PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 6:

Examples of point groups and their characters

Reading: Chapter 3 in DDJ

- 1. Schoenflies notation
- 2. Hermann-Mauguin notation
- 3. Relationships between symmetries

Note: In this lecture, some materials are taken from an electronic version of the Dresselhaus, Dresselhaus, Jorio text

1/2352017

PHY 745 Spring 2017 - Lecture 6

PHY 745 Group Theory MWF 11-11:50 AM OPL 102 http://www.wfu.edu/~natalie/s17phy745/ Instructor: Natalie Holzwarth Phone:758-5510 Office:300 OPL e-mail:natalie@wfu.edu Course schedule for Spring 2017 (Preliminary schedule -- subject to frequent adjustment.) DDJ Reading Topic HW Lecture date DDJ Reading Topic Definition and properties of groups Theory of representations 1 Wed: 01/11/2017 Chap. 1 2 Fri: 01/13/2017 Chap. 1 Mon: 01/16/2017 01/20/2017 MLK Holiday - no class Mon: 01/16/2017 3 Wed: 01/18/2017 Chap. 2 4 Fri: 01/20/2017 Chap. 2 5 Mon: 01/23/2017 Chap. 3 Theory of representations Proof of the Great Orthonality Theorem 01/23/2017 Notion of character of a representation 01/25/2017 6 Wed: 01/25/2017 7 Fri: 01/27/2017 8 Mon: 01/30/2017 Examples of point groups 1/2352017 PHY 745 Spring 2017 - Lecture 6

Sand Sand	Manal Ahmiliouch featured:	Events Wed, Jan. 25, 2017 Soin Effects in Creamic Semiconductions Professor Dat Bun, Notice of Control of Control Refreshments served 2:30pm - Olin 101 Refreshments served 2:30pm - Olin Lounge Med. Feb. 1, 2017 Professor Holey-Bockelmann, Variotricit U. 4:00pm - Olin 101 Refreshments served 3:30pm - Olin 101 Refreshments served 3:30pm - Olin Lounge

Point group symmetry elements in the Schoenflies notation

- E = Identity
- C_n = rotation through 2π/n . For example C₂ is a rotation of 180°. Likewise C₃ is a rotation of 120°, while C₆° represents a rotation of 60° followed by another rotation of 60° about the same axis so that C₆° = C₃. In a Bravais lattice it can be shown that n in C_n can only assume values of n=1, 2, 3, 4, and 6. The observation of a diffraction pattern with five-fold symmetry in 1984 was therefore completely unexpected, and launched the field of quasicrystals.
- σ = reflection in a plane.
- σ_h = reflection in a "horizontal" plane. The reflection plane here is perpendicular to the axis of highest rotational symmetry.
- $\sigma_v=$ reflection in a "vertical" plane. The reflection plane here contains the axis of highest symmetry.

C

PHY 745 Spring 2017 - Lecture 6

Figure 3.1: Schematic illustration of a dihedral symmetry axis. The reflection plane containing the diagonal of the square and the four-fold axes is called a dihedral plane. For this geometry $\sigma_d(x,y,z) = (-y,-x,z)$.

σ_d = reflection in a diagonal plane. The reflection plane here is a
vertical plane which bisects the angle between the two fold axes ⊥
to the principal symmetry axis. An example of a diagonal plane
is shown in Fig. 3.1. σ_d is also called a dihedral plane.

1/2352017

PHY 745 Spring 2017 - Lecture 6

• i = inversion which takes

$$\begin{cases} x \rightarrow -x \\ y \rightarrow -y \\ z \rightarrow -z \end{cases}$$

- $S_n=$ improper rotation through $2\pi/n$, which consists of a rotation by $2\pi/n$ followed by a reflection in a horizontal plane.
- $\bullet \ iC_n=$ compound rotation-inversion, which consists of a rotation followed by an inversion.

There are 32 distinct point groups generated by combinations of these operations

1/2352017

PHY 745 Spring 2017 - Lecture 6

Point group symmetry elements in the Hermann-Mauguin notation

Table 3.5: Comparison between Schoenflies and Hermann-Mauguin notation.

	Schoenflies	Hermann-Mauguin
rotation	C_n	n
rotation-inversion	iC_n	ñ
mirror plane	σ	m
horizontal reflection plane \perp to n – fold axes	σ_h	n/m
n — fold axes in vertical reflection plane	σ_v	nm
two non — equivalent vertical reflection planes	$\sigma_{v'}$	nmm

1/2352017

PHY 745 Spring 2017 - Lecture 6

Table 3.6: Comparison of notation for proper and improper rotations in the Schoenflies and International systems.

Proper R	otations	Improper l	Rotations
International	Schoenflies	International	Schoenflies
1	C_1	ī	S_2
2	C_2	$\bar{2} \equiv m$	σ
3	C_3	3	S_6^{-1}
3_{2}	C_3^{-1}	$\bar{3}_2$	S_6
4	C_4	$\bar{4}$	S_4^{-1}
43	C_4^{-1}	$\bar{4}_3$	S_4
6	C_6	6	S_3^{-1}
65	C_6^{-1}	$\bar{6}_{5}$	S_3

1/2352017

PHY 745 Spring 2017 - Lecture 6

Some relationships between point symmetry elements

- 1. Inversion commutes with all point symmetry operations.
- 2. All rotations about the same axis commute.
- All rotations about an arbitrary rotation axis commute with reflections across a plane perpendicular to this rotation axis.
- 4. Two two-fold rotations about perpendicular axes commute.
- 5. Two reflections in perpendicular planes will commute.
- 6. Any two of the symmetry elements $\sigma_h,\ S_2,\ C_n\ (n={\rm even})$ implies the third.

1/2352017

PHY 745 Spring 2017 - Lecture 6

	The 32 Poin	t Groups and T	Their Symbols	i.
System	Schoenflies	Hermann-Maug	Examples	
	symbol	Full	Abbreviated	70
Triclinic	C_1	1	1	
	$C_{i},(S_{2})$	Ī	Ĩ	Al ₂ SiO ₅
Monoclinic	$C_{2v}, (C_{1h}), (S_1)$	m	m	KNO ₂
	C_2	2	2	500000000
	C_{2h}	2/m	2/m	
Orthorhombic	C_{2v}	2mm	mm	
	$D_2, (V)$	222	222	81 E
	D_{2h} , (V_h)	$2/m \ 2/m \ 2/m$	mmm	I, Ga
Tetragonal	S_4	4	4	-
	C4	4	4	5000-5000 3550
	C_{4h}	4/m	4/m	CaWO ₄
	$D_{2d}, (V_d)$	$\overline{4}2m$	42m	
	C_{4v}	4mm	4mm	
	D_4	422	42	050598 49 50 9535
	D_{4h}	$4/m \ 2/m \ 2/m$	4/mmm	TiO_2 , In , $\beta - Sn$
D1 k - k - d f	124	0	- 0	A -T

System	Schoenflies	Hermann-Maug		Examples
200	symbol	Full	Abbreviated	100
Rhombohedral	C_3 C_{3i} , (S_6)	3 3	3 3	AsI ₃ FeTiO ₃
	C_{3v} D_3 D_{3d}	$\frac{3m}{32}$ $\frac{32}{32/m}$	$\frac{3m}{32}$ $\frac{3}{3}m$	Se Bi, As, Sb, Al ₂ O ₃
Hexagonal	C_{3h} , (S_3) C_6 C_{6h} D_{3h} C_{6v} D_6 D_{6h}	6 6/m 62m 6mm 622 6/m 2/m 2/m	6 6 6/m 62m 6mm 62 6/mmm	ZnO, NiAs CeF ₃ Mg, Zn, graphite
Cubic	T T_h T_d O O_h	23 2/m3 43m 432 4/m 3 2/m	23 m3 43m 43 m3m	NaClO ₃ FeS ₂ ZnS β-Mn NaCl, diamond, C

				C_{2i}	(2/1	m)			E	C_2	σ_h	i		
			- 3	x^2, y^2, z^2, x	y I	2.	1	1,0	1	1	1	1		
					2			4 _u	1	1	-1	-1		
				xz, yz	100	R_x , R_y		3,	1	-1	-1	-1		
				m the B t.ehu.es			,		ogr	aph	ic s	serve	r:	
tp:/	/ww	/W.C	<u>crys</u>		<u>/#p</u>	<u>oin</u>	top		Ū					ext tab
tp:/	/ww	/W.C	<u>crys</u>	t.ehu.es	<u>/#p</u>	<u>oin</u>	top	stallog	Jrapi		nt gro	up from	the r	
tp:/	/ww	/W.C	e, cho	t.ehu.es	/#p	oint sional	c _{2h}	stallog 2/m	prapit D ₂	nic point	nt gro	up from	the r	
tp://	/www	W.C	e, cho	c ₂ 2	/#p	oint sional	C _{2h}	stallog 2/m	prapit D ₂	nic point	nt gro	up from mm2	the r	mma

Tetrahedral group:

Figure 3.3: Schematic diagram for the symmetry operations of the group T_{d^*}

For simple tetrahedron: 1 identity 3 two-fold axes (x 4 three-fold axes (b)

- $\begin{array}{l} (x,y,z) \\ (\text{body diagonals-positive rotation}) \\ (\text{body diagonals-negative rotations}) \end{array}$ 4 three-fold axes
 12 symmetry elements

1/2352017

PHY 745 Spring 2017 - Lecture 6

Tetrahedral group:

Figure 3.3: Schematic diagram for the symmetry operations of the group T_d .

For complex tetrahedron:

- Identity
- 8 C_3 about body diagonals corresponding to rotations of $\pm \frac{2\pi}{3}$
- 3 C₂ about x, y, z directions
- 6 S_4 about x,y,z corresponding to rotations of $\pm \frac{\pi}{2}$
- 6 σ_d planes that are diagonal reflection planes

24 symmetry elements

1/2352017

PHY 745 Spring 2017 - Lecture 6

Table 3.32: Character Table for Group ${\cal T}$

T (23)		E	$3C_2$	$4C_3$	$4C_3'$
	A	1	1	1	1
	E	[1	1	w	ω^2
	100	1	1	W2	ω
(R_x, R_y, R_z) (x, y, z)	T	3	-1	0	0

Table 3.34: Character Table for Group T_d

 T_d (43m) A_1 A_2 E (R_x, R_y, R_z) T_1 (x, y, z) T_2 1 2 3

1/2352017

PHY 745 Spring 2017 - Lecture 6

