456 g457g461g454g458 g452g463g468 g469 g445g482 g483 g504 g505 g506 g507 g465g484g485 g450 g455 g449 g451 g500 g501 g502 g503g447 g448g460 g462g442 g464g466g478 g467g476 g459g453g479 g487g477g481g471 g472 g473g474 g520 g531 g533 g534 g525g527 g530 g532g491g492 g511 g512 g513g514 g521 g523 g524 g535g495g496 g497g498 g488g494g489 g499g490g493 g515 g516 g517 g518 g522 g526 g528 g529 g480 g537g606 g604 g536 g541g542g563 g564 g596g598g566g610 g613 g614 g538g597 g600 g603g605 g601g670g540 g545 g547 g608 g609 g565g570g572g578 g486g560g558g569g587 g551 g559 g599g568g571 g590g671 g577g588g589 g636 g637 g707g639 g640 g675 g676 g661g678 g679 g708g641 g642 g709 g710g591 g592 g593 g594g643 g644 g711 g712 g583 g584g585 g586g579 g580 g581 g582 g645 g646g713 g714g574 g575 g576 g615g647 g648 g715 g716 g635 g717g649g650 g554g555 g552 g553 g634 g549g550g544 g546g632g673 g687 g611g612 g628 g631g674 g677 g626 g627g691 g692g652g653 g654 g655g684 g685 g624 g625g693 g694 g621 g690 g695 g706g556 g618 g682 g689 g705g557g619g622 g659g660 g657g658 g672g680g567 g595 g602 g607 g616g617 g620 g623g548 g561 g562 g573 g629 g630 g633 g638 g651 g681g683 g704g656 g686g688g662 g663 g664 g665 g696 g699 g700g701 g666 g667 g668 g669 g697 g698 g702 g703

g722 g723 g724 g725g720 g721 g726 g727

Figure 1. The tower of arithmetically maximal subgroups H ⊂ GL2(Z2)
with −I ∈ H.
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Theorem 6.6 of [Shi71] shows that the action of GL2(Z/NZ) given by f~a|M = f~aM
uniquely extends to the entire field L and is an automorphism of L fixing Q(j). More-
over, Gal(K/Q(j)) ∼= GL2(Z/NZ)/{±I}, and ζN |M = ζdetM

N . When M ∈ SL2(Z/NZ),
the action of M on K is Q(ζN)-linear and agrees with the usual action: if h ∈ L and

M =

[
α β
γ δ

]
∈ SL2(Z/NZ), then

(h|M)(z) = h

(
αz + β

γz + δ

)
.

Given H ⊆ GL2(Z2) containing Γ(2k), we can think of H as a subgroup of GL2(Z/2kZ)
(by abuse of notation also called H) using the isomorphism Z2/2

kZ2
∼= Z/2kZ. Let H̃ be

a subgroup of GL2(Z2) containing H so that the covering XH → XH̃ has minimal degree.
Our goal is to find an element h ∈ L that generates the fixed field of H over Q(XH̃), and

compute its images under representatives for the right cosets of H in H̃.
We consider the Q(ζ2k)-subspace V of L spanned by the functions f~a. It is natural to

seek a modular function h in the subspace of V fixed by H. However, this approach does

not always succeed. The map f~a → f~a · ∆(z)
E4(z)E6(z)

is a bijection between V and the space of

weight 2 Eisenstein series for Γ(2k) with coefficients in Q(ζ2k) (see [DS05], Section 4.6) and
the dimension of the space of weight 2 Eisenstein series for H is the number of cusps of XH

minus one (see equation (4.3) on page 111 of [DS05]). If there is a subgroup M with H ⊆M
for which XH and XM have the same number of cusps, then V H = V M and we will not
succeed in finding a primitive element for Q(XH). Instead, we will find a subgroup K ⊆ H
so that XK has more cusps than XM for any subgroup M with K ⊆M ⊆ H (with K 6= M).
The number of cusps a subgroup K has is the number of orbits K ∩ SL2(Z/2kZ) has in its
natural action on P1(Z/2kZ). If K ∩ SL2(Z/2kZ) = Γ(2k), the action of K on P1(Z/2kZ)
will be trivial, and so K will have more cusps than any larger subgroup.

Once K is selected, we compute V K∩SL2(Z/2kZ). The sum
∑

~a f~a ·
∆(z)

E4(z)E6(z)
over all vectors

~a with order 2k in (Z/2kZ)2 is fixed by SL2(Z/2kZ) and is a holomorphic modular form
of weight 2. Since there are no nonzero weight 2 modular forms for SL2(Z),

∑
~a f~a =

0. However, as proved by Hecke in [Hec27], removing any one of these gives a linearly
independent set. From this, we know exactly how GL2(Z/2kZ) acts on the space V , and we
can compute subspaces fixed by various subgroups in terms of a basis, and only compute
Fourier expansions when needed. We use this to compute V K∩SL2(Z/2kZ) = 〈w1, w2, . . . , wd〉
by determining the Q(ζ2k)-subspace of V fixed by generators of K ∩ SL2(Z/2kZ). Once this
is computed, we determine V K = 〈x1, x2, . . . , xm〉 (a Q-subspace of V ) by considering the
action of generators of K on ζ iwj. We select x =

∑m
i=1 ixi as a “random” element of V K

and verify that the number of images of x under the action of H̃ is equal to [H̃ : K].
Finally, we compute the Fourier expansions of the f~a and use these to compute the Fourier

expansions of the images of x. If g1, g2, . . . , gr are representatives for the right cosets of K
in H, we define

h = es(x|g1, x|g2, . . . , x|gr),
where es is the degree s elementary symmetric polynomial in r variables. We start with
s = 1 and check if there are [H̃ : H] images of h under the action of the right cosets of H
in H̃. We increment s until this occurs (and find that in all cases we can take s ≤ 3). We
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build the polynomial

F (t) =
∏
g∈T

(t− h|g).

Each of the coefficients of F (t) is an element of Q(XH̃), which can be recognized from their
Fourier expansion. In the case that XH̃ has genus one, we use the following result, whose
proof is straightforward and we omit.

Lemma 4.2. Let E : y2+a1xy+a3y = x3+a2x
2+a4x+a6 be an elliptic curve and g : E → P1

be a degree k morphism. Then,

g =
P (x) + yQ(x)

R(x)
where P , Q and R are polynomials with degP ≤ 3k−3, degQ ≤ 3k−5 and degR ≤ 3k−3.

We then have explicitly that Q(XH) = Q(XH̃)[t]/(F (t)). At this point we use some
straightforward techniques to simplify the model generated.

Example 4.3. We will consider the example of the covering X57 → X22. The subgroup
H22 is an index 8, level 8 subgroup of GL2(Z2). It is one of three maximal subgroups (up
to GL2(Z2) conjugacy) of H7, which is the unique maximal subgroup of GL2(Z2) of index
4. When the covering X22 → X7 was computed, we determined that X22

∼= P1 and we
computed and stored the Fourier expansion of a function f22 with Q(X22) = Q(f22). The
subgroup H57 is an index 2 subgroup of H22, and H57 ⊇ Γ(16). It is generated by Γ(16) and
the matrices [

11 4
8 3

]
,

[
15 11
0 1

]
,

[
7 2
2 1

]
, and

[
15 15
1 0

]
.

Both H22 and H57 have two cusps. We choose K to be the subgroup generated by Γ(16) and
the matrices [

13 2
14 11

]
,

[
1 1
15 0

]
, and

[
1 0
7 7

]
.

We have [H57 : K] = 4. The modular curve XK has 8 cusps. The subspace V of Q(XΓ(16))
is a Q(ζ16)-vector space of dimension 95 spanned by the f~a, where ~a = (c, d) ∈ (Z/16Z)2

and at least one of c or d is odd. The subspace fixed by K ∩ SL2(Z) has dimension 7.
Let g1, g2, . . . , g7 be a basis for this space. We consider the 56-dimensional Q-vector space
spanned by {ζ i16gj : 0 ≤ i ≤ 7, 1 ≤ j ≤ 7} and we find the 7-dimensional subspace fixed by
the action of K. We select a linear combination of these 7 functions to obtain a “random”
modular function x(z) fixed by K.

This x(z) is still represented as a linear combination of the functions f~a. We now compute
the q-expansions of x(z)|γ, where γ ranges over representatives of the 8 right cosets of K in
H22. We partition these into two sets,

{x1(z), x2(z), x3(z), x4(z)} and {x1(z)|δ, x2(z)|δ, x3(z)|δ, x4(z)|δ}
where the xi(z) are the images of x(z) under cosets of K contained in H57, and δ ∈ H22 but
δ 6∈ H57.

We plug the xi(z) into the second elementary symmetric polynomial to obtain a modular
function h(z) for H57. Its image h(z)|δ under the action of δ is obtained from the xi(z)|δ.
Finally, a generator for Q(X57)/Q(X22) is obtained as a root of the polynomial

(x− h(z))(x− h(z)|δ).
12



Type Number
XH
∼= P1 175

Pointless conics 10
Elliptic curves with positive rank 27
Elliptic curves with rank zero 25
Genus 1 curves computed with no points 6
Genus 1 curves whose models are not necessary 165
Genus 2 models computed 57
Genus 2 curves whose models are not necessary 40
Genus 3 models computed 22
Genus 3 curves whose models are not necessary 142
Genus 5 models computed 20
Genus 5 curves whose models are not necessary 24
Genus 7 models computed 4
Genus 7 curves whose models are not necessary 10

Table 2. Summary of the computation of the 727 models.

The function f22(z) with Q(X22) = Q(f22) has Fourier expansion

f22(z) = 3
√

2+(36+24
√

2)(1+i)q1/4+(288+216
√

2)iq1/2−(480
√

2+720)(1−i)q3/4−96
√

2q+· · · .

The function h(z) + h(z)|δ has degree at most 3, and in fact we find that

h(z) + h(z)|δ =
211 · 33 · (155f 2

22 − 5946f22 − 26784)

f 2
22 + 12f22 + 30

.

Similarly, we find that

(h(z))(h(z)|δ) =
220 · 36 · (174569f 4

22 − 739788f 3
22 + 26364168f 2

22 + 298652832f22 + 680985144)

(f 2
22 + 12f22 + 30)2

.

These equations show that there is a modular function g for X57 so that g2 = 18 − f 2
22.

This equation for X57 is a conic. Finding an isomorphism between this conic and P1 yields
a function f57 for which Q(X57) = Q(f57). This f57 satisfies

f22 =
3f 2

57 + 6f57 − 3

f 2
57 + 1

,

which gives the covering map X57 → X22. The entire calculation takes 26 seconds on a 64-bit
3.2 GHz Intel Xeon W3565 processor.

Taking, for example, f57 = 0 gives f22 = −3. Mapping from X22 → X7 → X1 gives
j = −320. The smallest conductor elliptic curve with this j-invariant is

E : y2 = x3 − x2 − 3x+ 7,

and the 2-adic image for this curve is H57.
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5. The cases with −I 6∈ H

In this section we describe how to compute, for subgroups such that −I 6∈ H and
g(XH) = 0, a family of curves Et over an open subset U ⊂ P1 such that an elliptic curve
E/K without CM has 2-adic image of Galois contained in a subgroup conjugate to H if and
only if there exists t ∈ U(K) such that Et ∼= E.

When −I ∈ H, the 2-adic image for E is contained in H if and only if the same is true
of the quadratic twists ED of E. For this reason, knowing equations for the covering map
XH → X1 is sufficient to check whether a given elliptic curve has 2-adic image contained in
H.

When −I 6∈ H, more information is required. First, observe that if −I 6∈ H, then

H̃ = 〈−I,H〉 is a subgroup with [H̃ : H] = 2 that contains H. Recall that the coarse spaces
of XH and XH̃ are isomorphic. In order for there to be non-trivial rational points on XH ,
it must be the case that XH̃(Q) contains non-cuspidal, non-CM rational points. A detailed
inspection of the rational points in the cases that −I ∈ H shows that this only occurs if XH̃

has genus zero. There are 1006 subgroups H that must be considered.
Since we are not interested in the cases of elliptic curves with CM, we will remove the

points of XH lying over j = 0 and j = 1728. Let π : XH → P1 be the map to the j-line
and U = π−1(P1−{0, 123,∞}) ⊂ XH . Then points of U have no non-trivial automorphisms
and as a consequence, U is fine moduli space (see Section 2). We let EH → U denote the
universal family of (non-CM) elliptic curves with 2-adic image contained in H. By Lemma
2.4 there is a model for EH of the form

EH : y2 = x3 + A(t)x+B(t)

where A(t), B(t) ∈ Z[t]. Knowing that such a model exists, we will now describe how to find
it.

Let K be any field of characteristic zero. Suppose that E/K is an elliptic curve corre-
sponding to a rational point on XH with j(E) 6∈ {0, 1728} and given by

E : y2 = x3 + Ax+B.

Now, if
Ed : dy2 = x3 + Ax+B

is a quadratic twist of E, then E and Ed are isomorphic over K(
√
d) with the isomor-

phism sending (x, y) 7→ (x, y/
√
d). Fix a basis for the 2-power torsion points on E and let

ρE : Gal(K/K) → GL2(Z2) be the corresponding Galois representation. Taking the image
of the fixed basis on E under this isomorphism gives a basis on Ed, and with this choice of
basis, we have

ρEd = ρE · χd
where χd is the natural isomorphism Gal(K(

√
d)/K) → {±I}. We can now state our next

result.

Lemma 5.1. Assume the notation above. Let H̃ be the subgroup generated by the image of

ρ and −I. Suppose H ⊂ H̃ is a subgroup of index 2 with −I 6∈ H. Then there is a unique
quadratic twist Ed so that the image of ρEd (computed with respect to the fixed basis coming
from E) lies in H.
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Remark 5.2. Without the chosen basis for the 2-power torsion on Ed, the statement is false.
Indeed, it is possible for two different index two (and hence normal) subgroups N1 and N2

of H̃ to be conjugate in GL2(Z2). The choice of a different basis for the 2-power torsion on
Ed would allow the image of ρEd to be either N1 or N2.

Proof. Observe that j(E) 6∈ {0, 1728} implies that E ∼= Ed if and only if d ∈ (K×)2. Recall
that ρEd = ρE · χd.

Let L be the fixed field of {σ ∈ Gal(K/K) : ρE(σ) ∈ H}. Then since H is a subgroup of

H̃ of index at most 2, [L : K] ≤ 2. If ρE(σ) 6∈ H, then ρE(σ) ∈ (−I)H. Thus, the image of
ρEd is contained in H if and only if χd(σ) = −1 ⇐⇒ σ 6∈ Gal(K/L). Thus, the image of

ρEd is contained in H if and only if L = K(
√
d). This proves the claim. �

We start by constructing a model for an elliptic curve

Et : y
2 = x3 + A(t)x+B(t)

where A(t), B(t) ∈ Z[t] and j(Et) = p(t), where p : XH̃ → X1 is the covering map from XH̃

to the j-line. By the above lemma, the desired model of EH will be a quadratic twist of Et,
so

EH : y2 = x3 + A(t)f(t)2 +B(t)f(t)3

for some squarefree polynomial F (t) ∈ Z[t]. (Here, we say that a polynomial F (t) ∈ Z[t] is
squarefree if whenever F (t) = g(t)2h(t) with g, h ∈ Z[t], then g = ±1.)

Given a set of primes S and an integer n, we define sfS(n) to be the product of the primes
that divide the squarefree part of n but which are not elements of S. (For example, when
S = {2}, sfS(24) = 3.)

Lemma 5.3. Let F (t) ∈ Z[t] be squarefree and let D(t) ∈ Z[t]. Suppose that for some finite
set S of primes, sfS(F (n)) divides D(n) for all but finitely many n ∈ Z. Then F (t) divides
D(t) in Q[t].

Proof. To begin, we note that sfS(F (n)) takes infinitely many distinct values. Indeed, infin-
itely many primes p split in the splitting field of F . Choose an integer n such that p | F (n).
If p2 - F (n), then p divides the squarefree part of F (n), proving the claim. Suppose that
p2 | F (n). Since F is squarefree, for sufficiently large p, p - F ′(n) (otherwise F would have a
double root mod p). Since F (n+p) ≡ F (n)+F ′(n)p (mod p2) we conclude that p2 - F (n+p).

Next, we note that it suffices to assume that F is irreducible; indeed, if F = F1F2,
then after enlarging S to include the primes dividing the resultant of F1 and F2, one has
sfS(F ) = sfS(F1) sfS(F2), so the hypotheses of the lemma hold for each Fi.

We proceed by induction on degD(t) + degF (t). If D(t) is constant then the statement is
trivial, since we can choose n such that the squarefree part of F (n) has absolute value larger
than |D(n)|, giving a contradiction unless F (t) is also constant. If degD(t) ≥ degF (t), then
by the division algorithm we can write

MD(t) = q(t)F (t) + r(t)

for some M ∈ Z, M 6= 0 and q(t), r(t) ∈ Z[t] such that deg r(t) < degF (t). Enlarging S if
necessary to include the primes that divide M , we see that sfS(F (n))|r(n) for all but finitely
many n. By induction, this is a contradiction unless r(t) is identically zero, in which case
we have

MD(t) = q(t)F (t).
15



Finally, if degD(t) < degF (t), then by the division algorithm we can write

MF (t) = q(t)D(t) + r(t)

for some M ∈ Z with M 6= 0 and q(t), r(t) ∈ Z[t] such that deg r(t) < degD(t). Again
assuming that all prime divisors of M are in S, we see that sfS(F (n))|r(n) for all but finitely
many integers n. By induction, this is a contradiction unless r(t) is identically zero, in which
case we have

MF (t) = q(t)D(t),

contradicting irreducibility of F . �

Theorem 5.4. Let F (t) ∈ Z[t] be squarefree and such that EH is isomorphic to the twist
Et,F (t) of Et by F (t) and let D(t) be the discriminant of the model Et given above. Then
F (t)|D(t) in Q[t].

Proof. We specialize, picking n ∈ Z so that En is non-singular. The 2-adic image for En is

contained in H̃. If K is the fixed field of H, then K/Q is a trivial or quadratic extension. If
χ is the Kronecker character of K (resp. trivial character), then twisting En by χ will give
a curve whose 2-adic image is contained in H.

Since K ⊆ Q(En[2k]) for some k, K must be unramified away from 2 and the primes
dividing the conductor of En. Since the conductor of En divides the minimal discriminant
of En, and this in turn divides the discriminant of En : y2 = x3 + A(n)x + B(n) (which is

a multiple of 16), we have that if K = Q(
√
d) with d squarefree, then d|D(n). Moreover, d

must be the squarefree part of F (n). The theorem now follows from Lemma 5.3. �

Here is a summary of the algorithm we apply to compute the polynomial F (t). Through-
out, we will write F (t) = cd(t), where d(t) divides D(t) in Z[t], c ∈ Q is squarefree, and d(t)
is not the zero polynomial mod any prime p.

(1) We pick an integral model for Et and repeatedly choose integer values for t for which
Et is non-singular and does not have complex multiplication.

(2) For each such t, we compute a family of resolvent polynomials, one for each conjugacy
class of H̃, that will allow us to determine the conjugacy class of ρEt,2k(Frobp). (See
Appendix A for a procedure to do this.)

(3) We make a list of the quadratic characters corresponding to Q(
√
d) for each squarefree

divisor d of 2N(Et). All twists of Et with 2-adic image contained in H must be from
this set.

(4) We compute the GL2(Z2)-conjugates of H inside H̃. (For the H̃ that we consider,
computation reveals that there can be 1, 2, or 4 of these.)

(5) We use the resolvent polynomials to compute the image of Frobp for several primes
p. Once enough primes have been used, it is possible to identify which twist of Et
has its 2-adic image contained in each GL2(Z2)-conjugate of H.

(6) The desired model of Et will be a twist by cd(t) for some divisor d(t) of the discrim-
inant. We keep a list of candidate values for c for each divisor d(t) that work for all
of the t-values tested so far, and eliminate choices of d(t).

(7) We go back to the first step and repeat until the number of options remaining for

pairs (c, d(t)) is equal to the number of GL2(Z2)-conjugates of H in H̃. Each of these
pairs (c, d(t)) gives a model for EH . We output the simplest model found.
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Remark 5.5. The algorithm above (step 2 in particular) sometimes requires a lot of decimal
precision (in some cases as much as 8500 digits), and is in general fairly slow. Computing
the equation for the universal curve over XH is thus much slower than computing equations
for XH when −I ∈ H.

Example 5.6. There are two index 2 subgroups of H57 that do not contain −I. One of
these, which we call H57a, contains Γ(32), and is generated by[

10 21
3 13

]
,

[
15 1
27 2

]
,

[
7 7
0 1

]
.

We will compute EH , the universal elliptic curve over H57a. We let

Et : y
2 = x3 + A(t)x+B(t),

where

A(t) = −6(725t8 + 1544t7 + 2324t6 + 2792t5 + 2286t4 + 1336t3 + 500t2 + 88t+ 5)

B(t) = −32(3451t12 + 11022t11 + 22476t10 + 35462t9 + 43239t8 + 41484t7 + 32256t6 + 19596t5

+ 8601t4 + 2630t3 + 564t2 + 78t+ 5).

These polynomials were chosen so that

j(Et) =
26(25t4 + 36t3 + 26t2 + 12t+ 1)3(29t4 + 20t3 + 34t2 + 28t+ 5)

(t2 − 2t− 1)8
= p(t),

where p : X57 → X1 is the map to the j-line. There are four squarefree factors of the
discriminant of Et in Q[t]:

1, t2 − 2t− 1, t4 +
20

29
t3 +

34

29
t2 +

28

29
t+

5

29
, and t6 − 38

29
t5 − 35

29
t4 − 60

29
t3 − 85

29
t2 − 38

29
t− 5

29
.

We specialize Et by taking t = 1, giving

Et : y
2 = x3 − 69600x+ 7067648.

Considering H57 as a subgroup of GL2(Z/32Z), it has 416 conjugacy classes. We compute
the resolvent polynomials for each of these conjugacy classes and verify that they have no
common factors. Since Et has conductor 28 · 32 · 292, the fixed field of H57a inside Q(Et[32])
is a quadratic extension ramified only at 2, 3 and 29. There are sixteen such fields.

There are two index 2 subgroups of H57 that are GL2(Z2)-conjugate to H57a. As a conse-
quence, there are two quadratic twists of Et whose 2-adic image will be contained in some
conjugate of H57a. By computing the conjugacy class of ρ(Frobp) for p = 53, 157, 179 and
193, we are able to determine that those are the −87 twist and the 174 twist. This gives us
a total of 8 possibilities for pairs (c, d(t)) (two for each d(t)).

Next, we test t = 2. This gives the curve

Et : y
2 = x3 − 4024542x+ 3107583520.

This time, we find that the −4926 and 2463 twists are the ones whose 2-adic image is
contained in H57a (up to conjugacy). This rules out all the possibilities for the pairs (c, d(t))
except for two. These are c = 174 and c = −87 and d(t) = t6− 38

29
t5− 35

29
t4− 60

29
t3− 85

29
t2− 38

29
t− 5

29
.

This gives the model

EH57a : y2 = x3 + Ã(t)x+ B̃(t),
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where

Ã(t) = 2 · 33 · (t2 − 2t− 1)2 · (25t4 + 36t3 + 26t2 + 12t+ 1)(29t4 + 20t3 + 34t2 + 28t+ 5)3

B̃(t) = 25 · 33 · (t2 − 2t− 1)3 · (t2 + 1) · (7t2 + 6t+ 1) · (17t4 + 28t3 + 18t2 + 4t+ 1)

·(29t4 + 20t3 + 34t2 + 28t+ 5)4.

In total, this calculation takes 3 hours and 46 minutes.
The smallest conductor that occurs in this family is 6400. The curve E : y2 = x3 + x2 −

83x + 713 and its −2-quadratic twist E ′ : y2 = x3 + x2 − 333x − 6037 both have conductor
6400 and 2-adic image H57a.

6. A curious example

Before our exhaustive analysis of the rational points on the various XH , we pause to dis-
cuss the following curious example, which demonstrates that Hilbert’s irreducibility theorem
does not necessarily hold when the base is an elliptic curve with positive rank.

One expects that if XH(Q) is infinite then there exist infinitely many elliptic curves E/Q
such that ρE(GQ) is actually equal to H. The following example shows that this is not
necessarily true.

Example 6.1. The subgroup H155 is an index 24 subgroup containing Γ(16) generated by[
1 3
0 3

]
,

[
1 0
2 3

]
,

[
1 3
12 3

]
, and

[
1 1
12 7

]
.

The curve X155 is an elliptic curve

X155 : y2 = x3 − 2x

and X155(Q) ∼= Z/2Z × Z and is generated by (0, 0) and (−1,−1). The map from X155 to

the j-line is given by j(x, y) = 256(x4−1)3

x4
.

Since the two-torsion subgroup X155(Q)[2] is non-trivial (as imposed by Remark 7.2), X155

has an étale double cover φ : E → X155 defined over Q and such that E has good reduction
away from 2. By the Riemann-Hurwitz formula, E has genus 1; the map is thus a 2-isogeny
and E(Q) thus has rank one. By étale descent (see Subsection 7.5), since X155 and E have
good reduction outside of 2, every point of X155(Q) lifts to Ed(Q) for d ∈ {±1,±2}. It turns
out that for each such d, there is an index 2 subgroup Hd ⊂ H155 such that Ed ∼= XHd .
(These are X284, X318, X328 and X350, respectively.) It follows that⋃

d∈{±1,±2}

φd(Ed(Q)) = XH155(Q).

In particular, for every point in XH155(Q), the 2-adic image of Galois of the corresponding
elliptic curve is contained in one of the four index two subgroups Hd!

Remark 6.2. We note that if XH
∼= P1, then since P1 has no étale covers and since there

is a finite collection of subgroups H1, . . . , Hn such that any K properly contained in H is a
subgroup of some Hi, the image⋃

K⊂H

φK(XK(Q)) =
n⋃
i=1

φHi(XHi(Q)) ⊂ XH(Q)
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(where φK is the map XK → XH induced by the inclusion K ⊂ H) is a thin set, and in
particular most (i.e. a density one set) of the points of XH(Q) correspond to E/Q such that
ρE(GQ) = H.

Remark 6.3. There are seven genus one curves XH that are elliptic curves of positive rank
where the corresponding subgroup H has index 24. In all seven cases, all of the rational
points lift to modular double covers (although it is not always the case that all four twists
have local points). In fact, every one of the 20 modular curves XH , where H has index 48
and for which XH(Q) is a positive rank elliptic curve is a double cover of one of these seven
curves.

This example is more than just a curiosity; it inspired the technique of Subsection 7.6
which allows us to determine the rational points on most of the genus 5 and 7 curves.

This example also raises the following question.

Question 6.4. Do there exist infinite unramified towers of modular curves such that each
twist necessary for étale descent is modular?

If so, this would imply that none of the curves in such a tower have non-cuspidal non-CM
points. A potential example is the following: the Cummins/Pauli database [CP03] reveals
that there might be such a tower starting with 16A2, 16B3, 16B5, 16B9, 16A17. There is then
a level 32, index 2 subgroup of 16A17 that has genus 33.

7. Analysis of Rational Points - theory

The curves whose models we computed above have genera either 0,1,2,3,5,7; see Table 2.

For the genus 0 curves, we determine whether the curve has a rational point, and if so we
compute an explicit isomorphism with P1. For the genus 1 curves, we determine whether
the curve has a rational point, and if so compute a model for the resulting elliptic curve and
determine its rank and torsion subgroup. This is straightforward: all covering maps except
4 have degree 2, so we end up with a model of the form y2 = p(t), where p(t) is a polynomial,
and the desired technique is implemented in Magma. The remaining 4 cases are handled via
a brute force search for points.

In the higher genus cases, we determine the complete set of rational points. Each of the
following techniques play a role:

(1) local methods,
(2) Chabauty for genus 2 curves,
(3) elliptic curve Chabauty,
(4) étale descent,
(5) “modular” étale double covers of genus 5 and 7 curves, and
(6) an improved algorithm for computing automorphisms of curves.

In this section we describe in detail the theory behind the techniques used to analyze the
rational points on the higher genus curves. The remainder of the paper is a case by case
analysis of the rational points on the various XH .

Remark 7.1 (Facts about rational points on XH).
19



(1) Every rational point on a curve XH of genus one that has rank zero is a cusp or a
CM point.

(2) The only genus 2 curve with non-cuspidal, non-CM rational points is X441, also known
as X+

ns(16). This curve has two non-cuspidal, non-CM rational points, with distinct
j-invariants.

(3) The only genus 3 curves with non-cuspidal, non-CM rational points are X556, X558,
X563, X566, X619, X649. Each of these gives rise to a single, distinct j-invariant.

(4) All the rational points on the genus 5 and 7 curves are either cusps or CM points.

Remark 7.2. The following observation powers many of these approaches – since Jacobians
of 2-power level modular curves have good reduction outside of 2, each Jacobian is “forced”
to have a non-trivial two torsion point (and more generally forced to have small mod 2 image
of Galois). Indeed, the two division field Q(J [2]) is unramified outside of 2, and there are
few such extensions of small degree. In [Jon10], it is shown that if [K : Q] ≤ 16 and K/Q
is ramified only at 2, then [K : Q] is a power of 2. In particular, there are no degree 3 or
6 extensions of Q ramified only at 2, so an elliptic curve with conductor a power of 2 has
a rational 2-torsion point. (In practice of course one can often compute directly the torsion
subgroup of the Jacobian, by computing the torsion mod several primes, and then explicitly
finding generators.) We remark that there is, however, a degree 17 extension of Q ramified
only at 2, arising from the fact that the class number of Q(ζ64) is 17.

7.3. Chabauty. See [MP12] for a survey. The practical output is that if rk JacX(Q) <
dim JacX = g(X), then p-adic integration produces explicit 1-variable power series f ∈ QpJtK
whose set of Zp-solutions contains all of the rational points. This is all implemented in Magma
for genus 2 curves over number fields, which will turn out to be the only case needed. See
the section below on genus 2 curves for a complete discussion.

7.4. Elliptic Chabauty. Given an elliptic curve E over a number field K of degree d > 1
over Q and a map E

π−→ P1
K , one would like to determine the subset of E(K) mapping to

P1(Q) under π. A method analogous to Chabauty’s method provides a partial solution to
this problem under the additional hypothesis that rankE(K) < d (and has been completely
implemented in Magma). The idea is to expand the map E → P1

K in p-adic power series
and analyze the resulting system of equations using Newton polygons or similar tools. See
[Bru03], [Bru06] for a succinct description of the method and instructions for use of its
Magma implementation.

A typical setup for applications is the following.

C

  
φ

��

E

ψ~~
P1

We have a higher genus curve C whose rational points we want to determine, and we have
a particular map C → P1 which is defined over Q and which factors through an elliptic
curve E over a number field K (but does not necessarily factor over Q). Then any K-point
of E which is the image of a Q-point of C has rational image under E → P1, exactly the
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setup of elliptic curve Chabauty. (Finding the factorization C → E can be quite tricky; see
Subsection 9.4 for an example.)

7.5. Étale descent. Étale descent is a “going up” style technique, first studied in [CG89]
and [Wet97] and developed as a full theory (especially the non-abelian case) in [Sko01]. It is
now a standard technique for resolving the rational points on curves (see e.g. [Bru03], [FW01])
and lies at the heart of the modular approach to Fermat’s last theorem (see [Poo02, 5.6]).

Let π : X → Y be an étale cover defined over a number field K such that Y is the quotient
of some free action of a group G on X. Then there exists a finite collection π1 : X1 →
Y, . . . , πn : Xn → Y of twists of X → Y such that

n⋃
i=1

πi(Xi(K)) = Y (K).

Moreover, if we let S be the union of the set of primes of bad reduction of X and Y and
of the primes of OK over the primes dividing #G, then the cocycles corresponding to the
twists are unramified outside of S. (See e.g. [Sko01, 5.3].)

We will use this procedure only in the case of étale double covers. In this case, G = Z/2Z
and, since the twists are consequently quadratic, we will instead denote twists of a double
cover X → Y by Xd → Y , where d ∈ K×/ (K×)

2
, and the above discussion gives that,

for any point P of Y (K), there will exist d ∈ O×K,S/(O
×
K,S)2 such that P lifts to a point of

Xd(K).

7.6. Étale descent via double covers with modular twists. The following variant of
Example 6.1 will allow us to resolve the rational points on some of the high genus curves.

We will occasionally be in the following setup: K ⊂ H ⊂ GL2(Z2) are a pair of open
subgroups such that g(XH) > 1 and the corresponding map XK → XH is an étale double
cover. By étale descent (see Subsection 7.5), since XH and XK have good reduction outside
of 2, every point of XH(Q) lifts to a rational point on a quadratic twist XK,d(Q) for d ∈
{±1,±2}, so that ⋃

d∈{±1,±2}

φd(XK,d(Q)) = XH(Q),

where XK → XH is induced by the inclusion K ⊂ H and φd is the twist of this by d.
It turns out that, additionally, for each such d there is an index 2 subgroup Kd ⊂ H such

that XKd
∼= XK,d; i.e. each of the quadratic twists are also modular. Finally, a third accident

occurs: each of the subgroups Kd is contained in a subgroup Ld such that XLd either has
genus 1 and has no rational point, is an elliptic curve of rank zero, or is a genus zero curve
with no rational points. In particular, since the inclusion of subgroups Kd ⊂ Ld induces a
map XKd → XLd , this determines all of the rational points on each twist XKd , and thus on
XH .

This phenomenon occurs for 16 of the 20 subgroups H for which XH has genus 5, and all
four of the cases when XH has genus 7. See Subsection 10.3 for details.
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7.7. Constructing automorphisms of curves over number fields. If C is a curve of
genus g and D → C is a degree n étale cover of C, then the genus of D is ng − (n− 1). In
order to analyze rational points on D, it is very helpful to be able to find maps from D to
curves of lower genus. In this context, it is helpful to compute the group G of automorphisms
of D and consider quotients D/H for subgroups H ⊆ G.

Magma’s algebraic function field machinery is able to compute automorphism groups of
curves. However, the performance of these routines varies quite significantly based on the
complexity of the base field. The routines work quickly over finite fields, but are often quite
slow over number fields, especially when working with curves that have complicated models.

For our purposes, we are interested in quickly constructing automorphisms (defined over
Q) of non-hyperelliptic curves D/Q with genus ≥ 3. (Magma has efficient, specialized
routines for genus 2 and genus 3 hyperelliptic curves.) Our goal is not to provably compute
the automorphism group, but to efficiently construct all the automorphisms that likely exist.
The procedure we use is the following.

(1) Given a curve D/Q, use Magma’s routines to compute Aut(D/Fp) for several different
choices of primes p. If all automorphisms of D are defined over the number field K,
then we expect that if p splits completely in K, then |Aut(D/Fp)| = |AutQ(D)|.
Data for several primes will give a prediction for |AutQ(D)| and K.

(2) Consider the canonical embedding of D ⊂ Pg−1. Any automorphism of D can be
realized as a linear automorphism of Pg−1 that fixes the canonical image of D.

(3) Construct the “automorphism scheme” X/Q of linear automorphisms from Pg−1 that
map D to itself. Let I(D) ⊆ Q[x1, x2, . . . , xg] denote the ideal of polynomials that
vanish on the canonical image of D. For each homogeneous generator fi of I(D) of

degree di, we construct a basis v
(i)
1 , v

(i)
2 , . . . , v

(i)
ei for the degree di graded piece of I(D).

If φ : D → D is an automorphism, then

φ(fi) =

ei∑
j=1

ci,jv
(i)
j .

We construct the automorphism scheme as a subscheme of Ad, where d = g2+
∑

i di+
1. We use g2 variables for the linear transformation,

∑
i di variables for the constants

ci,j in the above equation, and one further variable to encode the multiplicative inverse
of the determinant of the linear transformation. (This scheme actually has dimension
1 since an arbitrary scaling of the matrix is allowed.) We will extend X to a scheme
over SpecZ (which we also call X).

(4) Choose a prime p that splits completely in K and a prime ideal p of norm p in OK , the
ring of integers in K. Use Magma’s routines to compute Aut(D/Fp) and represent
these automorphisms as points in X(Fp).

(5) Use Hensel’s lemma to lift the points on X(Fp) to points on X(Z/prZ) for some
modestly sized integer r. (We frequently use r = 60.) Hensel’s lemma is already
implemented in Magma via LiftPoint.

(6) Scale the lifted points so that one nonzero coordinate is equal to 1. Then use lattice
reduction to find points in K of small height that reduce to the points in X(Z/prZ)
modulo pr. Use these to construct points in X(K), i.e., automorphisms of D defined
over K.
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The above algorithm runs very quickly in practice for curves of reasonably small genus.
For example, the genus 5 curve given by

−2705a2 + 1681b2 − 1967bc+ 2048c2 − 2d2 = 0

73a2 − 41b2 + 64bc− 64c2 − 2de = 0

−2a2 + b2 − 2bc+ 2c2 − 2e2 = 0

is one of the étale double covers of X619. This curve has (at least) 16 automorphisms

defined over Q(
√

2 +
√

2) which are found by the above algorithm in 25.6 seconds. However,
Magma’s built in routines require a long time to determine the automorphism group (the
routine did not finish after running it for 3 and 1/2 days).

7.8. Fast computation of checking isomorphism of curves. A related problem to com-
puting automorphisms is proving that two curves are isomorphic. There are many instances
of non-conjugate subgroups H and K with XH

∼= XK . Within the 22 genus three curves,
there are at most 7 isomorphism classes. Within the 20 genus five curves, there are at most
10 isomorphism classes. The 4 genus seven curves fall into two isomorphism classes.

Magma’s built-in command IsIsomorphic suffices for hyperelliptic curves and a few higher
genus curves that happen to have nice models. The simplest way to determine if two non-
hyperelliptic genus 3 curves are isomorphic is to compute their canonical models and apply
MinimizeReducePlaneQuartic and inspect the resulting simplified polynomials - at this
point the isomorphisms can be seen by inspection.

In the genus 5 case, we use a variant of the approach described for automorphisms, and,
given two curves C1 and C2, we construct an “isomorphism scheme” in a similar way to
the automorphism scheme above. Again, we use Magma’s internal commands to find iso-
morphisms mod p, and lift these to characteristic zero isomorphisms. In the genus 7 case,
Magma’s built-in commands are the most efficient.

7.9. Probable computation of ranks. It is straightforward to compute the rank of a
curve of genus at most 2 using Magma’s preexisting commands (e.g. via RankBound, an
implementation of [Sto01]); computation of the rank of the Jacobian of a genus 3 plane
curve has recently been worked out [BPS12], but is often impractical [BPS12, Remark 1.1]
and moreover has not been implemented in a publicly available way. For genus > 3 little is
known in general (though special cases such as cyclic covers of P1 are known [PS97], [SvL13]).

For the determination of the rational points on each XH , we will only need a rigorous
computation of rank for genus at most 2. Nonetheless, in many cases we can compute
“probable” ranks, and mention this in the discussion as an indication of why we chose a
particular direction of analysis. If H is a subgroup of GL2(Z2) that contains Γ(2k), then XH

is a quotient of X1(4k), but the map from X1(4k)→ XH is only defined over Q(ζ4k). For this
reason, we cannot immediately conclude that each factor A of JacXH is modular. However,
numerical data suggests that each such A is indeed a factor of JacX1(4k). We can find a
candidate for the corresponding modular form f (e.g. by comparing traces) and compute a
guess for the analytic rank, but we cannot prove that A ∼= Af , or that the algebraic and
analytic ranks of Af agree.
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8. Analysis of Rational Points - Genus 2

In the remaining sections we provably compute all of the rational points on each modular
curve. Magma code verifying the below claims is available at [RZB] and additionally at the
arXiv page of this paper.

There are 57 arithmetically maximal genus 2 curves. Among these, 46 have Jacobians
with rank 0, 3 with rank 1, and 8 with rank 2. We will use étale descent on the rank 2
cases and Chabauty on the others. In each case, the rank of the Jacobian is computed with
Magma’s RankBound command. See the transcript of computations for full details, and see
[BS08] for a detailed discussion of all practical techniques for determining the rational points
on a genus 2 curve.

8.1. Rank 0. If rk JacX(Q) = 0 then JacX(Q) is torsion. To find all of the rational points
on X it thus suffices to compute the torsion subgroup of JacX(Q) and compute preimages of
these under an inclusion X ↪→ JacX . This is implemented in Magma as the Chabauty0(J)

command, and in each case Magma computes that the only rational points are the known
points.

8.2. Rank 1. If rk JacX(Q) = 1 then one can attempt Chabauty’s method. This is imple-
mented in Magma as the Chabauty(ptJ) command, and in each case Magma computes that
the only rational points are the known points.

8.3. Rank 2. If rk JacX(Q) = 2 then Chabauty’s method doesn’t apply and the analysis is
more involved; instead we proceed by étale descent. In each case, the Jacobian of X has a
rational 2-torsion point. Thus, given a model

X : y2 = f(x)

of X, f factors as f1f2, where both are polynomials of positive degree (and both of even
degree if f has even degree), and X admits étale double covers Cd → X, where the curve Cd
is given by

Cd : dy2
1 = f1(x)

dy2
2 = f2(x)

Since X has good reduction outside of 2 and the 2-cover C1 → X is étale away from 2 (since
it is the pullback of a 2-isogeny A → JacX , and such an isogeny is étale away from 2), by
étale descent (see 7.5 above) every rational point on X lifts to a rational point on Cd(Q) for
d ∈ {±1,±2}. The Jacobian of Cd is isogenous to JacX ×Ed, where Ed is the Jacobian of
the (possibly pointless) genus one curve dy2

2 = f2(x) (where we assume that deg f2 ≥ deg f1,
so that deg f2 ≥ 3).

There are 4 isomorphism classes of genus 2 curves in our list with Jacobian of rank 2
(X395, X402, X441, X520). In two cases (X395 and X402), each twist Cd maps to a rank 0
elliptic curve. For example, X395 is the hyperelliptic curve y2 = x6 − 5x4 − 5x2 + 1 =
(x2 − 2x− 1)(x2 + 1)(x2 + 2x− 1). This admits étale covers by the genus 3 curves

Cd : dy2
1 = x2 + 1

dy2
2 = (x2 − 2x− 1)(x2 + 2x− 1)
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each of which in turn maps to the genus 1 curve Ed : dy2
2 = (x2 − 2x− 1)(x2 + 2x− 1), and

for d ∈ {±1,±2}, rk JacEd = 0, allowing the determination the rational points on each Cd
and thus on X395.

For the remaining genus 2 curves, three of the twists map to a rank 0 elliptic curve,
but the twist by −2 maps to a rank 1 elliptic curve. Here one may apply étale descent
again, but over a quadratic extension. For example, X441 is the hyperelliptic curve y2 =
x6 − 3x4 + x2 + 1 = (x − 1)(x + 1)(x4 − 2x2 − 1). (This is the curve X+

ns(16) whose non-
cuspidal points classify elliptic curves whose mod 16 image of Galois is contained in the
normalizer of a non-split Cartan subgroup. The rational points on this curve are resolved in
[Bar10] via elliptic Chabauty; we give an independent determination of the rational points
on this curve.) This admits étale covers by the genus 3 curves

Cd : dy2
1 = (x− 1)(x+ 1)

dy2
2 = (x4 − 2x2 − 1)

The Jacobian of dy2
2 = x4− 2x2− 1 has rank 0 for d = ±1, 2. For d = −2, we note that since

x4 − 2x2 − 1 factors over Q(
√

2) as ((x − 1)2 −
√

2)((x − 1)2 +
√

2), C−2 admits a further
étale double cover over Q(

√
2) by

X−2,d′ : −2y2
1 = (x− 1)(x+ 1)

−2d′y2
2 = (x− 1)2 −

√
2

d′y2
3 = (x− 1)2 +

√
2

(Note that a priori one expects this factorization to occur over a small field by Remark
7.2.) By descent theory, every rational point on C−2 lifts to a K := Q(

√
2) point on

X−2,d′ for some d′ ∈ O×K,S/
(
O×K,S

)2
. These each map to the two genus 1 curves d′y2 =

(x − 1)(x + 1)((x − 1)2 −
√

2) and −2d′y2 = (x − 1)(x + 1)((x − 1)2 +
√

2). For 6 of the 8
such d′, one of these curves has rank 0, and for 2 both have rank 1. Any point coming from
a rational point on X441 has rational x-coordinate, and elliptic Chabauty (as described in
Subsection 7.4) successfully resolves the rational points on the remaining two curves.

9. Analysis of Rational Points - Genus 3

There are 18 genus 3 curves (and at most 7 isomorphism classes). Of the isomorphism
classes, X556, X558 are hyperelliptic and handled by étale descent; X618 admits a map to a
rank zero elliptic curve defined over Q(

√
2); X628, X641, and X650 have nice models and can

be handled in a direct, ad hoc manner. Finally, X619 is the most difficult case – it has six
rational points and its Jacobian has (probable) analytic rank 3; we are nonetheless able to
handle this curve via an elliptic Chabauty argument whose setup is non-trivial. All other
genus 3 curves on our list are isomorphic to one of these.

Remark 9.1. Unfortunately, consideration of Prym varieties (see [Bru08] for a discussion) do
not simplify analysis of any of the above curves; for instance, X619 admits an étale double
cover, but one of the twists of the associated Prym varieties has rank 2.

9.2. Genus 3 hyperelliptic. The genus 3 curves X556, X558, X563, X566 are hyperelliptic.
The last two curves are isomorphic to the first two, which are given by

X556 : y2 = x7 + 4x6 − 7x5 − 8x4 + 7x3 + 4x2 − x
X558 : y2 = x8 − 4x7 − 12x6 + 28x5 + 38x4 − 28x3 − 12x2 + 4x+ 1
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Their Jacobians have rank 1, but unfortunately much of the machinery necessary to do
Chabauty on curves of genus g > 2 is not implemented in Magma (e.g., a simple search did
not reveal generators for the Jacobian of X556; for a genus 2 curve one can efficiently search
on the associated Kummer surface, but the analogous computation for abelian threefolds is
not implemented).

Instead, we proceed by descent. The hyperelliptic polynomials both factor, so each X
admits an étale double cover which itself admits a map to a genus 2 curve. Rational points
on the genus 3 curves lift to twists of the étale double cover by d ∈ {±1,±2}. For example,
X556 admits étale double covers by the genus 5 curves

Cd : dy2
1 = x

dy2
2 = (x− 1)(x+ 1)(x4 + 4x3 − 6x2 − 4x+ 1)

which each maps to the genus 2 hyperelliptic curve

Hd : dy2 = (x− 1)(x+ 1)(x4 + 4x3 − 6x2 − 4x+ 1).

For d ∈ {±1,±2} the Jacobian of Hd has rank 0 or 1, and Chabauty reveals that any rational
point on X556 is either a point at infinity or satisfies x = 0 or y = 0. Similarly, the defining
polynomial of X558 factors as (x2 − 2x− 1)(x2 + 2x− 1)(x4 − 4x3 − 6x2 + 4x+ 1), and each
of the four resulting genus 2 hyperelliptic curves

dy2 = (x2 + 2x− 1)(x4 − 4x3 − 6x2 + 4x+ 1)

have Jacobians of rank 1.
Each of these four hyperelliptic curves has four non-cuspidal, non-CM rational points that

all have the same image on the j-line. For X556 we obtain j = 24 · 173, for X558 we obtain
j = 40973

16
, for X563 we obtain j = 211, and for X566 we obtain j = 2573

256
.

9.3. Analysis of X618. The curve X618 has two visible rational points. Over the field Q(
√

2),
X618 maps to the elliptic curve

E : y2 = x3 + (
√

2 + 1)x2 + (−3
√

2− 5)x+ (−2
√

2− 3)

which has rank 0 over Q(
√

2) and has four Q(
√

2)-rational points, two of which lift to rational
points of X618.

We found this cover by computing AutX618,Q(
√

2) (which has order 8) and computing E

as the quotient of X618,Q(
√

2) by one of these automorphisms. (See Subsection 7.7 for a

description of this computation.)

9.4. Analysis of X619. The above techniques do not work on X619; its Jacobian has (prob-
able) analytic rank 3 and, while it admits an étale double cover D, a twist of D has rational
points and associated Prym variety of rank 2. The curve Dδ has the equation

δr2 = −2705u2 + 1681v2 − 1967vw + 2048w2

δrs = 73u2 − 41v2 + 64vw − 64w2

δs2 = −2u2 + v2 − 2vw + 2w2.

A bit of work reduces this to an elliptic Chabauty computation. Over the quartic field

K = Q(a), where a =
√

2 +
√

2), any quadratic twist Dδ of D has automorphism group
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D8 × Z/2Z. Let H be the subgroup 〈ι1, ι2〉, where ι1 : Dδ → Dδ is given by ι1(u : v : w : r :
s) = (u : −v : −w : r : s) and

ι2(u : v : w : r : s) = (u :

√
2

2
v − w : −1

2
v −
√

2

2
w :

1

18
(−73a3 + 228a)r +

1

18
(−2624a3 + 8529a)s :

1

9
(a3 − 3a)r +

1

18
(73a3 − 228a)s).

The twist D−2 has no Q2 points. When δ = 1 or 2, the quotient Dδ/H is isomorphic to
the elliptic curve

E+ : δy2 = x3+(a3+1)x2+(194a3+153a2−660a−509)x+(−1815a3−1389a2+6202a+4747)

and the quotient D−1/H is isomorphic to the elliptic curve

E− : δy2 = x3 + (a3 + a2 + a+ 1)x2 + (4a3 + 8a2 + 6a− 11)x+ (−3a3 + 29a2 + 11a− 27).

The quotient of Dδ by AutDδ is P1; the quotient map φδ : Dδ → P1 is defined over Q and
factors through the map Dδ → E±:

Dδ

!!
φδ

��

E±

ψδ}}
P1

We are thus in the situation of elliptic Chabauty – by construction, any K-point of E± that
is the image of a Q-point of Dδ maps to P1(Q) under ψδ, K has degree 4 and E±(K) has
rank 2. Magma computes that the only K-rational points of E that map to P1(Q) are the
known ones coming from Dδ.

It takes a bit of work to compute explicitly the map ψδ : E± → P1. The group H is not
normal, so ψδ is not given by the quotient of a group of automorphisms. We proceed by brute
force. We know the degree of ψδ and thus the general form of its equations (by Lemma 4.2).
We construct points on Dδ over various number fields; we can map them on the one hand to
E± and on the other hand to P1, giving a collection of pairs (P ∈ E±(K), ψδ(P )). Sufficiently
many such pairs will allow us to compute equations for ψδ.

See the transcript of computations for code verifying these claims. We find that there are
six rational points onX619. Two of these are cusps, two of these are CM points, corresponding
to j = 16581375 (CM curves with discriminant −28), and two of these correspond to j =
8579853

628
. Three other curves in our list are isomorphic to X619. One of these, X649 also has

non-CM rational points corresponding to j = 9194253

4964
.

9.5. Analysis of X628. The (probable) analytic rank of the Jacobian of X628 is 3, ruling out
the possibility of a direct Chabauty argument. While it admits an étale double cover, the
Prym variety associated to each twist has rank 1 and Chabauty on the double cover is thus
possible but tedious to implement. Alternatively, each étale double cover maps to a rank
0 elliptic curve. This map is not explicit and would require a moderate amount of ad hoc
work to exploit.
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Instead, we exploit the nice model y4 = 4xz(x2−2z2) of this curve via the following direct
argument. (This is equivalent to étale descent, but the simplicity of the model motivates a
direct presentation.) An elementary argument shows that, for xyz 6= 0, there exist integers
u, v, w such that either x = ±u4, z = ±4v4, and x2 − 2z2 = ±w4, giving u8 − 32v8 = ±w4,
or that x = ±2u4, z = ±v4, and x2 − 2z2 = ±2w4, giving 2u8 − v8 = ±w4. It follows from
[Coh07, Exercise 6.24, Proposition 6.5.4] that the only solution is to the latter equation with
u = v = w = 1. It follows that the only points on y4 = 4xz(x2 − 2z2) are (0 : 0 : 1),
(1 : 0 : 0), (2 : −2 : 1) and (2 : 2 : 1).

9.6. Analysis of X641 and X650. Each of X641 and X650 have Jacobians of (probable)
analytic rank 3, but admit various étale double covers. Each double cover has a twist with
local points and such that the associated Prym variety has rank 1. This suggests a Chabauty
argument via the Prym, but the details of such an implementation would be complicated.
Instead we exploit the nice plane quartic models of these curves.
X641 has an affine model (x2− 2y2− 2z2)2 = (y2− 2yz+ 3z2)(y2 + z2) and thus admits an

étale double cover by the curve

Dδ : y2 − 2yz + 3z2 = δu2

x2 − 2y2 − 2z2 = δuv
y2 + z2 = δv2.

The only twist with 2-adic points is δ = 1. The quotient by the automorphism [x : y : z : u :
v] 7→ [−x : y : z : −u : −v] is the genus 3 hyperelliptic curve y2 = −x8 +8x6−20x4 +16x2−2.
This curve is an unramified double cover of H : y2 = −x5 + 8x4 − 20x3 + 16x2 − 2x. The
Jacobian of H has rank 1, and Chabauty successfully determines the rational points on H;
computing the preimages of these points on D allows us to conclude that only rational points
on X641 are the known ones.

Similarly, X650 has a model y4 = (x2− 2xz− z2)(x2 + z2) and thus admits an étale double
cover by the curve

Dδ : x2 − 2xz − z2 = δu2

y2 = δuv
x2 + z2 = δv2

The only twist with 2-adic points is δ = 1. This genus 5 curve has four automorphisms
over Q, and the quotient of D1 by one of the involutions is the genus 3 hyperelliptic curve
y2 = −x8 + 2, which maps to the genus 2 curve H : y2 = −x5 + 2x. The rank of the Jacobian
of H is 1, and Chabauty again proves that the only rational points on X650 are the known
points.

10. Analysis of Rational Points - Genus 5 and 7

There are 20 genus 5 curves (at most 10 isomorphism classes) and 4 genus 7 curves. The
genus 5 curves X686 and X689 are handled in an ad hoc manner by explicit étale descent. The
remaining genus 5 curves and all of the genus 7 curves are handled by the modular double
cover method (see Subsection 10.3) or are isomorphic to one of X686 or X689.
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10.1. Analysis of X689. The curve X689 has a model

X672 : y2 = x3 + x2 − 3x+ 1

w2 = 2(y2 + y(−x+ 1))(x2 − 2x− 1)

The curve Dδ

y2 = x3 + x2 − 3x+ 1

δw2
1 = (x2 − 2x− 1)

δw2
2 = 2(y2 + y(−x+ 1))

is an étale double cover of X689. (Magma computes that g(D) = 9, so this follows from
Riemann-Hurwitz.) The cover is unramified outside of 2, so every rational point on X689

lifts to a rational point on Dδ for some δ ∈ {±1,±2}. The curve Dδ maps to the curve Hδ

given by

y2 − (x3 + x2 − 3x+ 1) = 0

δw2
1 − (x2 − 2x− 1) = 0

which Magma computes is a genus 3 hyperelliptic curve. Each of these hyperelliptic curves
has Jacobian of rank 1 or 2, with four visibile automorphisms. Taking the quotient by a
non-hyperelliptic involution gives a genus 2 hyperelliptic curve, the Jacobians of which have
rank at most 1; Chabauty applied to the genus 2 curves thus proves that the only rational
points on X672 are the known points.

See the transcript of computations for Magma code verifying these claims.

10.2. Analysis of X686. Similarly, the curve X686 has a model

X686 : y2 = x3 + x2 − 3x+ 1

w2 = 2(y2 − y(−x+ 1))(x2 − 2x− 1)

and étale double covers Dδ → X686 from the curves

y2 = x3 + x2 − 3x+ 1

δw2
1 = x2 − 2x− 1

δw2
2 = 2(y2 − y(−x+ 1)).

The curve Dδ maps to the genus 3 hyperelliptic curve Hδ given by

y2 − (x3 + x2 − 3x+ 1) = 0

δw2
1 − (x2 − 2x− 1) = 0.

These are the same curves as in the analysis of X689, and we conclude in the same way that
the only rational points on X686 are the known points.
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10.3. Non-explicit, modular double covers. The remaining genus 5 curves and the genus
7 curves are inaccessible via other methods and will be handled by the modular double cover
method described in subsection 7.6. We describe this method in more detail here.

Let S = {1, 2,−1,−2} and for δ ∈ S define χδ to be the Kronecker character associated

to Q(
√
δ). Suppose that X is one of these 20 such curves, with corresponding subgroup H.

In each case, we can find four index 2 subgroups Kδ with δ ∈ S so that for all g ∈ Kδ,

g ∈ K1 if and only if χδ(det g) = 1.

Moreover, if the genus of X is g, the genus of each Kδ is 2g − 1, which implies that XKδ/X
is étale.

Choose a modular function h(z) for K1 so that if m is an element of the non-identity coset
for K1 in H, then h|m = −h. A model for XK1 is then given by h2 = r, where r ∈ Q(XH).

Moreover, the condition on elements of Kδ implies that
√
δh is fixed by the action of Kδ

(recall the method of model computations in Section 4). This implies that the curves XKδ

are the twists (by the elements of S) of K1, and hence every rational point on XH lifts to
one of the XKδ . In each case, the XKδ maps to a curve Xn whose model we have computed
that has finitely many rational points (namely a pointless conic, a pointless genus 1 curve,
or an elliptic curve with rank zero).

Note that the group theory alone provides the properties we need for the curves XKδ , and
we do not construct models for them.

Example 10.4. The curve X695 is a genus 5 curve that has two visible rational points
corresponding to elliptic curves with j-invariant 54000. In this case, XK1 and XK−1 map to
the rank zero elliptic curve X285 : y2 = x3 +x (whose two rational points map to j = 54000).
The curves XK2 and XK−2 map to X283, a genus 1 curve with no 2-adic points.

See the transcript of computations for further details.

Appendix A. Proving the mod N representation is surjective

Given a Galois extension K/Q with Galois group G, [DD13] gives an algorithm that will
allow one to determine, for a given unramified prime p, the Frobenius conjugacy class Frobp.
Applied to the case K = Q(E[N ]), and given initial knowledge that G is a subgroup of some
particular H (e.g. E could arise from a rational point on XH), this gives an algorithm to
prove that im ρE,N = H.

Remark A.1. When H = Sn or GL2(F`) this is well understood (e.g. in the latter case, if ` > 5
and G contains three elements with particular properties then G = H [Ser72, Prop. 19]).
For subgroups of GL2(F`), [Sut15] recently proved that if two subgroups H,K of GL2(F`)
have the same signature, defined to be

sH := {(detA, trA, rank fixA) : A ∈ H},
then H and K are conjugate. (Note that the extra data of fixA is necessary to distinguish
the trivial and order 2 subgroups of GL2(F2). Already for G ⊂ GL2(Z/`2Z) with ` > 2, the
additional data of fixA does not suffice – for instance, the order ` subgroups generated by[

1− ` `
0 1 + `

]
and

[
1− ` −`

0 1 + `

]
have the same signature.)
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Remark A.2. It is in principle completely straight-forward to provably determine the image
of ρE,n. Indeed, Magma can compute, for any n, the corresponding division polynomial, and
compute the Galois group of the corresponding field. In practice though, as the degree of
Q(E[n]) grows, a direct computation of the Galois group using Magma’s built in commands
quickly becomes infeasible.

We now describe the algorithm. Suppose that K is the splitting field of

F (x) =
n∏
i=1

(x− ai).

Given some fixed polynomial h and a conjugacy class C ⊆ G, construct the resolvent poly-
nomial

ΓC(X) =
∏
σ∈C

(
X −

n∑
i=1

h(ai)σ(ai)

)
.

Theorem 5.3 of [DD13] states the following (specializing to extensions of Q).

Theorem. Assume the notation above.

(1) For each conjugacy class C ⊆ G, ΓC(X) has coefficients in Q.

(2) If p is a prime that does not divide the denominators of F (x), h(x) and the resolvents
of ΓC and ΓC′ for different C and C ′, then

Frobp = C ⇐⇒ ΓC

(
Tr Fp[x]

F (x)
/Fp

(h(x)xp)

)
≡ 0 (mod p).

We wish to apply this theorem in the case that G = H and when the Galois group of K/Q
may not necessarily be G. An examination of the proof shows that the theorem remains true
even if Gal(K/Q) is a proper subgroup of G.

Our setup is the following. Suppose that E/Q is an elliptic curve with a model chosen
that has integer coefficients. Suppose also that we know, a priori, that the image of the mod
N Galois representation is contained in H ⊆ GL2(Z/NZ). The following algorithm gives a
method to prove that the mod N image is equal to H. Define

s1(N) =


4 if N = 2

p if N > 2 is a power of the prime p

1 otherwise,

s2(N) =


8 if N = 2

9 if N = 3

p if N > 3 is a power of the prime p

1 otherwise.

(1) We fix an isomorphism φ : (Z/NZ)2 → E[N ] and pre-compute decimal expansions
of f(P ) = s1(N)x(P ) + s2(N)y(P ) for all torsion points of P of order N on E. By
Theorem VIII.7.1 of [Sil09], these numbers are algebraic integers.
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(2) The action of Galois on the numbers s1(N)x(P ) + s2(N)y(P ) is given by some con-
jugate of H. We attempt to identify a unique conjugate of H in GL2(Z/NZ) that
gives this action. We do this by numerically computing∑

k∈K

f(φ(k(1, 0)))f(φ(k(0, 1))) + f(φ(k(1, 0)))f(φ(k(1, 1))) + f(φ(k(0, 1)))f(φ(k(1, 1)))

for each conjugate K of H inside GL2(Z/NZ). If the image of the mod N represen-
tation is contained in K, then the sum above will be an integer.

(3) We compute the polynomial F (x) with integer coefficients whose roots are the num-
bers f(P ) = s1(N)x(P ) + s2(N)y(P ). This polynomial is computed numerically.
Knowing the size of the numbers f(P ), we verify that enough decimal precision is
used to be able to round the coefficients of F (x) to the nearest integer and obtain
the correct result.

(4) We compute the resolvent polynomials for all of the conjugacy classes of H and check
that these have no common factor. (In practice, we use h(x) = x3 to construct these
polynomials. We use a smaller decimal precision for the resolvent polynomials and
again check that we can round the coefficients to the nearest integer to obtain the
correct result.)

(5) Using the resolvent polynomials, we compute the conjugacy class of ρE,N(Frobp) ⊆ H
for lots of different primes p.

(6) We enumerate the maximal subgroups of H and determine which conjugacy classes
they intersect. We check to see if the conjugacy classes found in the previous step all
lie in some proper maximal subgroup of H. If not, then the image of ρE,N is equal
to H.

Note that it is not possible for a maximal subgroup M ⊆ H to intersect all of the conjugacy
classes of H.

Example A.3. Let E : y2 = x3 + x2 − 28x + 48. This elliptic curve has j-invariant 78608,
which corresponds to a non-CM rational point on X556, and hence the 2-adic image for E
is contained in H556, an index 96 subgroup of GL2(Z2) that contains Γ(16). We must show
that the 2-adic image equals H556. Every maximal subgroup of H556 also contains Γ(16),
so it suffices to compute the image of the mod 16 Galois representation attached to E.
To do this, we fix an isomorphism E[16] ∼= (Z/16Z)2, and precompute decimal expansions
of 2x(P ) + 2y(P ) for all P ∈ E[16], using 1000 digits of decimal precision. There are 24
conjugates of H556 in GL2(Z2), and we find that the expression in step 2 above is an integer
only for one of the conjugates of H556.

The image of H556 under the map GL2(Z2)→ GL2(Z/16Z) has 46 conjugates classes, and
we compute the polynomial F (x) whose roots are the 192 numbers 2x(P )+2y(P ). Knowing
the sizes of the roots, we can see that no coefficient of F (x) could be larger than 10291, and
so 1000 digits of decimal precision is enough to correctly recover F (x).

We then compute the resolvent polynomials for the 46 conjugacy classes (using 500 digits of
decimal precision). Then, for each prime p ≤ 30000, we compute Tr Fp[x]

(F (x))
/Fp

(xp+3) and check

which resolvent polynomial has this number as a root in Fp. Using this, we can determine
which conjugacy class is the image of Frobp. We find that all 46 conjugacy classes are in the
image of Frobp for some p. (For example, the smallest prime p which splits completely in
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Q(E[16]) is p = 5441.) As a consequence the image of the mod 16 Galois representation of
E is H556.
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