ELLIPTIC CURVES OVER Q AND 2-ADIC IMAGES OF GALOIS

JEREMY ROUSE AND DAVID ZUREICK-BROWN

ABSTRACT. We give a classification of all possible 2-adic images of Galois representations
associated to elliptic curves over Q. To this end, we compute the ‘arithmetically maximal’
tower of 2-power level modular curves, develop techniques to compute their equations, and
classify the rational points on these curves.

1. INTRODUCTION

Serre proved in [Ser72| that, for an elliptic curve E over a number field K without complex
multiplication, the index of the mod n Galois representation pg ,, associated to E is bounded
— there is an integer Ng such that for any n, the index of pg,(Gk) in GL2(Z/nZ) is at
most Ng (equivalently, the mod ¢ representation is surjective for large ¢). Serre’s proof is
ineffective in the sense that it does not compute Ng explicitly; in fact one conjectures that
for £ > 37, pp is surjective. The early progress on this problem |[Maz78| has recently been
vastly extended [BPR11], but a proof in the remaining case — to show that the image cannot
be contained in the normalizer of a non-split Cartan — is elusive and inaccessible through
refinements of Mazur’s method. A

Mazur’s Program B [Maz77| (given an open subgroup H C GLg(Z), classify all elliptic
curves E'/ K such that the image of pp = @n pE.n s contained in H) suggests a more general
uniformity conjecture — one expects that for every number field K, there exists a constant
B(K) such that for every elliptic curve E/K without complex multiplication, the indez of
pe(Gk) in GLy(Z) is bounded by B(K).

Computational evidence supports the uniformity conjecture — for any given E, [Zywll]
gives an algorithm (implemented in Sage) to compute the set of primes ¢ such that pg,
is not surjective, and verifies for non-CM E with Ng < 350000 that pg, is surjective for
¢ > 37. Similarly, for small £ one can compute im pg ¢ directly; [Sut15] has computed im pg
for every elliptic curve in the Cremona and Stein-Watkins databases for all primes ¢ < 80.
This is a total of 139 million curves, and Sutherland’s results are now listed in Cremona’s
tables. In Appendix , we describe a method using [DD13] that can often provably compute
the mod n image of Galois for any elliptic curve.

Complementing this are various results (going as far back as Fricke, possibly earlier; see
[Maz77, Footnote 1]) computing equations for the modular curve Xy parameterizing E with
pe(Gk) C H (see Section [2| for a definition). For instance, [BLS12] have extended the
range of ¢ such that one can compute the modular polynomial ®,(X,Y") to ¢ ~ 10,000 and
Sutherland now maintains tables of equations for modular curves (see e.g. [Sut|, [Sut12]).
Recently [DD12| (inspired by the earlier 3-adic analogue |EIk06]) computed equations for
the modular curves necessary to compute whether the mod 8, and thus the 2-adic, image
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of Galois is surjective (i.e. equations for Xy with reduction H(8) C GLy(Z/8Z) a maximal
subgroup). (See Remark for more such examples.)

In many cases these equations have been used to compute the rational points on the
corresponding curves; see Remark for some examples. Applications abound. In addition
to verifying low level cases of known classification theorems such as [Maz78| (in this spirit
we note the outstanding case of the “cursed” genus 3 curve X (13) [BPR11, Remark 4.10],
[Bar14]) and verifying special cases of the uniformity problem, various authors have used the
link between integral points on modular curves and the class number one problem to give
new solutions to the class number one problem; see [Ser97, A.5], and more recently [Barl0],
[Bar09], [Che99], [ST12], and [Ken85|.

4

Main theorem. In the spirit of Mazur’s ‘Program B’, we consider a “vertical” variant of
the uniformity problem. For any prime ¢ and number field K, it follows from Falting’s The-
orem and a short argument (e.g. [Ara08, Theorem 1.2] plus Goursats Lemma) that there is a
bound Ny i on the index of the image of the ¢-adic representation associated to any elliptic
curve over K. The uniformity conjecture implies that for ¢ > 37, N,o = 1, but N, can of
course be larger for ¢ < 37. Actually even more is true — the uniformity conjecture would
imply the existence of a universal constant N bounding the index of pg,(Gg) for every n
(equivalently, bounding the index of pg(Gg); see [Ara0g]).

In this spirit, we give a complete classification of the possible 2-adic images of Galois
representations associated to non-CM elliptic curves over Q and, in particular, compute
N2’Q.

Theorem 1.1. Let H C GLy(Zs) be a subgroup, and E be an elliptic curve whose 2-adic
image 1s contained in H. Then one of the following holds:

e The modular curve Xg has infinitely many rational points.
e The curve E has complex multiplication.
e The j-invariant of E appears in the following table|1] below.

Remark 1.2. The level of a subgroup H is the smallest integer 2* so that H contains all
matrices M = I (mod 2¥). Also, we consider action of the matrices in GLy(Z) on the right.
That is, we represent elements of E[2*] as row vectors 7, and the image of Galois on an
element of E[2*] corresponds to M.

Corollary 1.3. Let E be an elliptic curve over Q without complex multiplication. Then
the index of pga=(Ggq) divides 64 or 96; all such indices occur. Moreover, the image of
pE2=(Gg) is the inverse image in GLa(Zs) of the image of pg32(Gg). For non-CM elliptic
curves E/Q, there are precisely 1208 possible images for pg .

Remark 1.4. The earlier paper |Nis83| of Nishioka studied the case of an elliptic curve E/Q
with full rational 2-torsion. Nishioka proved that pga~(G) contains the kernel of reduction
modulo 128, and also that if E has torsion subgroup Z/2Z x 7 /87, then pg 2 (G) is conjugate
to { [i Z] € GLy(Z3) :a=1 (mod 8),6 =0 (mod 2),c=0 (mod 8) and d =1 (mod 2)}
Remark 1.5. All indices dividing 96 occur for infinitely many elliptic curves. For the first

six j-invariants in the table above, the index of the image is 96, and for these, —I € H and
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TABLE 1. Exceptional j-invariants from Theorem

this index occurs for all quadratic twists. Additionally, there are several subgroups H with
—1 & H and Xy = P!, so that the there are infinitely many j-invariants such that the index
is 96. Index 64 only occurs for the last two j-invariants in the above table, which occur as
the two non-cuspidal non-CM rational points on the genus 2 curve X/, (16) (X441 on our list;
see the analysis of Subsection , which classifies £ whose mod 16 image is contained in
the normalizer of a non-split Cartan. (The second j-invariant was missed in [Bar10], because
the map from X, (16) to the j-line was not correctly computed. In this computation, Baran
relied on earlier computations of Heegner, and the error could be due to either of them.)
The smallest conductor of an elliptic curve with this second j-invariant is 72 - 79 - 1061232
(which is greater than 4 - 10'3).

Remark 1.6. An application of the classification is an answer to the following question of
Stevenhagen: when can one have Q(E[2"™]) = Q(FE[2"]) for a non-CM curve E? The
answer is that if n > 1, Q(E[2""!]) is larger than Q(E[2"]). On the other hand, there is a
one-parameter family of curves for which Q(F[2]) = Q(E[4]). These are parametrized by
the modular curve Xy, and one example is the curve E : 4> + 2y +y = 2° — 2% + 42 — 1.

Remark 1.7. The classification above plays a role in Gonzalez-Jiménez and Lozano-Robledo’s
classification of all cases in which Q(E[n])/Q is an abelian extension of Q. See [GJLR].

Remark 1.8 (Failure of Hilbert irreducibility for a non-rational base). A surprising fact is
that not every subgroup H such that Xy (Q) is infinite occurs as the image of Galois of an

elliptic curve over Q; see Section [0}
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Remark 1.9 (Related work). In preparation by other authors is a related result [SZ] — for
every subgroup H C GLo(Z,) such that —1 € H, det(H) = Z*, and Xy has genus 0,
they compute equations for Xy, whether Xz (Q) = 0 and, if not, equations for the map

Remark 1.10 (Connection to arithmetic dynamics). The image of the 2-adic representation
is connected with the following problem in arithmetic dynamics. Given an elliptic £/Q and
a point a € E(Q) of infinite order, what is the density of primes p for which the order of the
reduction & € E(F,) is odd?

In [JR10], Rafe Jones and the first author study this question, and show (see |[JR10,
Theorem 3.8]) that if for each n, 3, is a chosen preimage of o with 2"/, = a and the fields
Q(pBn) and Q(E[2"]) are linearly disjoint for all n, then this density is given by

| ldettar = Dl
im pp 200

an integral over the 2-adic image. In the case that pga~ is surjective, this density equals

1—} ~ 0.5238. Our calculations show that for a non-CM elliptic curve E, this generic density

2
can be as large as % ~ 0.7202 (corresponding to elliptic curves with no rational 2-torsion,

square discriminant, whose mod 4 image does not contain —/, namely curves parametrized

by Xs,), and as small as 2—18 ~ 0.0357 which is attained for several 2-adic images, including
elliptic curves whose torsion subgroup is Z/27 x 7Z/8Z. The generic density is listed on the

summary page for each subgroup.

We now give a brief outline of the proof of Theorem |1.1} For a subgroup H of GLy(Zy) of
finite index, there is some k such that I'(2¥) € H. The non-cuspidal points of the modular
curve Xy := X (2%)/H then roughly classify elliptic curves whose 2-adic image of Galois is
contained in H; see Section [2] for a more precise definition.

The idea of this paper is to find all of the rational points on the “tower” of 2-power level
modular curves (see Figure . We only consider subgroups H such that H has surjective
determinant and contains an element with determinant —1 and trace zero (these conditions
are necessary for Xy (Q) to be non-empty). In our proof, we will handle the case —I € H
first; see Subsection [2.3]for a discussion of Xy and the distinction between the cases —1 € H
and —1 ¢ H.

Proof of Theorem[1.1l The proof naturally breaks into the following steps.

(1) (Section [3}) First we compute a collection C of open subgroups H C GLy(Z,) such
that every open K C GlLg(Zs) which satisfies the above necessary conditions and
which is not in C is contained in some H € C such that Xy (Q) is finite. (See Figure
for those with —I € H.)

(2) (Section [4]) Next, we compute, for each H € C equations for (the coarse space of)
Xy and, for any K such that H C K, the corresponding map Xy — Xk.

(3) (Section [5]) Then, for H € C such that —/ ¢ H we compute equations for the
universal curve E — U, where U C Xj is the locus of points with j # 0, 1728 or oc.

(4) (Remainder of paper.) Finally, with the equations in hand, we determine Xy (Q) for

each H € C. The genus of Xy can be as large as 7.
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(5) (Appendix.) If we find a non-cuspidal, non-CM rational point on a curve Xy with
genus > 2, we use computations of resolvent polynomials (as described in [DD13]) to
prove that the 2-adic image for the corresponding elliptic curve E is H.

O

Remark 1.11 (Etale descent via group theory). The analysis of rational points on the collec-
tion of Xy involves a variety of techniques, including local methods, Chabauty and elliptic
curve Chabauty, and étale descent.

To determine the rational points on some of the genus 5 and 7 curves we invoke a par-
ticularly novel (and to our knowledge new) argument, combining étale descent with group
theory. In short, some of the Xy admit an étale double cover ¥ — Xp such that Y is
isomorphic to Xp for some subgroup H' of H. More coincidentally, each of the twists Yy
relevant to the étale descent are also isomorphic to modular curves Xy for some group H, 5
And finally, each group Hj is a subgroup of some additional larger group Hy such that Xgy
is a curve with finitely many rational points we already understand (e.g. a rank 0 elliptic
curve), and the map Xp; — Xp» determines X (Q) and thus, by étale descent Xp(Q).
This method is applicable to 20 out of the 24 curves of genus greater than 3 that we must
consider. See Subsection [Z.6l
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2. THE MODULAR CURVES Xpg

Given a basis (P, P») of E(Q)[N] we identify ¢: (Z/NZ)? = E(Q)[N] via the map v(e;) =
P;. This gives rise to two isomorphisms ¢1,15: Aut E(Q)[N] & GLy(Z/NZ) (corresponding

to a choice of left vs right actions) as follows: if ¢ € Aut E(Q)[N] satisfies
O(P1) =aP + cPy
O(Py) =bPy + dPs,

then we define
a c

1 (@) = {i Z} and 15(6) = {b d} .

These correspond respectively to left (via column vectors) and right (via row vectors) actions
of GLo(Z/NZ) on (Z/NZ)?. Alternatively, 1;(¢) is defined by commutativity of the diagram

(Z/NZ)? L~ B[N

]
u(¢)l l¢>
)

(Z/NZ)? —— EIN
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where we consider ¢;(¢) acting on the left (via column vectors) for ¢ = 1 and on the right
(via row vectors) for i = 2.

Throughout this paper we use only right actions, and in particular define pp n: Gx —
GLy(Z/NZ) as pp n(0) := 12(0) (this is consistent with, for instance, [Shi71]). Many sources
are ambiguous about this choice, but the ambiguity usually does not matter (see Remark
29).

For an integer NV, we define the modular curve Y (N)/Q to be the moduli space param-
eterizing pairs (E/S, ), where E is an elliptic curve over some base scheme S/Q and ¢ is
an isomorphism Mg = (Z/NZ)% = E[N], and define X(N) to be its smooth compact-
ification (see [DR73, II] for a modular interpretation of the cusps). Note that X(N) is
not geometrically connected (and thus differs from the geometrically connected variant of
[Maz77, Section 2] where ¢ is “canonical” in that it respects the Weil pairing), and that a
matrix A € GLy(Z/NZ) acts on X(N) (on the right) via precomposition with

M M, 5 5A

so that A-(E,t) :== (E,t0 A).

Following [DR73], for a subgroup H of GLQ(Z) and an integer N such that A contains the
kernel of the reduction map GLy(Z) — GLy(Z/NZ), we define Xy to be the quotient of the
modular curve X (N) by the image H(N) of H in GLy(Z/NZ). This quotient is independent

of N, is geometrically connected if det(H) = Z*, and roughly classifies elliptic curves whose
adelic image of Galois is contained in H. By the definition of Xy as a quotient, the non-
cuspidal K-rational points of Xy correspond to Gi-stable H-orbits of pairs (F,¢); we make
the translation to the image of Galois more precise in the following lemma.

Lemma 2.1. Let E be an elliptic curve over a number field K. Then there exists an v such
that (E, 1) € Xy (K) if and only if im pg,, is contained in a subgroup conjugate to H.

Proof. For o0 € G and (E,1) € Xy (K), 17 is defined to be the composition My - E[N] 2
E[N]. If (E,.) € Xu(K), then for every o € G, there is some A € H such that (7 =10 A.

Set P; := 1(e;) and suppose that A = {Z cci} Then

(vo A)er) = tlerAd) = i(aer + cex) = aPr + cPy = FY
(L (0] A)(QQ) - L(62A) = L(bel —|— d62> — bPl + dP2 — P2U7

so ppn(0) = A and im pgp y C H as claimed.

Conversely, let Py, P, be a basis of E(K)[N] such that im pg y C H with respect to this
basis, and define ¢ by t(e;) := P;. For 0 € Gk, pg.n(0) = A where

¥

and

P :=aP, +ch,
Pj :=bP, + dPs.
6



By assumption, A € H; moreover
17(e1) = t(aey + ces) = aPy + cPy
17(eg) = 1(bey + dey) = bP, + dPs
and so 1 = 1o A, which proves the converse. U

Remark 2.2. As discussed above, a choice of basis for E[N] gives rise to two isomorphisms
t1,t2: Aut E[N] = GLo(Z/NZ), via column and row vectors. Given K C Aut E[N], the
images ¢;(K) generally differ; in fact, ¢,(K) = 15(K)T, where we define the transpose H' :=
{AT . A € H}. In the literature the choice of left or right action is often ambiguous, but
usually does not matter: for many common H (e.g. the normalizer of a Cartan subgroup)
H is conjugate to H and the modular curves Xy and Xpr are thus isomorphic. This is an
issue in this paper; if instead we use ¢1, then Xy parametrizes £ with image contained in
HT rather than H, and in general H? and H are not conjugate.

In general Xy is a stack, and if —I € H, then the stabilizer of every point contains Z/27Z.
(Some, but not all, of the CM points with j = 0 or 123 will have larger stabilizers.) In
contrast, when —I € H, Xy no longer has a generic stabilizer, but is generally still a stack
since the CM points may have stabilizers. When —I € H, quadratic twisting preserves the
property that im pg x C H; in contrast, when —I ¢ H, given a non-CM elliptic curve E/K
such that j(F) is in the image of the map j: Xz (K) — PY(K), there is a unique quadratic
twist E4 of E such that impgp y C H (see Lemma below).

There exists a coarse space morphism, i.e. a morphism 7: Xy — X, where X is a scheme,
such the map Xy (Q) — X (Q) is a bijection, and any map from Xy to a scheme uniquely
factors through this morphism. We compute equations for the coarse space of X (and with
no confusion will use the same notation Xy for the coarse space). The coarse space has
the following moduli interpretation — given a number field K and a K-point ¢ of the coarse
space, there exists an elliptic curve with j-invariant j(¢) (where j is the map X — X(1))
satisfying im pg v C H, and conversely, for any E/K such that im pg, C H, there exists a

K-point ¢ of the coarse space of Xy such that j(t) = j(E).

For more details see [DR73, TV-3]; alternatively, for a shorter discussion see [Bar10, Section
3], [Ser97, A.5], or [Maz77, Section 2].

2.3. Universal curves. Suppose that —I ¢ H. Since we are not interested in the CM
points anyway, we consider the complement U C Xy of the cusps and preimages on Xpg of
7 =0and j = 1728. Then U is a scheme, so there exists a universal curve & — U, i.e. a
surface & with a map & — U such that for every t € U(K), the fiber & is an elliptic curve
over K without CM such that im pg, C H, and conversely for any elliptic curve £ over a
field K such that im pg, C H there exists a (non-unique) ¢ € U(K) such that the £ = &,.

In preparation for Section [5 (where we compute equations for & — U), we prove a pre-
liminary lemma on the shape of the defining equations of &

Lemma 2.4. Let f: & — U be as above and assume that U C A'. Then there exists a
closed immersion & — P%, given by a homogeneous polynomial

Y2Z - X3 —aXZ%—b73
where a,b € Z[t].



Proof. The identity section e: U — & is a closed immersion whose image e(U) is thus a
divisor on & isomorphic to U. By Riemann-Roch, the fibers of the pushforward f.O(3e(U))
are all 3-dimensional, so by the theorem on cohomology and base change f.O(3e(U)) is a
rank 3 vector bundle on U. Since U C A!, U has no non-trivial vector bundles and so
f:0(3e(U)) is trivial. Let O = f,0(3e(U)) be a trivialization given by sections 1, .y,
where 1 is the constant section 1 (given by adjunction), = has order 2 along e(U), and y
has order 3. These sections determine a surjection f*f.O(3e(U)) — O(3e(U)) and thus
a morphism £ — P?% which, since the fibers over U are closed immersions, is also a closed
immersion; 1, z, y satisfy a cubic equation (this is true over the generic point, so true globally)
and, since we are working in characteristic 0, can be simplified to short Weierstrass form as
desired. 0

3. SUBGROUPS OF GLy(Z>)

Definition 3.1. Define a subgroup H C GLy(Z,) to be arithmetically maximal if
(1) det: H — Z5 is surjective,
(2) there is an M € H with determinant —1 and trace zero, and

(3) there is no subgroup K satisfying (1) and (2) with H C K so that Xy has genus
> 2.

If £/Q is an elliptic curve and H = pga~(Gg), then the properties of the Weil pairing
prove that det: H — ZJ is surjective. Also, the image of complex conjugation in H must be
a matrix M with M? = I and det(M) = —1. This implies that the trace of M equals zero.

Remark 3.2. After the subgroup and model computations were complete, David Zywina and
Andrew Sutherland pointed out that if £/Q is an elliptic curve, complex conjugation fixes
an element of E[n]. This gives further conditions on a matrix M that could be the image of
complex conjugation, and rules out a handful of other subgroups.

We enumerate all of the arithmetically maximal subgroups of GLs(Z2) by initializing a
queue containing only H = GLy(Z2). We then remove a subgroup H from the queue,
compute all of the open maximal subgroups M C H. We add M to our list of potential
subgroups if (i) det: M — Z3 is surjective, (ii) —I € M, (iii) M contains a matrix with
determinant —1 and trace zero, and (iv) if M is not conjugate in GLg(Zs) to a subgroup
already in our list. If the genus of X, is zero or one, we also add M to the queue. We
proceed until the queue is empty.

To enumerate the maximal subgroups, we use the following results. Recall that if G is
a profinite group, then ®(G), the Frattini subgroup of G, is the intersection of all open
maximal subgroups of G. Proposition 2.5.1(c) of |Wil98| states that if K <G, H C G and
K C ®(H), then K C ®(G). Applying this with H = N <G and K = ®(N), we see that
O(N) C O(G).

Lemma 3.3. Suppose that T'(2¥) C H C G and k > 2. If K is a mazimal subgroup of H,
then T'(281) C K.

Proof. We have that I'(2¥) < H and by the above argument, we have

d(I'(2%) C ®(H).
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Now, I'(2¥) is a pro-2 group and this implies that every open maximal subgroup of I'(2¥) has
index 2. Hence,
d(T'(2%) D I'(2M)2
If g€ T(2%), g = I + 2*M for some M € My(Zs,). Then,
92 — ] + 2k+1M 4 22kM2 = I + 2k+1M (mOd 2k+2)

provided k& > 2. Hence, the squaring map gives a surjective homomorphism I'(2%) /T'(281) —
[(281) /T(252) for all k > 2. Tt follows that an element in I'(25!) can be written as a
product of squares in every quotient I'(2¥)/I'(2"**) and since the I'(2"**) form a base for
the open neighborhoods of the identity in G, we have that I'(2**1) C ®(I'(2%)). This yields
the desired result. O

The enumeration of the subgroups is accomplished using Magma. The initial enumera-
tion produces 1619 conjugacy classes of subgroups. The computation of the lattice of such
subgroups finds that many of these are contained in subgroups H where the genus of Xpy
is > 2. These are then removed, resulting in 727 arithmetically maximal subgroups. The
arithmetically maximal subgroups can have genus as large as 7 and index as large as 192.

4. COMPUTING EQUATIONS FOR Xy WITH —] € H

Here we discuss the computation of equations for Xy as H ranges over the arithmetically
maximal subgroups of GLy(Zs).

Remark 4.1. Equations for some of these curves already appear in the literature; see |Sut],
[Sut12], [GJGO3], [Heeb2|, [Knad2, Table 12.1], [Shi95|, [DD12], [Mom84, Proof of Lemma
3.2], |Barl0], [Hee52] [McM|, |[Zywll] 3.2] for equations of X((N) for N = 2,4, 8,16, 32,64,
Xi(N) for N = 2,4,8,16, Xy with H C GLy(Z/8Z) maximal, X (N) for N = 24,816,

and various other small genus modular curves.

We first assume that —I € H. Let H,, be the nth subgroup in our list of 727 (as given in
the file gl2data.txt), and let X,, = Xy, . Instead of constructing the coverings X,, — X;
directly, we will instead construct coverings X,, — X, so that H, is a maximal subgroup of
H,, and compose to get X,, — X;. In almost all cases the degree of the covering X,, — X,,
is 2. (The exceptions are Xg — Xj, which has degree 3, and X; — X;, X355 — X5, and
X441 — Xs5 which all have degree 4. The curves X7, X7, X55 and X447 are the curves X;;(Zk)
for 1 <k <4.)

In this process, if we find that X, is a pointless conic, a pointless genus one curve, or an
elliptic curve of rank zero, we do not compute any further coverings of X,,. For this reason,
it is only necessary for us to compute models of X,, for 345 choices of n.

In Section 6.2 of [Shi71], Shimura shows that the field L of modular functions on X (N)
whose Fourier coefficients at the cusp at infinity are contained in Q((y) is generated by

fale) = 5 PO, (22

where @ = (¢,d) and (c,d) € (Z/NZ)? has order N. Here, p.(7) is the classical Weierstrass
o-function attached to the lattice (1, z).
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Theorem 6.6 of |[Shi71] shows that the action of GLy(Z/NZ) given by fzlM = fau
uniquely extends to the entire field L and is an automorphism of L fixing Q(j). More-
over, Gal(K/Q(j)) & GLy(Z/NZ)/{+£Il}, and (y|M = (M. When M € SLy(Z/NZ),
the action of M on K is Q((y)-linear and agrees with the usual action: if h € L and

M = [‘;‘ ?} € SLy(Z/NZ), then

(h|M)(2) = h (:ii?) .

Given H C GLy(Zy) containing I'(2¥), we can think of H as a subgroup of GLy(Z/27Z)
(by abuse of notation also called H) using the isomorphism Zy/2¥Zy = Z/2¥7. Let H be
a subgroup of GLy(Zy) containing H so that the covering Xy — X has minimal degree.
Our goal is to find an element h € L that generates the fixed field of H over Q(Xj), and
compute its images under representatives for the right cosets of H in H.

We consider the Q((yx)-subspace V' of L spanned by the functions fz. It is natural to
seek a modular function h in the subspace of V' fixed by H. However, this approach does
not always succeed. The map fz — fz- % is a bijection between V' and the space of
weight 2 Eisenstein series for T'(2¥) with coefficients in Q((ox) (see [DS05], Section 4.6) and
the dimension of the space of weight 2 Eisenstein series for H is the number of cusps of Xy
minus one (see equation (4.3) on page 111 of [DS05]). If there is a subgroup M with H C M
for which Xy and Xj; have the same number of cusps, then V# = V™ and we will not
succeed in finding a primitive element for Q(Xy). Instead, we will find a subgroup K C H
so that Xk has more cusps than X, for any subgroup M with K C M C H (with K # M).
The number of cusps a subgroup K has is the number of orbits K N SLy(Z/2*Z) has in its
natural action on PY(Z/2FZ). If K N SLy(Z/2"Z) = T'(2F), the action of K on PY(Z/2*7Z)
will be trivial, and so K will have more cusps than any larger subgroup.

Once K is selected, we compute VE™SE2(Z/2°2)  The sum 3. fz - % over all vectors
a with order 2% in (Z/2%7)? is fixed by SLy(Z/2*Z) and is a holomorphic modular form
of weight 2. Since there are no nonzero weight 2 modular forms for SLy(Z), > . fz =
0. However, as proved by Hecke in [Hec27], removing any one of these gives a linearly
independent set. From this, we know exactly how GLy(Z/2*Z) acts on the space V, and we
can compute subspaces fixed by various subgroups in terms of a basis, and only compute
Fourier expansions when needed. We use this to compute VEMSL2(2/22) — (wy,wa, ..., wq)
by determining the Q((,x)-subspace of V fixed by generators of K N SLy(Z/2%7). Once this
is computed, we determine VE = (x1,2,,...,2,,) (a Q-subspace of V) by considering the
action of generators of K on ('w;. We select z = >_1" iz; as a “random” element of V¥
and verify that the number of images of = under the action of H is equal to [H : K].

Finally, we compute the Fourier expansions of the fz and use these to compute the Fourier
expansions of the images of x. If g1, ¢s,..., g, are representatives for the right cosets of K
in H, we define

h = es(z|g1, 2|92, .., z|gr),
where e is the degree s elementary symmetric polynomial in r variables. We start with

s = 1 and check if there are [H : H| images of h under the action of the right cosets of H

in H. We increment s until this occurs (and find that in all cases we can take s < 3). We
11



build the polynomial
F(t) =]~ hlo)
geT
Each of the coefficients of F'(t) is an element of Q(X ), which can be recognized from their
Fourier expansion. In the case that X5 has genus one, we use the following result, whose
proof is straightforward and we omit.

Lemma 4.2. Let E: y?>+a,zy+asy = 2®+asx? +agx+ag be an elliptic curve and g: E — P*
be a degree k morphism. Then,
P(z) + yQ(z)

g =
R(x)
where P, () and R are polynomials with deg P < 3k — 3, deg ) < 3k —5 and deg R < 3k — 3.

We then have explicitly that Q(Xy) = Q(Xz)[t]/(F(t)). At this point we use some
straightforward techniques to simplify the model generated.

Example 4.3. We will consider the example of the covering X5; — Xs9. The subgroup
Hys is an index 8, level 8 subgroup of GLy(Zs). It is one of three maximal subgroups (up
to GLy(Zs) conjugacy) of Hy7, which is the unique maximal subgroup of GLg(Z2) of index
4. When the covering X9 — X; was computed, we determined that X, = P! and we
computed and stored the Fourier expansion of a function fos with Q(Xa) = Q(f22). The
subgroup Hs; is an index 2 subgroup of Hao, and Hs; D I'(16). It is generated by I'(16) and

the matrices
11 4 15 11 7 2 d 15 15
8 3|0 1|2 1™ |1 ol

Both Hsy and Hs; have two cusps. We choose K to be the subgroup generated by I'(16) and

the matrices
13 2 1 1 q 1 0
14 11|15 o *¢ |7 7|

We have [Hs7 : K| = 4. The modular curve X has 8 cusps. The subspace V' of Q(Xp(¢))
is a Q((16)-vector space of dimension 95 spanned by the fz, where @ = (¢, d) € (Z/167Z)?
and at least one of ¢ or d is odd. The subspace fixed by K N SLy(Z) has dimension 7.
Let g1, 92,...,97 be a basis for this space. We consider the 56-dimensional Q-vector space
spanned by {(js9; : 0 < < 7,1 < j <7} and we find the 7-dimensional subspace fixed by
the action of K. We select a linear combination of these 7 functions to obtain a “random”
modular function z(z) fixed by K.

This z(z) is still represented as a linear combination of the functions fz. We now compute
the g-expansions of z(z)|v, where ~ ranges over representatives of the 8 right cosets of K in
Hy,. We partition these into two sets,

{z1(2), 22(2), 23(2), za(2)} and {z1(2)[0, 22(2)[0, x3(2) 6, z4(2)[0}
where the x;(z) are the images of z(z) under cosets of K contained in Hs7, and § € Hyy but
0 & Hsy.
We plug the z;(z) into the second elementary symmetric polynomial to obtain a modular
function h(z) for Hy;. Its image h(z)|d under the action of § is obtained from the x;(2)|d.
Finally, a generator for Q(Xs7)/Q(X22) is obtained as a root of the polynomial

( = h(2))(z = h(2)]9).
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Type Number
Xy P! 175
Pointless conics 10
Elliptic curves with positive rank 27
Elliptic curves with rank zero 25
Genus 1 curves computed with no points 6
Genus 1 curves whose models are not necessary | 165
Genus 2 models computed o7
Genus 2 curves whose models are not necessary | 40
Genus 3 models computed 22
Genus 3 curves whose models are not necessary | 142
Genus 5 models computed 20
Genus 5 curves whose models are not necessary | 24
Genus 7 models computed 4
Genus 7 curves whose models are not necessary | 10

TABLE 2. Summary of the computation of the 727 models.

The function foo(2) with Q(Xs2) = Q(fa2) has Fourier expansion
faa(2) = 3V/2+(36+24V/2) (1+1)¢"/*+(288+216V/2)iq"/ > — (480v/24720) (1—1)¢**—96 v/ 2q+ - - .
The function h(z) 4+ h(z)|0 has degree at most 3, and in fact we find that

211.33 . (155 f2, — 5946 fo5 — 26784)
72, 4 12f2 + 30 '

h(z)+ h(z)|6 =

Similarly, we find that

920 .36 (174560 2, — 7307883, + 263641682, + 298652832 f2s + 630985144)
(f3, 4+ 1295 + 30)2 '

These equations show that there is a modular function g for X5; so that ¢ = 18 — f3,.
This equation for Xs; is a conic. Finding an isomorphism between this conic and P! yields

a function fy5; for which Q(Xs57) = Q(fs7). This fs; satisfies

B 3f% +6f57 —3
fr+1
which gives the covering map Xs57 — Xao. The entire calculation takes 26 seconds on a 64-bit
3.2 GHz Intel Xeon W3565 processor.
Taking, for example, f5; = 0 gives foo = —3. Mapping from Xs — X; — X gives
J = —320. The smallest conductor elliptic curve with this j-invariant is

(h(2))(h(2)]0) =

Jo2

E:y* =2 —2*—30+7,

and the 2-adic image for this curve is Hs;.
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5. THE CASES WITH —] ¢ H

In this section we describe how to compute, for subgroups such that —I ¢ H and
g(Xg) = 0, a family of curves E; over an open subset U C P! such that an elliptic curve
E/K without CM has 2-adic image of Galois contained in a subgroup conjugate to H if and
only if there exists t € U(K) such that E; = FE.

When —I € H, the 2-adic image for F is contained in H if and only if the same is true
of the quadratic twists Ep of E. For this reason, knowing equations for the covering map
Xy — X; is sufficient to check whether a given elliptic curve has 2-adic image contained in
H.
~When —I ¢ H, more information is required. First, observe that if —I ¢ H, then
H = (-1, H) is a subgroup with [H : H] = 2 that contains H. Recall that the coarse spaces
of Xy and X are isomorphic. In order for there to be non-trivial rational points on X,
it must be the case that Xz(Q) contains non-cuspidal, non-CM rational points. A detailed
inspection of the rational points in the cases that —I € H shows that this only occurs if X5
has genus zero. There are 1006 subgroups H that must be considered.

Since we are not interested in the cases of elliptic curves with CM, we will remove the
points of Xy lying over j = 0 and j = 1728. Let m: Xy — P! be the map to the j-line
and U = 7~ }(P! — {0,123, 00}) C Xp. Then points of U have no non-trivial automorphisms
and as a consequence, U is fine moduli space (see Section . We let Eg — U denote the
universal family of (non-CM) elliptic curves with 2-adic image contained in H. By Lemma
there is a model for Fy of the form

Eu:y* =2+ A(t)r + B(t)
where A(t), B(t) € Z[t]. Knowing that such a model exists, we will now describe how to find
it.
Let K be any field of characteristic zero. Suppose that E/K is an elliptic curve corre-

sponding to a rational point on Xy with j(FE) ¢ {0,1728} and given by

E:y> =2+ Az + B.
Now, if

Ey:dy* =2+ Az + B
is a quadratic twist of E, then E and E, are isomorphic over K(v/d) with the isomor-
phism sending (z,y) — (z,y/ Vd). Fix a basis for the 2-power torsion points on E and let
pr: Gal(K/K) — GLy(Zy) be the corresponding Galois representation. Taking the image
of the fixed basis on E under this isomorphism gives a basis on E,;, and with this choice of
basis, we have

PEs = PE " Xd

where yq is the natural isomorphism Gal(K (v/d)/K) — {#I}. We can now state our next
result.

Lemma 5.1. Assume the notation above. Let H be the subgroup generated by the image of
p and —I. Suppose H C H is a subgroup of index 2 with —I1 ¢ H. Then there is a unique
quadratic twist E4 so that the image of pg, (computed with respect to the fized basis coming
from E) lies in H.

14



Remark 5.2. Without the chosen basis for the 2-power torsion on Fy, the statement is false.
Indeed, it is possible for two different index two (and hence normal) subgroups N; and N,
of H to be conjugate in GLo(Zs). The choice of a different basis for the 2-power torsion on
E; would allow the image of pg, to be either N; or N,.

Proof. Observe that j(E) ¢ {0,1728} implies that F = F; if and only if d € (K*)?. Recall
that pg, = pg - Xa- -

Let L be the fixed field of {o € Gal(K/K) : pg(c) € H}. Then since H is a subgroup of
H of index at most 2, [L : K] < 2. If pg(0) € H, then pg(c) € (—I)H. Thus, the image of
pE, is contained in H if and only if x4(0) = —1 <= o &€ Gal(K/L). Thus, the image of
pE, is contained in H if and only if L = K (+/d). This proves the claim. O

We start by constructing a model for an elliptic curve
Ey:y* =2+ A(t)z + B(t)

where A(t), B(t) € Z[t] and j(E;) = p(t), where p: Xz — X is the covering map from Xz
to the j-line. By the above lemma, the desired model of Fy will be a quadratic twist of F,
SO
Ep:y* =2’ + A0 f(t)* + B(t)f(t)°

for some squarefree polynomial F(t) € Z[t]. (Here, we say that a polynomial F(t) € Z][t] is
squarefree if whenever F(t) = g(t)?h(t) with g, h € Z|[t], then g = +1.)

Given a set of primes S and an integer n, we define sfg(n) to be the product of the primes
that divide the squarefree part of n but which are not elements of S. (For example, when

S = {2}, sfs(24) = 3.)

Lemma 5.3. Let F(t) € Z[t] be squarefree and let D(t) € Z[t]. Suppose that for some finite
set S of primes, stg(F(n)) divides D(n) for all but finitely many n € Z. Then F(t) divides

D(#) in Q[t].

Proof. To begin, we note that sfg(F'(n)) takes infinitely many distinct values. Indeed, infin-
itely many primes p split in the splitting field of F'. Choose an integer n such that p | F/(n).
If p*> ¥ F(n), then p divides the squarefree part of F'(n), proving the claim. Suppose that
p?| F(n). Since F is squarefree, for sufficiently large p, pt F'(n) (otherwise F' would have a
double root mod p). Since F(n+p) = F(n)+F'(n)p (mod p?) we conclude that p? { F(n+p).

Next, we note that it suffices to assume that F' is irreducible; indeed, if F' = F|F5,
then after enlarging S to include the primes dividing the resultant of F; and F3, one has
sfs(F') = sfg(Fy) sfs(F2), so the hypotheses of the lemma hold for each Fj.

We proceed by induction on deg D(t) +deg F'(t). If D(t) is constant then the statement is
trivial, since we can choose n such that the squarefree part of F'(n) has absolute value larger
than |D(n)|, giving a contradiction unless F'(t) is also constant. If deg D(t) > deg F'(t), then
by the division algorithm we can write

MD(t) = q(t)F () +r(t)

for some M € Z, M # 0 and q(t),r(t) € Z[t] such that degr(t) < deg F(t). Enlarging S if
necessary to include the primes that divide M, we see that sfs(F(n))|r(n) for all but finitely
many n. By induction, this is a contradiction unless r(¢) is identically zero, in which case
we have
MD(t) = q(t) F(1).
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Finally, if deg D(t) < deg F'(t), then by the division algorithm we can write
MF(t) = q(t)D(t) + r(t)

for some M € Z with M # 0 and ¢(t),r(t) € Z[t] such that degr(t) < deg D(t). Again
assuming that all prime divisors of M are in S, we see that sfg(F'(n))|r(n) for all but finitely
many integers n. By induction, this is a contradiction unless r(t) is identically zero, in which
case we have

contradicting irreducibility of F'. 0

Theorem 5.4. Let F(t) € Z[t] be squarefree and such that Ey is isomorphic to the twist
Eypwy of By by F(t) and let D(t) be the discriminant of the model E, given above. Then

F(1)|D(t) in Qlf].

Proof. We specialize, picking n € Z so that E,, is non-singular. The 2-adic image for E,, is
contained in H. If K is the fixed field of H, then K/Q is a trivial or quadratic extension. If
X is the Kronecker character of K (resp. trivial character), then twisting £, by x will give
a curve whose 2-adic image is contained in H.

Since K C Q(E,[2¥]) for some k, K must be unramified away from 2 and the primes
dividing the conductor of E,. Since the conductor of E, divides the minimal discriminant
of E,, and this in turn divides the discriminant of E,: y* = 2* + A(n)x + B(n) (which is
a multiple of 16), we have that if K = Q(v/d) with d squarefree, then d|D(n). Moreover, d
must be the squarefree part of F'(n). The theorem now follows from Lemma U

Here is a summary of the algorithm we apply to compute the polynomial F'(t). Through-
out, we will write F(t) = cd(t), where d(t) divides D(¢) in Z[t], ¢ € Q is squarefree, and d(t)
is not the zero polynomial mod any prime p.

(1) We pick an integral model for E; and repeatedly choose integer values for ¢ for which
E} is non-singular and does not have complex multiplication.

(2) For each such ¢, we compute a family of resolvent polynomials, one for each conjugacy
class of H, that will allow us to determine the conjugacy class of p g2+ (Frob,). (See
Appendix [A| for a procedure to do this.)

(3) We make a list of the quadratic characters corresponding to Q(v/d) for each squarefree
divisor d of 2N (E;). All twists of E; with 2-adic image contained in H must be from
this set. _ _

(4) We compute the GLy(Z2)-conjugates of H inside H. (For the H that we consider,
computation reveals that there can be 1, 2, or 4 of these.)

(5) We use the resolvent polynomials to compute the image of Frob, for several primes
p. Once enough primes have been used, it is possible to identify which twist of E;
has its 2-adic image contained in each GLy(Zs)-conjugate of H.

(6) The desired model of F; will be a twist by cd(t) for some divisor d(t) of the discrim-
inant. We keep a list of candidate values for ¢ for each divisor d(t) that work for all
of the t-values tested so far, and eliminate choices of d(t).

(7) We go back to the first step and repeat until the number of options remaining for
pairs (¢, d(t)) is equal to the number of GLay(Z,)-conjugates of H in H. Each of these
pairs (c,d(t)) gives a model for Er. We output the simplest model found.
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Remark 5.5. The algorithm above (step [2/in particular) sometimes requires a lot of decimal
precision (in some cases as much as 8500 digits), and is in general fairly slow. Computing

the equation for the universal curve over Xy is thus much slower than computing equations
for Xi7 when —1 € H.

Example 5.6. There are two index 2 subgroups of Hs; that do not contain —I. One of
these, which we call Hsz,, contains I'(32), and is generated by

{10 21} {15 1] {7 7]
3 13|7|27 20|00 1|°
We will compute Ep, the universal elliptic curve over Hs7,. We let
By =2+ A(t)x + B(t),
where
A(t) = —6(725t% + 15447 + 2324t° 4 279265 + 2286t* 4 1336t + 500t + 88t + 5)
B(t) = —32(3451t'2 + 11022t™ + 22476t'° 4 35462t + 432395 + 4148417 + 32256° 4 19596t°
+ 8601t* + 2630t® + 564> + T8¢t + 5).
These polynomials were chosen so that

26(25t% + 3613 + 2612 + 12t + 1)3(29t* + 2013 + 34¢> + 28t + 5)

where p: X57 — X, is the map to the j-line. There are four squarefree factors of the
discriminant of F; in Q[t]:

20, 34, 28 5 38. 3, 60, 8, 38 5
L2 =2t -1t + 3+ 2+ t+— andt' — " — ' — P — Pt —.
200 29 29 29 200 29 29 29 29 29

We specialize E; by taking ¢t = 1, giving
By y* = 2* — 69600z + 7067648.

Considering Hs; as a subgroup of GLy(Z/327Z), it has 416 conjugacy classes. We compute
the resolvent polynomials for each of these conjugacy classes and verify that they have no
common factors. Since F; has conductor 28 - 32 - 292 the fixed field of Hsy, inside Q(F;[32])
is a quadratic extension ramified only at 2, 3 and 29. There are sixteen such fields.

There are two index 2 subgroups of Hjs; that are GLy(Zs)-conjugate to Hyr,. As a conse-
quence, there are two quadratic twists of F; whose 2-adic image will be contained in some
conjugate of Hsz,. By computing the conjugacy class of p(Frob,) for p = 53, 157, 179 and
193, we are able to determine that those are the —87 twist and the 174 twist. This gives us
a total of 8 possibilities for pairs (¢, d(t)) (two for each d(t)).

Next, we test ¢ = 2. This gives the curve

E,: y* = 23 — 40245422 + 3107583520.

This time, we find that the —4926 and 2463 twists are the ones whose 2-adic image is
contained in Hsy, (up to conjugacy). This rules out all the possibilities for the pairs (¢, d(t))
except for two. These are ¢ = 174 and ¢ = —87 and d(t) = 19— 331> -1 — 3043 - D42 384 — >
This gives the model

Bz, : y2 =1’ + A(t)x + B(t)>
17



where
A(t) =2-3% (12 — 2t — 1)% - (25t* + 36t° + 26t + 12t + 1)(29t* + 20t> + 34t + 28t + 5)°
B(t)=2°-3% (2 =2t — 13- (> +1) - (712 + 6t + 1) - (17t* + 28¢3 + 18> + 4t + 1)
(29t* + 20¢° + 34t + 28t + 5)%.

In total, this calculation takes 3 hours and 46 minutes.

The smallest conductor that occurs in this family is 6400. The curve E: y? = 2° + 22 —
83z + 713 and its —2-quadratic twist £': y* = 2® + 2% — 333z — 6037 both have conductor
6400 and 2-adic image Hs7,.

6. A CURIOUS EXAMPLE

Before our exhaustive analysis of the rational points on the various Xg, we pause to dis-
cuss the following curious example, which demonstrates that Hilbert’s irreducibility theorem
does not necessarily hold when the base is an elliptic curve with positive rank.

One expects that if Xy (Q) is infinite then there exist infinitely many elliptic curves E/Q
such that pp(Gg) is actually equal to H. The following example shows that this is not
necessarily true.

Example 6.1. The subgroup His; is an index 24 subgroup containing I'(16) generated by

1311 0] [1 3 N
0 3/°12 3|12 3| ™9 |12 7|"

The curve Xi55 is an elliptic curve
X155 y2 =% — 2

and X155(Q) = Z/27Z x Z and is generated by (0,0) and (—1,—1). The map from X;5;5 to

the j-line is given by j(z,y) = 256(9;#.

Since the two-torsion subgroup Xi55(Q)[2] is non-trivial (as imposed by Remark, X155
has an étale double cover ¢: E — Xj55 defined over Q and such that E has good reduction
away from 2. By the Riemann-Hurwitz formula, £ has genus 1; the map is thus a 2-isogeny
and E(Q) thus has rank one. By étale descent (see Subsection [7.F]), since X155 and E have
good reduction outside of 2, every point of X155(Q) lifts to E4(Q) for d € {£1,+2}. It turns
out that for each such d, there is an index 2 subgroup Hy; C Hjs5 such that Ey = Xy,
(These are Xogq, X318, X328 and X350, respectively.) It follows that

U ¢d<Ed(Q)) = XH155 (Q)
de{+1,+2}
In particular, for every point in Xpg,.,(Q), the 2-adic image of Galois of the corresponding

elliptic curve is contained in one of the four index two subgroups H,!

Remark 6.2. We note that if Xz = P!, then since P! has no étale covers and since there
is a finite collection of subgroups Hy, ..., H, such that any K properly contained in H is a
subgroup of some H;, the image

U ¢x(Xx(@) = U¢H¢(XHZ~(Q)) C Xu(Q)
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(where ¢ is the map Xx — Xp induced by the inclusion K C H) is a thin set, and in
particular most (i.e. a density one set) of the points of Xy (Q) correspond to E/Q such that

pe(Go) = H.

Remark 6.3. There are seven genus one curves Xy that are elliptic curves of positive rank
where the corresponding subgroup H has index 24. In all seven cases, all of the rational
points lift to modular double covers (although it is not always the case that all four twists
have local points). In fact, every one of the 20 modular curves Xy, where H has index 48
and for which X5 (Q) is a positive rank elliptic curve is a double cover of one of these seven
curves.

This example is more than just a curiosity; it inspired the technique of Subsection
which allows us to determine the rational points on most of the genus 5 and 7 curves.

This example also raises the following question.

Question 6.4. Do there exist infinite unramified towers of modular curves such that each
twist necessary for étale descent is modular?

If so, this would imply that none of the curves in such a tower have non-cuspidal non-CM
points. A potential example is the following: the Cummins/Pauli database [CP03] reveals
that there might be such a tower starting with 1642, 163,16 8%, 16B%, 16 A'". There is then
a level 32, index 2 subgroup of 16A'7 that has genus 33.

7. ANALYSIS OF RATIONAL POINTS - THEORY

The curves whose models we computed above have genera either 0,1,2,3,5,7; see Table 2]

For the genus 0 curves, we determine whether the curve has a rational point, and if so we
compute an explicit isomorphism with P'. For the genus 1 curves, we determine whether
the curve has a rational point, and if so compute a model for the resulting elliptic curve and
determine its rank and torsion subgroup. This is straightforward: all covering maps except
4 have degree 2, so we end up with a model of the form y? = p(t), where p(t) is a polynomial,
and the desired technique is implemented in Magma. The remaining 4 cases are handled via
a brute force search for points.

In the higher genus cases, we determine the complete set of rational points. Each of the
following techniques play a role:

(1) local methods,
(2) Chabauty for genus 2 curves,
(3) elliptic curve Chabauty,
(4) étale descent,
(5) “modular” étale double covers of genus 5 and 7 curves, and
(6) an improved algorithm for computing automorphisms of curves.
In this section we describe in detail the theory behind the techniques used to analyze the
rational points on the higher genus curves. The remainder of the paper is a case by case

analysis of the rational points on the various Xyg.

Remark 7.1 (Facts about rational points on Xp).
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(1) Every rational point on a curve Xy of genus one that has rank zero is a cusp or a
CM point.

(2) The only genus 2 curve with non-cuspidal, non-CM rational points is X447, also known
as X,/ (16). This curve has two non-cuspidal, non-CM rational points, with distinct
J-invariants.

(3) The only genus 3 curves with non-cuspidal, non-CM rational points are Xss55, Xsss,
X563, X566, X619, Xe49. Each of these gives rise to a single, distinct j-invariant.

(4) All the rational points on the genus 5 and 7 curves are either cusps or CM points.

Remark 7.2. The following observation powers many of these approaches — since Jacobians
of 2-power level modular curves have good reduction outside of 2, each Jacobian is “forced”
to have a non-trivial two torsion point (and more generally forced to have small mod 2 image
of Galois). Indeed, the two division field Q(J[2]) is unramified outside of 2, and there are
few such extensions of small degree. In [Jonl0], it is shown that if [K : Q] < 16 and K/Q
is ramified only at 2, then [K : Q] is a power of 2. In particular, there are no degree 3 or
6 extensions of QQ ramified only at 2, so an elliptic curve with conductor a power of 2 has
a rational 2-torsion point. (In practice of course one can often compute directly the torsion
subgroup of the Jacobian, by computing the torsion mod several primes, and then explicitly
finding generators.) We remark that there is, however, a degree 17 extension of Q ramified
only at 2, arising from the fact that the class number of Q({g4) is 17.

7.3. Chabauty. See [MP12| for a survey. The practical output is that if rk Jacx(Q) <
dim Jacx = g(X), then p-adic integration produces explicit 1-variable power series f € Q,[¢]
whose set of Z,-solutions contains all of the rational points. This is all implemented in Magma
for genus 2 curves over number fields, which will turn out to be the only case needed. See
the section below on genus 2 curves for a complete discussion.

7.4. Elliptic Chabauty. Given an elliptic curve E over a number field K of degree d > 1
over Q and a map E = P}, one would like to determine the subset of E(K) mapping to
P!(Q) under m. A method analogous to Chabauty’s method provides a partial solution to
this problem under the additional hypothesis that rank E(K) < d (and has been completely
implemented in Magma). The idea is to expand the map E — PL in p-adic power series
and analyze the resulting system of equations using Newton polygons or similar tools. See
[Bru03], |[Bru06] for a succinct description of the method and instructions for use of its
Magma implementation.
A typical setup for applications is the following.

]Pl
We have a higher genus curve C' whose rational points we want to determine, and we have
a particular map C' — P! which is defined over Q and which factors through an elliptic

curve F over a number field K (but does not necessarily factor over Q). Then any K-point

of E which is the image of a Q-point of C' has rational image under £ — P!, exactly the
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setup of elliptic curve Chabauty. (Finding the factorization C' — E can be quite tricky; see
Subsection [9.4] for an example.)

7.5. Etale descent. Etale descent is a “going up” style technique, first studied in [CG89|
and [Wet97] and developed as a full theory (especially the non-abelian case) in [SkoO1]. It is
now a standard technique for resolving the rational points on curves (see e.g. [Bru03|, [FW01])
and lies at the heart of the modular approach to Fermat’s last theorem (see [Poo02} 5.6]).

Let m: X — Y be an étale cover defined over a number field K such that Y is the quotient
of some free action of a group G on X. Then there exists a finite collection 7: X; —
Y,...,m: X, = Y of twists of X — Y such that

JmX(K) = ¥ (5.

Moreover, if we let S be the union of the set of primes of bad reduction of X and Y and
of the primes of Ok over the primes dividing #G, then the cocycles corresponding to the
twists are unramified outside of S. (See e.g. [SkoO1], 5.3].)

We will use this procedure only in the case of étale double covers. In this case, G = Z/27Z
and, since the twists are consequently quadratic, we will instead denote twists of a double
cover X — Y by Xy — Y, where d € K*/(K*)?, and the above discussion gives that,
for any point P of Y(K), there will exist d € O ¢/(Of g)* such that P lifts to a point of
Xy(K).

7.6. Etale descent via double covers with modular twists. The following variant of
Example will allow us to resolve the rational points on some of the high genus curves.

We will occasionally be in the following setup: K C H C GlLy(Z3) are a pair of open
subgroups such that g(Xpg) > 1 and the corresponding map Xx — Xy is an étale double
cover. By étale descent (see Subsection , since Xy and X have good reduction outside
of 2, every point of Xy (Q) lifts to a rational point on a quadratic twist X 4(Q) for d €
{#£1, £2}, so that

U ¢ Xka(@Q) = Xu(Q),

de{+1,£2}

where Xx — Xy is induced by the inclusion K C H and ¢, is the twist of this by d.

It turns out that, additionally, for each such d there is an index 2 subgroup K,; C H such
that Xx, = Xk 4; i.e. each of the quadratic twists are also modular. Finally, a third accident
occurs: each of the subgroups Ky is contained in a subgroup L4 such that X, either has
genus 1 and has no rational point, is an elliptic curve of rank zero, or is a genus zero curve
with no rational points. In particular, since the inclusion of subgroups K; C L, induces a
map X, — X, this determines all of the rational points on each twist X, and thus on
Xy.

This phenomenon occurs for 16 of the 20 subgroups H for which Xy has genus 5, and all

four of the cases when Xy has genus 7. See Subsection for details.
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7.7. Constructing automorphisms of curves over number fields. If C is a curve of
genus g and D — C'is a degree n étale cover of C, then the genus of D is ng — (n — 1). In
order to analyze rational points on D, it is very helpful to be able to find maps from D to
curves of lower genus. In this context, it is helpful to compute the group G of automorphisms
of D and consider quotients D/H for subgroups H C G.

Magma’s algebraic function field machinery is able to compute automorphism groups of
curves. However, the performance of these routines varies quite significantly based on the
complexity of the base field. The routines work quickly over finite fields, but are often quite
slow over number fields, especially when working with curves that have complicated models.

For our purposes, we are interested in quickly constructing automorphisms (defined over
Q) of non-hyperelliptic curves D/Q with genus > 3. (Magma has efficient, specialized
routines for genus 2 and genus 3 hyperelliptic curves.) Our goal is not to provably compute
the automorphism group, but to efficiently construct all the automorphisms that likely exist.
The procedure we use is the following.

(1) Given a curve D/Q, use Magma’s routines to compute Aut(D/IF,) for several different
choices of primes p. If all automorphisms of D are defined over the number field K,
then we expect that if p splits completely in K, then | Aut(D/F,)| = | Autg(D)|.
Data for several primes will give a prediction for | Autg(D)| and K.

(2) Consider the canonical embedding of D C P9~'. Any automorphism of D can be
realized as a linear automorphism of P9~! that fixes the canonical image of D.

(3) Construct the “automorphism scheme” X /Q of linear automorphisms from P9~ that
map D to itself. Let (D) C Q[xy, 22, ...,x,] denote the ideal of polynomials that
vanish on the canonical image of D. For each homogeneous generator f; of I(D) of
degree d;, we construct a basis vgi), véi), e ,vg) for the degree d; graded piece of I(D).
If : D — D is an automorphism, then

€i

S(f) = civl”.

=1

We construct the automorphism scheme as a subscheme of A¢, where d = g +>di+
1. We use g2 variables for the linear transformation, Y. d; variables for the constants
¢;,; in the above equation, and one further variable to encode the multiplicative inverse
of the determinant of the linear transformation. (This scheme actually has dimension
1 since an arbitrary scaling of the matrix is allowed.) We will extend X to a scheme
over SpecZ (which we also call X).

(4) Choose a prime p that splits completely in K and a prime ideal p of norm p in O, the
ring of integers in K. Use Magma’s routines to compute Aut(D/F,) and represent
these automorphisms as points in X (F,).

(5) Use Hensel’s lemma to lift the points on X (F,) to points on X(Z/p"Z) for some
modestly sized integer r. (We frequently use r = 60.) Hensel’s lemma is already
implemented in Magma via LiftPoint.

(6) Scale the lifted points so that one nonzero coordinate is equal to 1. Then use lattice
reduction to find points in K of small height that reduce to the points in X (Z/p"Z)
modulo p”. Use these to construct points in X (K), i.e., automorphisms of D defined

over K.
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The above algorithm runs very quickly in practice for curves of reasonably small genus.
For example, the genus 5 curve given by

—2705a° + 1681b% — 1967bc + 2048¢ — 2d* = 0
73a% — 41b% + 64bc — 64¢® — 2de = 0
—2a% +b% — 2bc + 2¢* — 22 =0

is one of the étale double covers of Xgj9. This curve has (at least) 16 automorphisms

defined over Q(v/2 4 v/2) which are found by the above algorithm in 25.6 seconds. However,
Magma’s built in routines require a long time to determine the automorphism group (the
routine did not finish after running it for 3 and 1/2 days).

7.8. Fast computation of checking isomorphism of curves. A related problem to com-
puting automorphisms is proving that two curves are isomorphic. There are many instances
of non-conjugate subgroups H and K with Xy = Xx. Within the 22 genus three curves,
there are at most 7 isomorphism classes. Within the 20 genus five curves, there are at most
10 isomorphism classes. The 4 genus seven curves fall into two isomorphism classes.

Magma’s built-in command IsIsomorphic suffices for hyperelliptic curves and a few higher
genus curves that happen to have nice models. The simplest way to determine if two non-
hyperelliptic genus 3 curves are isomorphic is to compute their canonical models and apply
MinimizeReducePlaneQuartic and inspect the resulting simplified polynomials - at this
point the isomorphisms can be seen by inspection.

In the genus 5 case, we use a variant of the approach described for automorphisms, and,
given two curves C and (5, we construct an “isomorphism scheme” in a similar way to
the automorphism scheme above. Again, we use Magma’s internal commands to find iso-
morphisms mod p, and lift these to characteristic zero isomorphisms. In the genus 7 case,
Magma’s built-in commands are the most efficient.

7.9. Probable computation of ranks. It is straightforward to compute the rank of a
curve of genus at most 2 using Magma’s preexisting commands (e.g. via RankBound, an
implementation of [Sto01]); computation of the rank of the Jacobian of a genus 3 plane
curve has recently been worked out [BPS12], but is often impractical [BPS12, Remark 1.1]
and moreover has not been implemented in a publicly available way. For genus > 3 little is
known in general (though special cases such as cyclic covers of P! are known [PS97], [SvL13]).

For the determination of the rational points on each Xy, we will only need a rigorous
computation of rank for genus at most 2. Nonetheless, in many cases we can compute
“probable” ranks, and mention this in the discussion as an indication of why we chose a
particular direction of analysis. If H is a subgroup of GLy(Z,) that contains I'(2¥), then Xy
is a quotient of X;(4*), but the map from X;(4*) — Xy is only defined over Q((s). For this
reason, we cannot immediately conclude that each factor A of Jac Xy is modular. However,
numerical data suggests that each such A is indeed a factor of Jac X;(4%). We can find a
candidate for the corresponding modular form f (e.g. by comparing traces) and compute a
guess for the analytic rank, but we cannot prove that A = A;, or that the algebraic and

analytic ranks of Ay agree.
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8. ANALYSIS OF RATIONAL POINTS - GENUS 2

In the remaining sections we provably compute all of the rational points on each modular
curve. Magma code verifying the below claims is available at [RZB| and additionally at the
arXiv page of this paper.

There are 57 arithmetically maximal genus 2 curves. Among these, 46 have Jacobians
with rank 0, 3 with rank 1, and 8 with rank 2. We will use étale descent on the rank 2
cases and Chabauty on the others. In each case, the rank of the Jacobian is computed with
Magma’s RankBound command. See the transcript of computations for full details, and see
[BSO§| for a detailed discussion of all practical techniques for determining the rational points
on a genus 2 curve.

8.1. Rank 0. If rk Jacx(Q) = 0 then Jacx(Q) is torsion. To find all of the rational points
on X it thus suffices to compute the torsion subgroup of Jacx(Q) and compute preimages of
these under an inclusion X < Jacy. This is implemented in Magma as the Chabauty0(J)
command, and in each case Magma computes that the only rational points are the known
points.

8.2. Rank 1. If rk Jacx(Q) = 1 then one can attempt Chabauty’s method. This is imple-
mented in Magma as the Chabauty(ptJ) command, and in each case Magma computes that
the only rational points are the known points.

8.3. Rank 2. If rk Jacx(Q) = 2 then Chabauty’s method doesn’t apply and the analysis is
more involved; instead we proceed by étale descent. In each case, the Jacobian of X has a
rational 2-torsion point. Thus, given a model

X:y* = f(z)

of X, f factors as fife, where both are polynomials of positive degree (and both of even
degree if f has even degree), and X admits étale double covers Cy — X, where the curve Cy
is given by

Cq: dyi = fi(x)
dy; = fo(z)

Since X has good reduction outside of 2 and the 2-cover C; — X is étale away from 2 (since
it is the pullback of a 2-isogeny A — Jacy, and such an isogeny is étale away from 2), by
6tale descent (see[7.5 above) every rational point on X lifts to a rational point on Cy(Q) for
d € {£1,£2}. The Jacobian of Cy is isogenous to Jacx X E4, where Ey is the Jacobian of
the (possibly pointless) genus one curve dys = fo(x) (where we assume that deg fo > deg fi,
so that deg fo > 3).

There are 4 isomorphism classes of genus 2 curves in our list with Jacobian of rank 2
(X305, X402, Xaa1, X500)- In two cases (X395 and Xyp0), each twist Cy; maps to a rank 0
elliptic curve. For example, X395 is the hyperelliptic curve y? = 2% — 52* — 522 +1 =
(2?2 — 22 — 1)(2* + 1) (2 + 22 — 1). This admits étale covers by the genus 3 curves

Cdi dy%: .1'2+1

dys = (2% =2z —1)(2* + 22 — 1)
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each of which in turn maps to the genus 1 curve E, : dys = (2% — 22 — 1)(2? + 2z — 1), and
for d € {£1,£2}, rk Jacg, = 0, allowing the determination the rational points on each Cy
and thus on Xj3g5.

For the remaining genus 2 curves, three of the twists map to a rank 0 elliptic curve,
but the twist by —2 maps to a rank 1 elliptic curve. Here one may apply étale descent
again, but over a quadratic extension. For example, X4 is the hyperelliptic curve 3% =
29 =32t + 22 +1 = (z — 1)(xz + 1)(a* — 222 — 1). (This is the curve X (16) whose non-
cuspidal points classify elliptic curves whose mod 16 image of Galois is contained in the
normalizer of a non-split Cartan subgroup. The rational points on this curve are resolved in
[Bar10] via elliptic Chabauty; we give an independent determination of the rational points
on this curve.) This admits étale covers by the genus 3 curves

Cy: dyp = (z—1)(z+1)
dy? = (2* —222—1)

The Jacobian of dy2 = 2* — 222 — 1 has rank 0 for d = £1,2. For d = —2, we note that since
x* — 222 — 1 factors over Q(v/2) as ((z — 1) — v2)((z — 1)? + v/2), C_y admits a further
étale double cover over Q(v/2) by

X gu: 292 = (z—1)(x+1)

—2dy; = (x—1*—V2

dyi = (-1 +2
Note that a priori one expects this factorization to occur over a small field by Remark
) By descent theory, every rational point on C_j lifts to a K := Q(+/2) point on
X o0 for some d' € O 4/ ( [XQS)Q. These each map to the two genus 1 curves d'y* =
(z— Dz +1D((z —1)?2 = v2) and —2d'y? = (x — 1)(z + 1)((x — 1)? + v/2). For 6 of the 8
such d’, one of these curves has rank 0, and for 2 both have rank 1. Any point coming from

a rational point on Xy has rational z-coordinate, and elliptic Chabauty (as described in
Subsection [7.4)) successfully resolves the rational points on the remaining two curves.

9. ANALYSIS OF RATIONAL POINTS - GENUS 3

There are 18 genus 3 curves (and at most 7 isomorphism classes). Of the isomorphism
classes, X556, X558 are hyperelliptic and handled by étale descent; Xg5 admits a map to a
rank zero elliptic curve defined over Q(\/Q), Xegas, Xga1, and Xgs0 have nice models and can
be handled in a direct, ad hoc manner. Finally, X419 is the most difficult case — it has six
rational points and its Jacobian has (probable) analytic rank 3; we are nonetheless able to
handle this curve via an elliptic Chabauty argument whose setup is non-trivial. All other
genus 3 curves on our list are isomorphic to one of these.

Remark 9.1. Unfortunately, consideration of Prym varieties (see [Bru08| for a discussion) do
not simplify analysis of any of the above curves; for instance, Xg9 admits an étale double
cover, but one of the twists of the associated Prym varieties has rank 2.

9.2. Genus 3 hyperelliptic. The genus 3 curves Xss6, X558, X563, X566 are hyperelliptic.
The last two curves are isomorphic to the first two, which are given by

Xose: v2P=a" +42° — 725 — 8t + 723 4+ 422 — 2
Xssg:  y? = % — 427 — 1225 4+ 282° 4 382* — 2823 — 1222 +4x + 1
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Their Jacobians have rank 1, but unfortunately much of the machinery necessary to do
Chabauty on curves of genus g > 2 is not implemented in Magma (e.g., a simple search did
not reveal generators for the Jacobian of Xj5s56; for a genus 2 curve one can efficiently search
on the associated Kummer surface, but the analogous computation for abelian threefolds is
not implemented).

Instead, we proceed by descent. The hyperelliptic polynomials both factor, so each X
admits an étale double cover which itself admits a map to a genus 2 curve. Rational points
on the genus 3 curves lift to twists of the étale double cover by d € {1, £2}. For example,
X556 admits étale double covers by the genus 5 curves

Cy: dyp = z
dy? = (v —1)(x+1)(2t + 423 — 62% — 42 + 1)

which each maps to the genus 2 hyperelliptic curve
Hy: dy® = (v — 1) (2 + 1)(z* + 42° — 62° — 4z + 1).

For d € {1, £2} the Jacobian of H, has rank 0 or 1, and Chabauty reveals that any rational
point on Xjs6 is either a point at infinity or satisfies x = 0 or y = 0. Similarly, the defining
polynomial of X555 factors as (22 — 2z — 1)(2? + 2z — 1)(2* — 423 — 62° + 42 + 1), and each
of the four resulting genus 2 hyperelliptic curves

dy? = (2% + 2z — 1)(2" — 42® — 62° + 42 + 1)

have Jacobians of rank 1.
Each of these four hyperelliptic curves has four non-cuspidal, non-CM rational points that

all have the same image on the j-line. For X555 we obtain j = 2* - 173, for X555 we obtain

. 3 . . . . 3
= 4097 for Xs63 we obtain j = 2. and for Xs¢¢ we obtain j = 2T,
16 , 256

9.3. Analysis of Xg5. The curve Xg;5 has two visible rational points. Over the field Q(\/ﬁ),
Xg1s maps to the elliptic curve

E:y? =2+ (V2+1)2®+(=3V2 =5z + (—2v2—3)

which has rank 0 over Q(v/2) and has four Q(+/2)-rational points, two of which lift to rational
points of Xg1g.

We found this cover by computing Aut X618,0(v/2) (which has order 8) and computing E
as the quotient of X4z by one of these automorphisms. (See Subsection for a
description of this computation.)

9.4. Analysis of Xg9. The above techniques do not work on Xg19; its Jacobian has (prob-
able) analytic rank 3 and, while it admits an étale double cover D, a twist of D has rational
points and associated Prym variety of rank 2. The curve Ds has the equation

or? = —2705u® + 1681v% — 1967vw + 2048w?
ors = T3u® — 41v% + 64vw — 64w>
052 = —2u? + 0% — 2uw + 22,

A bit of work reduces this to an elliptic Chabauty computation. Over the quartic field

K = Q(a), where a = v/2 + v/2), any quadratic twist Ds of D has automorphism group
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Dg x Z/27. Let H be the subgroup (i1, t2), where ¢; : Ds — Dy is given by t1(u:v:w:r:
s)=(u:—v:—w:r:s)and

V2 1 V2

Lg(u:v:wzrzs):(u:TU—w:—iv—Tw:

1 1 1 1

1—8(—73a3 + 228a)r + 1—8(—2624a3 +8529a)s : §(a3 — 3a)r + 1—8(73a3 — 228a)s).
The twist D_5 has no Qs points. When § = 1 or 2, the quotient Ds/H is isomorphic to

the elliptic curve

E,: 6y* = 2+ (a® +1)2* + (1946 + 153a* — 660a — 509) x4 (— 1815a” — 1389a” +6202a+4747)
and the quotient D_;/H is isomorphic to the elliptic curve
E_:6y* =2+ (a® + a* + a+ 1) + (4a® + 8a® + 6a — 11)x + (—3a® + 29a° + 11a — 27).

The quotient of Ds by Aut Djs is P'; the quotient map ¢s5: Ds — P! is defined over Q and
factors through the map Ds — FE.:

Ds

\

s E

S

]Pal
We are thus in the situation of elliptic Chabauty — by construction, any K-point of F, that
is the image of a Q-point of Ds maps to P!(Q) under s, K has degree 4 and E.(K) has
rank 2. Magma computes that the only K-rational points of E that map to P!(Q) are the
known ones coming from Dy.

It takes a bit of work to compute explicitly the map 15: £y — P!. The group H is not
normal, so 95 is not given by the quotient of a group of automorphisms. We proceed by brute
force. We know the degree of 15 and thus the general form of its equations (by Lemma .
We construct points on Dy over various number fields; we can map them on the one hand to
E. and on the other hand to P!, giving a collection of pairs (P € E.(K),s(P)). Sufficiently
many such pairs will allow us to compute equations for 5.

See the transcript of computations for code verifying these claims. We find that there are
six rational points on Xg19. Two of these are cusps, two of these are CM points, corresponding
to j = 16581375 (CM curves with discriminant —28), and two of these correspond to j =

3 . . . .
857985"  Three other curves in our list are isomorphic to Xg9. One of these, Xg49 also has

628
non-CM rational points corresponding to j = 913946245 .

9.5. Analysis of X45. The (probable) analytic rank of the Jacobian of Xgog is 3, ruling out
the possibility of a direct Chabauty argument. While it admits an étale double cover, the
Prym variety associated to each twist has rank 1 and Chabauty on the double cover is thus
possible but tedious to implement. Alternatively, each étale double cover maps to a rank
0 elliptic curve. This map is not explicit and would require a moderate amount of ad hoc

work to exploit.
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Instead, we exploit the nice model y* = 4xz(x? —22?) of this curve via the following direct
argument. (This is equivalent to étale descent, but the simplicity of the model motivates a
direct presentation.) An elementary argument shows that, for zyz # 0, there exist integers
u,v,w such that either z = +u*, z = +40*, and 2? — 222 = +w?, giving v® — 320% = +w?,
or that = £2u*, z = +v?, and 22 — 222 = £2uw?, giving 2u® — v® = £w*. It follows from
|[Coh07,, Exercise 6.24, Proposition 6.5.4] that the only solution is to the latter equation with
uw=uv=w=1.TIt follows that the only points on y* = 4zz(z* — 2z%) are (0 : 0 : 1),
(1:0:0),(2: =2:1)and (2:2:1).

9.6. Analysis of Xg and Xg5. Each of Xy and Xgs0 have Jacobians of (probable)
analytic rank 3, but admit various étale double covers. Each double cover has a twist with
local points and such that the associated Prym variety has rank 1. This suggests a Chabauty
argument via the Prym, but the details of such an implementation would be complicated.
Instead we exploit the nice plane quartic models of these curves.

Xga1 has an affine model (2? — 2y* — 22%)2 = (y? — 2yz + 32%)(y* + 2?) and thus admits an
étale double cover by the curve

Ds: y?> —2yz+322 = &u?

22 —2y? 222 = Sww

Y 422 = P
The only twist with 2-adic points is 6 = 1. The quotient by the automorphism [z :y: z:w:
v] = [—x 1y 2 —u: —v]is the genus 3 hyperelliptic curve y? = —28+ 825 — 202! + 1622 — 2.
This curve is an unramified double cover of H: y? = —2° + 82* — 2023 + 1622 — 22. The

Jacobian of H has rank 1, and Chabauty successfully determines the rational points on H;
computing the preimages of these points on D allows us to conclude that only rational points
on Xg4q are the known ones.

Similarly, Xes0 has a model y* = (2? — 2z — 2%)(z* + 2?) and thus admits an étale double
cover by the curve

Ds: 22 —2z2z— 22 = du?
2 = Sww
224+ 22 = M

The only twist with 2-adic points is 6 = 1. This genus 5 curve has four automorphisms
over Q, and the quotient of D; by one of the involutions is the genus 3 hyperelliptic curve
y? = —a® 42, which maps to the genus 2 curve H: y?> = —a° 4 2. The rank of the Jacobian
of H is 1, and Chabauty again proves that the only rational points on Xg509 are the known
points.

10. ANALYSIS OF RATIONAL POINTS - GENUS 5 AND 7

There are 20 genus 5 curves (at most 10 isomorphism classes) and 4 genus 7 curves. The
genus 5 curves Xggg and Xggg are handled in an ad hoc manner by explicit étale descent. The
remaining genus 5 curves and all of the genus 7 curves are handled by the modular double

cover method (see Subsection [10.3]) or are isomorphic to one of Xggg or Xggo-
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10.1. Analysis of Xgg9. The curve Xggo has a model

Xero: VP =23+ 22 -3z +1
w? = 2(y* + y(—x +1))(2* — 2z — 1)

The curve Djs

v =2 +2° —3r+1
dwi = (2* — 22 — 1)
dwy = 2(y* +y(—x +1))
is an étale double cover of Xggg. (Magma computes that g(D) = 9, so this follows from
Riemann-Hurwitz.) The cover is unramified outside of 2, so every rational point on Xggg
lifts to a rational point on Dy for some § € {£1,4+2}. The curve Ds maps to the curve Hs
given by
Yy — (2 +2° —3x+1) =0
dw? — (2?2 =22 —1) =0
which Magma computes is a genus 3 hyperelliptic curve. Each of these hyperelliptic curves
has Jacobian of rank 1 or 2, with four visibile automorphisms. Taking the quotient by a
non-hyperelliptic involution gives a genus 2 hyperelliptic curve, the Jacobians of which have
rank at most 1; Chabauty applied to the genus 2 curves thus proves that the only rational

points on Xg7o are the known points.
See the transcript of computations for Magma code verifying these claims.

10.2. Analysis of Xggg. Similarly, the curve Xgg6 has a model
X686: y2 :$3+I2—3$+1
w? = 2y — y(—z +1))(a* — 22— 1)
and étale double covers Ds — Xggg from the curves
v =2+ 2 —3r+1
dwi =2* —2x—1
dwy = 2(y* — y(—z +1)).
The curve Ds maps to the genus 3 hyperelliptic curve Hs given by
v — (2 +2° 32 +1) =0
Sw? — (2 =22 — 1) = 0.

These are the same curves as in the analysis of Xgg9, and we conclude in the same way that

the only rational points on Xggg are the known points.
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10.3. Non-explicit, modular double covers. The remaining genus 5 curves and the genus
7 curves are inaccessible via other methods and will be handled by the modular double cover
method described in subsection [7.6l We describe this method in more detail here.

Let S = {1,2,—1,—2} and for § € S define ys to be the Kronecker character associated
to Q(\/S) Suppose that X is one of these 20 such curves, with corresponding subgroup H.
In each case, we can find four index 2 subgroups Ks with 6 € S so that for all g € K,

g € K if and only if ys(detg) = 1.

Moreover, if the genus of X is g, the genus of each K is 2g — 1, which implies that Xk, /X
is étale.

Choose a modular function h(z) for K; so that if m is an element of the non-identity coset
for Ky in H, then hlm = —h. A model for X, is then given by h? = r, where r € Q(Xg).
Moreover, the condition on elements of K implies that v/dh is fixed by the action of Kj
(recall the method of model computations in Section [4]). This implies that the curves X,
are the twists (by the elements of S) of K, and hence every rational point on X lifts to
one of the Xg,. In each case, the Xg, maps to a curve X,, whose model we have computed
that has finitely many rational points (namely a pointless conic, a pointless genus 1 curve,
or an elliptic curve with rank zero).

Note that the group theory alone provides the properties we need for the curves Xg,, and
we do not construct models for them.

Example 10.4. The curve Xgg5 is a genus 5 curve that has two visible rational points
corresponding to elliptic curves with j-invariant 54000. In this case, X, and X _, map to
the rank zero elliptic curve Xogs : y* = 23+ x (whose two rational points map to j = 54000).
The curves Xg, and Xg_, map to Xogs, a genus 1 curve with no 2-adic points.

See the transcript of computations for further details.

APPENDIX A. PROVING THE MOD N REPRESENTATION IS SURJECTIVE

Given a Galois extension K/Q with Galois group G, [DD13| gives an algorithm that will
allow one to determine, for a given unramified prime p, the Frobenius conjugacy class Frob,,.
Applied to the case K = Q(E[N]), and given initial knowledge that G is a subgroup of some
particular H (e.g. E could arise from a rational point on Xp), this gives an algorithm to
prove that im pp v = H.

Remark A.1. When H = S,, or GLy(F,) this is well understood (e.g. in the latter case, if £ > 5
and G contains three elements with particular properties then G = H [Ser72, Prop. 19]).
For subgroups of GLy(FF,), [Sut15] recently proved that if two subgroups H, K of GLy(F)
have the same signature, defined to be

sy = {(det A, tr A,rankfix A) : A € H},

then H and K are conjugate. (Note that the extra data of fix A is necessary to distinguish
the trivial and order 2 subgroups of GLy(IFy). Already for G C GLy(Z/(*7Z) with £ > 2, the
additional data of fix A does not suffice — for instance, the order ¢ subgroups generated by

1—¢ ¢ L
0 14+¢ 0 147
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Remark A.2. It is in principle completely straight-forward to provably determine the image
of pg,. Indeed, Magma can compute, for any n, the corresponding division polynomial, and
compute the Galois group of the corresponding field. In practice though, as the degree of
Q(E[n]) grows, a direct computation of the Galois group using Magma’s built in commands
quickly becomes infeasible.

We now describe the algorithm. Suppose that K is the splitting field of

n

F(z) =[]z - a).

=1

Given some fixed polynomial ~ and a conjugacy class C' C G, construct the resolvent poly-

nomial
Te(X)=]] (X - Z h(ai)a(ai)> .

oeC

Theorem 5.3 of [DD13] states the following (specializing to extensions of Q).
Theorem. Assume the notation above.

(1) For each conjugacy class C' C G, I'c(X) has coefficients in Q.

(2) If p is a prime that does not divide the denominators of F'(x), h(x) and the resolvents
of I'c and I'¢v for different C' and C’, then

Frob, = C <= TI¢ <Trip([1)} /Fp(h(q:)xp)) =0 (mod p).

We wish to apply this theorem in the case that G = H and when the Galois group of K/Q
may not necessarily be G. An examination of the proof shows that the theorem remains true
even if Gal(K/Q) is a proper subgroup of G.

Our setup is the following. Suppose that F/Q is an elliptic curve with a model chosen
that has integer coefficients. Suppose also that we know, a priori, that the image of the mod
N Galois representation is contained in H C GLy(Z/NZ). The following algorithm gives a
method to prove that the mod N image is equal to H. Define

(

4 if N=2
s51(N) =< p if N> 2is a power of the prime p
\ otherwise,
(8 if N=2
it N =3

N) =
52(N) if N > 3 is a power of the prime p

_ s O o

L otherwise.

(1) We fix an isomorphism ¢: (Z/NZ)?> — E[N| and pre-compute decimal expansions
of f(P) = s1(N)x(P) + s2(N)y(P) for all torsion points of P of order N on E. By

Theorem VIIL.7.1 of [Sil09], these numbers are algebraic integers.
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(2) The action of Galois on the numbers s1(N)z(P) + s2(N)y(P) is given by some con-
jugate of H. We attempt to identify a unique conjugate of H in GLy(Z/NZ) that
gives this action. We do this by numerically computing

D F(@(k(1,00)) F(9(k(0, 1)) + F(S(k(L,0)) f(@(k(1,1))) + f(&(k(0,1))) f($(k(L, 1))

keK

for each conjugate K of H inside GLy(Z/NZ). If the image of the mod N represen-
tation is contained in K, then the sum above will be an integer.

(3) We compute the polynomial F(z) with integer coefficients whose roots are the num-
bers f(P) = s1(N)x(P) + s2(N)y(P). This polynomial is computed numerically.
Knowing the size of the numbers f(P), we verify that enough decimal precision is
used to be able to round the coefficients of F'(x) to the nearest integer and obtain
the correct result.

(4) We compute the resolvent polynomials for all of the conjugacy classes of H and check
that these have no common factor. (In practice, we use h(z) = 23 to construct these
polynomials. We use a smaller decimal precision for the resolvent polynomials and
again check that we can round the coefficients to the nearest integer to obtain the
correct result.)

(5) Using the resolvent polynomials, we compute the conjugacy class of pg n(Frob,) C H
for lots of different primes p.

(6) We enumerate the maximal subgroups of H and determine which conjugacy classes
they intersect. We check to see if the conjugacy classes found in the previous step all

lie in some proper maximal subgroup of H. If not, then the image of pg n is equal
to H.

Note that it is not possible for a maximal subgroup M C H to intersect all of the conjugacy
classes of H.

Example A.3. Let E : y? = 2® + 22 — 282 + 48. This elliptic curve has j-invariant 78608,
which corresponds to a non-CM rational point on X556, and hence the 2-adic image for F
is contained in Hjs6, an index 96 subgroup of GLy(Zs) that contains I'(16). We must show
that the 2-adic image equals Hsss. Every maximal subgroup of Hssg also contains I'(16),
so it suffices to compute the image of the mod 16 Galois representation attached to E.
To do this, we fix an isomorphism F[16] = (Z/16Z)?, and precompute decimal expansions
of 2z(P) + 2y(P) for all P € E[16], using 1000 digits of decimal precision. There are 24
conjugates of Hss¢ in GLy(Zs), and we find that the expression in step 2 above is an integer
only for one of the conjugates of Hssg.

The image of Hss under the map Gl (Zs) — GLo(Z/16Z) has 46 conjugates classes, and
we compute the polynomial F'(x) whose roots are the 192 numbers 2z(P) 4 2y(P). Knowing
the sizes of the roots, we can see that no coefficient of F'(z) could be larger than 10!, and
so 1000 digits of decimal precision is enough to correctly recover F'(zx).

We then compute the resolvent polynomials for the 46 conjugacy classes (using 500 digits of

decimal precision). Then, for each prime p < 30000, we compute Tr g, /5 (2P3) and check
(F(x))/™P

which resolvent polynomial has this number as a root in I,. Using this, we can determine
which conjugacy class is the image of Frob,. We find that all 46 conjugacy classes are in the

image of Frob, for some p. (For example, the smallest prime p which splits completely in
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Q(EI16]) is p = 5441.) As a consequence the image of the mod 16 Galois representation of
E is H556.
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