PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103

Plan for Lecture 2:

Reading: Chapter 1 (especially 1.11) in JDJ;
Ewald summation methods

1. Motivation
2. Expression to evaluate the electrostatic energy of an extended periodic system
3. Examples

115/2020 PHY 712 Spring 2020 - Lecture 2
1

Colloquium: "First-Principles Investigation on Quantum Materials Using Beyond-DFT Methods"

Dr. Subhasish Mandal,
Department of Physics and Astronomy
Rutgers University \qquad
Piscataway, NJ
George P. Williams, Jr. Lecture Hall, (Olin 101)
Wednesday, January 15,2020 at 3:00 PM

There will be a reception in the Olin Lounge at approximately 4 PM following the
colloquium. All interested persons are cordially invited to attend.
1/15/2020 PHY 712 Spring 2020 - Lecture 2
2

3

Ewald summation methods -- motivation

Consider a collection of point charges $\left\{q_{i}\right\}$ located at points $\left\{\mathbf{r}_{i}\right\}$.
The energy to separate these charges to infinity $\left(\mathbf{r}_{i} \rightarrow \infty\right\}$ is
$W=\frac{1}{4 \pi \epsilon_{0}} \sum_{(i, j, i>j)} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}$.
Here the summation is over all pairs of (i, j), excluding $i=j$.
It is convenient to sum over all particles and divide by 2 in order to compensate for the double counting:

$$
W=\frac{1}{8 \pi \epsilon_{0}} \sum_{i, j ; i \neq j} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

Now the summation is over all i and j, excluding $i=j$.
The energy W scales as the number of particles N. As $\mathrm{N} \rightarrow \infty$, the ratio W / N remains well-defined in principle, but difficult to calculate in practice.

4

> Evaluation of the electrostatic energy for N point charges:
> $\frac{W}{N}=\frac{1}{8 \pi \epsilon_{0}} \frac{1}{N} \sum_{i, j ; i \neq j} \frac{q_{i} q_{j}}{\mathbf{r}_{i}-\mathbf{r}_{j} \mid}$

Ewald summation methods - exact results for periodic systems
\qquad $\frac{W}{N}=\sum_{\alpha \beta} \frac{q_{\alpha} q_{\beta}}{8 \pi \varepsilon_{0}}\left(\frac{4 \pi}{\Omega} \sum_{\mathbf{G} \neq 0} \frac{e^{-i \mathrm{G} \cdot \cdot_{\mathrm{\tau o} \mathrm{\beta}}} e^{-G^{2} / \eta}}{G^{2}}-\sqrt{\frac{\eta}{\pi}} \delta_{\alpha \beta}+\sum_{\mathbf{T}} \frac{\operatorname{erfc}\left(\frac{1}{2} \sqrt{\eta}\left|\boldsymbol{\tau}_{\alpha \beta}+\mathbf{T}\right|\right)}{\left|\boldsymbol{\tau}_{\alpha \beta}+\mathbf{T}\right|}\right)-\frac{4 \pi Q^{2}}{8 \pi \varepsilon_{0} \Omega \eta}$
Note that the results should not depend upon η (assuming that all summations are carried to convergence). In the example of CsCl having a lattice constant a, we show two calculations produce the result:

$$
\frac{W}{N}=-\frac{e^{2}}{8 \pi \epsilon_{0}} \frac{4.070722970}{a} \text { or } \frac{W}{N}=-\frac{e^{2}}{8 \pi \epsilon_{0}} \frac{4.070723039}{a}
$$

See lecture notes for details. \qquad

1/15/2020
PHY 712 Spring 2020 - Lecture 2 \qquad
5

Slight digression	
Comment on e	
When the discrete charge distribution becomes a uous charge density: $q_{i} \rightarrow \rho(\mathbf{r})$, the electrostatic energy	
$W=\frac{1}{8 \pi \epsilon_{0}} \int d^{3} r d^{3} r^{\prime} \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|}$	
Notice, in this case, it is not possible to exclude the " ${ }^{\text {self- }}$ interaction".	
Electrostatic energy in terms of $\Phi(\mathbf{r})$ and field $\mathbf{E}(\mathbf{r})$:	
Previous expression can be rewritten in terms of the electrostatic potential or field:$W=\frac{1}{2} \int d^{3} r \rho(\mathbf{r}) \Phi(\mathbf{r})=-\frac{\epsilon_{0}}{2} \int d^{3} r\left(\nabla^{2} \Phi(\mathbf{r})\right) \Phi(\mathbf{r})$	
$\underset{1 / 151 / 2020}{W}=\frac{\epsilon_{0}}{2} \int d^{3} r\|\nabla \Phi(\mathbf{r})\|^{2}=\frac{\epsilon_{0}}{2} \int_{\text {PH }} \int_{712} d^{3} r\|\mathbf{E}(\mathbf{r})\|^{2} .$	

6

