PHY 712 Electrodynamics
12-12:50 AM Olin 103
Plan for Lecture 20:
Review of Chap. 1-8

1. Plan for next week
2. Comment on exam
3. Review
PHyr712 Sping 2020- Leetire 20

1

13	Wed: 02/12/2020	Chap. 5	\|Magnetic dipoles and dipolar fields	\#12	02/17/2020
14	Fri: 02/14/2020	Chap. 6	\|Maxwell's Equations	\#13	02/19/2020
15	Mon: 02/17/2020	Chap. 6	Electromagnetic energy and forces	\#14	02/21/2020
16	Wed: 02/19/2020	Chap. 7	Electromagnetic plane waves	\#15	02/24/2020
	Fri: 02/21/2020	Chap. 7	Electromagnetic plane waves	\#16	02/26/2020
	Mon: 02/24/2020	Chap. 7	Optical effects of refractive indices		
	Wed: 02/26/2020	Chap. 8	EM waves in wave guides		
20	Fri: 02/28/2020	Chap. 1-8	Review		
	Mon: 03/02/2020	No class	APS March Meeting	Take Home Exam	
	Wed: 03/04/2020	No class	APS March Meeting	Take Home Exam	
	Fri: 03/06/2020	No class	APS March Meeting	Take Home Exam	
	Mon: 03/09/2020	No class	Spring Break		
	Wed: 03/11/2020	No class	Spring Break		
	Fri: 03/13/2020	No class	Spring Break		
21	Mon: 03/16/2020	Chap. 9	Radiation from localized oscillating sources		
	02/28/2020		HYY 712 Spring 2020 -- Lecture 20		2

2

Next week --		
Colloquium: "Changes in Blood Clot Structure and		
Mechanics in Cardiovascular and Thromboembolic		
Diseases		
Dr. Stephen Baker, Teacher Scholar Postdoctoral Fellow WFU Physics		
George P. Williams, Jr. Lecture Hall, (Olin 101)		
Wednesday, March 4, 2020 at 3:00 PM		
There will be a reception in the Olin Lounge at approximately 4 PM following the colloquium. All interested persons are cordially invited to attend.		
ABSTRACT Studies in recent years have shown blood clot structure and mechanical properties to be a novel risk factor for cardiovascular diseases, the leading cause of morbidity and mortality worldwide. As a result, we need to better understand how the structural and mechanical properties of blood clots from patients with cardiovascular disease are different from those of healthy individuals. To study these properties, we need to determine how they change at different length scales. On the nano- and microscale, an atomic force microscope is an extremely versatile piece of equipment that can be used for nanometer to micrometer scale imaging, normal force unfolding of single molecules, or even novel lateral force techniques.		
022882020	PHY 712 Spring 2020 - Lecture 20	3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Comment on exam		
Three multipart questions		
Completed exam accepted until Monday, Mar. 9, 2020		
Email your questions to natalie@wfu.edu		
Will be present in Friday March 6, 2020		
0228212020	PHY 712 Sping 2020 - Lecture 20	4

4

Review of mathematical relationships
Some useful identities for vectors and vector operators
$\mathrm{a} \cdot(\mathrm{b} \times \mathrm{c})=\mathrm{b} \cdot(\mathrm{c} \times \mathrm{a})=\mathrm{c} \cdot(\mathrm{a} \times \mathrm{b})$
$\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$
$(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$

$$
\nabla \times \nabla \psi=0
$$

$\nabla \cdot(\nabla \times \mathbf{a})=0$ $\nabla \times(\nabla \times \mathbf{a})=\nabla(\nabla \cdot \mathbf{a})-\nabla^{2} \mathbf{a}$
$\nabla \cdot(\psi \mathbf{a})=\mathbf{a} \cdot \nabla \psi+\psi \nabla \cdot \mathbf{a}$
$\nabla \times(\psi \mathbf{a})=\nabla \psi \times \mathbf{a}+\psi \nabla \times \mathbf{a}$
$\nabla(\mathbf{a} \cdot \mathbf{b})=(\mathbf{a} \cdot \nabla) \mathbf{b}+(\mathbf{b} \cdot \nabla) \mathbf{a}+\mathbf{a} \times(\nabla \times \mathbf{b})+\mathbf{b} \times(\nabla \times \mathbf{a})$ $\nabla \cdot(\mathbf{a} \times \mathbf{b})=\mathbf{b} \cdot(\nabla \times \mathbf{a})-\mathbf{a} \cdot(\nabla \times \mathbf{b})$
$\nabla \times(\mathbf{a} \times \mathbf{b})=\mathbf{a}(\nabla \cdot \mathbf{b})-\mathbf{b}(\nabla \cdot \mathbf{a})+(\mathbf{b} \cdot \nabla) \mathbf{a}-(\mathbf{a} \cdot \nabla) \mathbf{b}$
5

6

Some properties of a delta function

In one-dimension:
Note that for any function $F(x)$:
$\int_{-\infty}^{\infty} F(x) \delta\left(x-x_{0}\right) d x=F\left(x_{0}\right)$
Now consider a function $p(x)$, for which $p\left(x_{i}\right)=0$ for $i=1,2, \cdots$
$\int_{-\infty}^{\infty} F(x) \delta(p(x)) d x=\int_{-\infty}^{\infty} F(x)\left(\sum_{i} \delta\left(\left.\left(x-x_{i}\right) \frac{d p}{d x} \right\rvert\, x_{x_{i}}\right)\right) d x$

$$
=\sum_{i} \frac{F\left(x_{i}\right)}{|\underline{d p}|}
$$

In three-dimensions:

$$
\begin{aligned}
\delta^{3}\left(\mathbf{r}-\mathbf{r}_{0}\right) & \equiv \delta\left(x-x_{0}\right) \delta\left(y-y_{0}\right) \delta\left(z-z_{0}\right) & \text { Cartesian } \\
& =\frac{1}{r^{2}} \delta\left(r-r_{0}\right) \delta\left(\phi-\phi_{0}\right) \delta\left(\cos \theta-\cos \theta_{0}\right) & \text { Spherical } \\
& =\frac{1}{r} \delta\left(r-r_{0}\right) \delta\left(\phi-\phi_{0}\right) \delta\left(z-z_{0}\right) & \text { Cylindrical } \\
& \text { PHY 712 Spping 2020--Lecture 20 } &
\end{aligned}
$$

02/28/2020

\qquad
\qquad
\qquad
\qquad

7

$$
\begin{aligned}
& \text { Orthogonal functions useful for angular representations } \\
& \text { Legendre polynomials for }-1 \leq x \leq 1 \text { : } \\
& P_{0}(x)=1 \quad \quad P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \quad P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& \text { Spherical harmonic functions } \\
& l=0: \quad Y_{00}(\hat{\mathbf{r}})=\frac{1}{\sqrt{4 \pi}} \\
& l=1: \quad Y_{1(\pm 1)}(\hat{\mathbf{r}})=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \varphi} \quad Y_{10}(\hat{\mathbf{r}})=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
& l=2: \quad Y_{2(\pm 2)}(\hat{\mathbf{r}})=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \varphi} \quad Y_{2(\pm 1)}(\hat{\mathbf{r}})=\mp \sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{ \pm i \varphi} \\
& \text { Note that } \quad Y_{l 0}(\hat{\mathbf{r}})=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(\cos \theta)
\end{aligned} \quad Y_{20}(\hat{\mathbf{r}})=\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) .
$$

${ }^{02228 / 2020} \quad$ PHY 712 Spring 2020 - Lecture 20 $\quad{ }^{8}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8

Useful identities related to Coulomb kernel:

$$
\begin{aligned}
& \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 \mathbf{r} \cdot \mathbf{r}^{\prime}}}=\sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}\left(\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}^{\prime}\right) \\
& P_{l}\left(\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}^{\prime}\right)=\frac{4 \pi}{2 l+1} \sum_{m=-l}^{l} Y_{l m}(\hat{\mathbf{r}}) Y_{l m}{ }^{*}\left(\hat{\mathbf{r}}^{\prime}\right) \\
& \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\sum_{l m} \frac{4 \pi}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l m}(\theta, \varphi) Y_{l m}{ }^{*}\left(\theta^{\prime}, \varphi^{\prime}\right)
\end{aligned}
$$

Also note that: $\quad \nabla^{2} \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=-4 \pi \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10

Review	
Maxwell's equations	
Coulomb's law: ∇	$\nabla \cdot \mathbf{D}=\rho_{\text {free }}$
Ampere-Maxwell's law :	$\nabla \times \mathbf{H}-\frac{\partial \mathbf{D}}{\partial t}=\mathbf{J}_{\text {free }}$
Faraday's law :	$\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0$
No magnetic monopoles:	$\nabla \cdot \mathbf{B}=0$
For linear isotropic media and no sources:	rces: $\mathbf{D}=\varepsilon \mathbf{E} ; \quad \mathbf{B}=\mu \mathbf{H}$
${ }^{2} 22882020$ PHY712 Spring 2020 - Lecture 20	ave 20

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11
 1

Review -- continued
 Maxwell's equations

Microscopic or vacuum form $(\mathbf{P}=0 ; \mathbf{M}=0)$: \qquad
Coulomb's law :
$\nabla \cdot \mathbf{E}=\rho / \varepsilon_{0}$
Ampere-Maxwell's law : $\quad \nabla \times \mathbf{B}-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}=\mu_{0} \mathbf{J}$
Faraday's law : $\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0$
No magnetic monopoles: $\quad \nabla \cdot \mathbf{B}=0$

$$
\Rightarrow c^{2}=\frac{1}{\varepsilon_{0} \mu_{0}}
$$

$$
\text { 02/28/2020 PHY712 Spring } 2020 \text { - Lecture } 20
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Review -- continued

$$
\nabla \cdot \mathbf{B}=0 \quad \Rightarrow \mathbf{B}=\nabla \times \mathbf{A}
$$

$$
\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 \quad \Rightarrow \nabla \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}\right)=0
$$

\qquad

$$
\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}=-\nabla \Phi
$$

$$
\text { or } \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}
$$

$$
\begin{aligned}
& \text { Review -- continued } \\
& \text { Analysis of the scalar and vector potential equations: } \\
& -\nabla^{2} \Phi-\frac{\partial(\nabla \cdot \mathbf{A})}{\partial t}=\rho / \varepsilon_{0} \\
& \nabla \times(\nabla \times \mathbf{A})+\frac{1}{c^{2}}\left(\frac{\partial(\nabla \Phi)}{\partial t}+\frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right)=\mu_{0} \mathbf{J} \\
& \text { Lorentz gauge form - - require } \nabla \cdot \mathbf{A}_{L}+\frac{1}{c^{2}} \frac{\partial \Phi_{L}}{\partial t}=0 \\
& -\nabla^{2} \Phi_{L}+\frac{1}{c^{2}} \frac{\partial^{2} \Phi_{L}}{\partial t^{2}}=\rho / \varepsilon_{0} \\
& -\nabla^{2} \mathbf{A}_{L}+\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}_{L}}{\partial t^{2}}=\mu_{0} \mathbf{J} \\
& 022882220
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14

Review - continued - focusing on statics --

When to solve equations using integral form versus differential form?

Examples from electrostatic and magnetostatic cases: \qquad

$$
\begin{array}{ll}
\Phi(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int d^{3} r^{\prime} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} & \begin{array}{l}
\text { Useful for } \\
\text { spatially } \\
\text { confined }
\end{array} \\
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} & \text { sources. }
\end{array}
$$

Review -- continued

General form of electrostatic potential with boundary value
\qquad $r \rightarrow \infty$, for isolated charge density $\rho(\mathbf{r})$:
$\Phi(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int d^{3} r^{\prime} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}$

$$
=\frac{1}{4 \pi \varepsilon_{0}} \int d^{3} r^{\prime} \rho\left(\mathbf{r}^{\prime}\right)\left(\sum_{l m} \frac{4 \pi}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l m}(\theta, \varphi) Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right)\right)
$$

Suppose that $\rho(\mathbf{r})=\sum_{l m} \rho_{l m}(r) Y_{l m}(\theta, \varphi)$
$\Rightarrow \Phi(\mathbf{r})=\frac{1}{\varepsilon_{0}} \sum_{l m} \frac{1}{2 l+1} Y_{l m}(\theta, \varphi)\left(\frac{1}{r^{l+1}} \int_{0}^{r} r^{\prime 2+l} d r^{\prime} \rho_{l m}\left(r^{\prime}\right)+r^{\prime} \int_{r}^{\infty} r^{1-l} d r^{\prime} \rho_{l m}\left(r^{\prime}\right)\right)$

02/28/2020
PHY 712 Spring 2020 -- Lecture 20

17

For $r \leq a$:
$\Phi(\mathbf{r})=\sum_{l} A_{l} r^{l} P_{l}(\cos \theta)$ \qquad
For $r \geq a$:
$\Phi(\mathbf{r})=\sum_{l} B_{l} \frac{1}{r^{l+1}} P_{l}(\cos \theta)+\frac{q}{4 \pi \epsilon_{0}} \frac{1}{|\mathbf{r}-d \hat{\mathbf{z}}|}$
\qquad

In order to match BC 's at $r=a$:
$\frac{1}{|\mathbf{r}-d \hat{\mathbf{z}}|}=\sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \theta)=\sum_{l=0}^{\infty} \frac{a^{l}}{d^{l+1}} P_{l}(\cos \theta)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Review of HW -- continued

$$
(\mathbf{r})=\sum_{l} A_{l} r^{l} P_{l}(\cos \theta)
$$

19

Boundary conditions:
D $\left.\cdot \hat{\mathbf{r}}\right|_{r=a}=$ continuous
$\left.\mathbf{E} \cdot \hat{\boldsymbol{\theta}}\right|_{r=a}=$ continuous
$\left.\varepsilon \frac{\partial \Phi_{\text {in }}(r)}{\partial r}\right|_{r=a}=\left.\varepsilon_{0} \frac{\partial \Phi_{\text {out }}(r)}{\partial r}\right|_{r=a}$
$\left.\frac{\partial \Phi_{\text {in }}(r)}{\partial \theta}\right|_{r=a}=\left.\frac{\partial \Phi_{\text {out }}(r)}{\partial \theta}\right|_{r=a}$

Equality for each l :

$$
\begin{aligned}
& \varepsilon l a^{l-1} A_{l}=-\frac{\varepsilon_{0}(l+1)}{a^{l+2}} B_{l}+\frac{q}{4 \pi} \frac{l a^{l-1}}{d^{l+1}} \\
& a^{l} A_{l}=+\frac{1}{a^{l+1}} B_{l}+\frac{q}{4 \pi} \frac{a^{l}}{d^{l+1}}
\end{aligned}
$$

2 equations and 2 unknowns for each /

$$
\text { 02/28/2020 PHY } 712 \text { Spring } 2020 \text {-- Lecture } 20
$$

Review -- continued

Hyperfine interaction energy:

$$
E_{i n t} \equiv H_{H F}=-\mu_{e} \cdot \mathbf{B}_{\mu_{N}}-\mu_{N} \cdot \mathbf{B}_{\mathbf{J}_{\mathbf{e}}}(0)
$$

Putting all of the terms together:

$$
H_{\mathrm{HF}}=-\frac{\mu_{0}}{4 \pi}\left(\left\langle\frac{3\left(\boldsymbol{\mu}_{\mathrm{N}} \cdot \hat{\mathbf{r}}\right)\left(\boldsymbol{\mu}_{\mathrm{e}} \cdot \hat{\mathbf{r}}\right)-\boldsymbol{\mu}_{\mathrm{N}} \cdot \boldsymbol{\mu}_{\mathrm{e}}}{r^{3}}+\frac{8 \pi}{3} \boldsymbol{\mu}_{\mathrm{N}} \cdot \boldsymbol{\mu}_{\mathrm{e}} \delta^{3}(\mathbf{r})\right\rangle+\frac{e}{m_{e}}\left\langle\frac{\mathbf{L} \cdot \boldsymbol{\mu}_{\mathrm{N}}}{r^{3}}\right\rangle\right) .
$$

In this expression the brackets \rangle indicate evaluating the expectation value relative to the electronic state.

21

22

23

Comment on HW -- continued
Alternative treatment using differential equations:
$-\nabla^{2} \mathbf{A}=\left\{\begin{array}{cc}\mu_{0} J_{0} \hat{\mathbf{z}} & \text { for } \rho \leq a \\ 0 & \text { for } \rho>a\end{array}\right.$
$-\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial A_{z}(\rho)}{\partial \rho}=\left\{\begin{array}{cc}\mu_{0} J_{0} & \text { for } \rho \leq a \\ 0 & \text { for } \rho>a\end{array}\right.$
$A_{z}(\rho)= \begin{cases}-\frac{\mu_{0} J_{0} \rho^{2}}{4}+C_{1} & \text { for } \rho \leq a \\ C_{2}+C_{3} \ln (\rho) & \text { for } \rho>a\end{cases}$ \qquad

Choosing constants from continuity requirements:
\qquad
$A_{z}(\rho)= \begin{cases}-\frac{\mu_{0} J_{0} \rho^{2}}{4}+\frac{\mu_{0} J_{0} a^{2}}{4} & \text { for } \rho \leq a \\ -\frac{\mu_{0} J_{0} a^{2}}{2} \ln (\rho / a) & \text { for } \rho>a\end{cases}$
$\mathbf{B}=-\frac{\partial A_{z}(\rho)}{\partial \rho} \hat{\boldsymbol{\varphi}}$
\qquad
\qquad
24

25

Comment on magnetic problem -- continued
$\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{\mu_{0} \sigma}{4 \pi} \frac{\boldsymbol{\omega} \times \mathbf{r}}{r} \frac{4 \pi}{3} \int_{0}^{a} r^{\prime 3} d r^{\prime} \delta\left(r^{\prime}-a\right) \frac{r_{<}}{r_{>}^{2}}$
$\mathbf{A}(\mathbf{r})=\frac{\mu_{0} \sigma}{3} \boldsymbol{\omega} \times \mathbf{r} \begin{cases}a & \text { for } r \leq a \\ \frac{a^{4}}{r^{3}} & \text { for } r>a\end{cases}$
$\mathbf{B}(\mathbf{r})=\frac{\mu_{0} \sigma}{3} \begin{cases}2 \boldsymbol{\omega} a & \text { for } r \leq a \\ \frac{a^{4}}{r^{3}}(3(\hat{\mathbf{r}} \cdot \boldsymbol{\omega}) \hat{\mathbf{r}}-\boldsymbol{\omega}) & \text { for } r>a\end{cases}$

02/28/2020 PHY 712 Spring 2020 -- Lecture 20

