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PHY 745 Group Theory
11-11:50 AM  MWF  Olin 102

Plan for Lecture 5:

Representations, characters, and 
the “great” orthogonality theorem

Reading: Chapter 3 in DDJ

1. Finish proof of  “Great Orthogonality
Theorem”

2. Character of a representation

3. Great orthogonality theorem for 
characters
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The great orthogonality theorem on unitary irreducible 
representations
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Proof of the great orthogonality theorem
• Prove that all representations can be unitary 

matrices
• Prove Schur’s lemma part 1 – any matrix which 

commutes with all matrices of an irreducible 
representation must be a constant matrix

• Prove Schur’s lemma part 2
• Put all parts together
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Construct a  matrix

Note that:  
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Construct a  matrix

Note that:  
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Geometric interpretation:

 dimensional vector space should be spanned by representations

 each of which consists of  components.
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Characters

   
The character of a representation  for a group element  is define
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Note that the character is unique for each irreducible representation.
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Great orthogonality theorem for characters
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In terms of classes ,  each with elements :
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Example – P(3):
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Character table for P(3):
1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) 1 A B C D E FG  G  G  G  G  G 
2 2 2 2 2 2( ) ( ) ( ) 1     ( ) ( ) ( ) 1 A B C E D FG  G  G   G  G  G 
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1 2 3Classes:            , ,              ,E A B C D F  C C C

C1 3C2 2C3

c1 1 1 1

c2 1 -1 1

c3 2 0 -1
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Check orthogonality:

C1 3C2 2C3

c1 1 1 1

c2 1 -1 1

c3 2 0 -1
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Some further conclusions:
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The characters ci behave as a vector space with the 
dimension equal to the number of classes.

The number of characters=the number of classes
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The regular representation is composed of h x h
matrices constructed as follows, shown with the P(3)
example:

E A B C D F
E-1    E A B C D F
A-1 A E D F B C 
B-1 B F E D C A
C-1 C D F E A B
D-1 F B C A E D
F-1 D C A B F E



Greg (E)=
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Greg (A)=

Greg (B)= Greg (C)=

Greg (D)=
Greg (F)=

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 00 0 0 0 1 0

0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
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Regular representation continued –
Note that the regular representation matrices satisfy the 
multiplication table of the group and have the same class 
structure as the group.
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Since the characters of the irreducible representations form a spanning

vector space, we can decompose ( ) into a linear combination:
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1 2 3Classes:          , ,     ,E A B C D F  C C C
Example for P(3):

C1 3C2 2C3

c1 1 1 1

c2 1 -1 1

c3 2 0 -1
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