PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 5:

Representations, characters, and the "great" orthogonality theorem

Reading: Chapter 3 in DDJ

- 1. Finish proof of "Great Orthogonality Theorem"
- 2. Character of a representation
- 3. Great orthogonality theorem for characters, PHY 745 Spring 2017 – Lecture 5

		PHY	745 Group Theor	У					
	MWF 11-11:50 AM OPL 102 http://www.wfu.edu/~nataile/s17phy745/								
Instructor: Natalie Holzwarth Phone:758-5510 Office:300 OPL e-mail:natalie@wfu.edu									
		Cours	se schedule for Spring 201	7					
(Preliminary schedule subject to frequent adjustment.)									
	· · · · · · · · · · · · · · · · · · ·	(Preliminary	schedule subject to frequent adjustr	nent.)					
	Lecture date	(Preliminary DDJ Reading	schedule subject to frequent adjustr Topic	nent.)	Due date				
1	Lecture date Wed: 01/11/2017	(Preliminary DDJ Reading Chap. 1	schedule subject to frequent adjustr Topic Definition and properties of groups	nent.) HW #1	Due date 01/20/2017				
1	Lecture date Wed: 01/11/2017 Fri: 01/13/2017	(Preliminary DDJ Reading Chap. 1 Chap. 1	schedule subject to frequent adjustr Topic Definition and properties of groups Theory of representations	nent.) #W #1	Due date 01/20/2017				
1	Lecture date Wed: 01/11/2017 Fri: 01/13/2017 Mon: 01/16/2017	(Preliminary DDJ Reading Chap. 1 Chap. 1	schedule – subject to frequent adjustr Topic Definition and properties of groups Theory of representations MLK Holiday - no class	nent.) HW #1	Due date 01/20/2017				
1 2 3	Lecture date Wed: 01/11/2017 Fri: 01/13/2017 Mon: 01/16/2017 Wed: 01/18/2017	(Preliminary DDJ Reading Chap. 1 Chap. 1 Chap. 2	schedule – subject to frequent adjustr Topic Definition and properties of groups Theory of representations MLK Holdidy - no class Theory of representations	nent.) HW #1	Due date 01/20/2017				
1 2 3 4	Lecture date Wed: 01/11/2017 Fri: 01/13/2017 Mon: 01/16/2017 Wed: 01/18/2017 Fri: 01/20/2017	(Preliminary DDJ Reading Chap. 1 Chap. 1 Chap. 2 Chap. 2	schedule subject to frequent adjustr Topic Definition and properties of groups Theory of representations <i>MLK Holiday - no class</i> Theory of representations Proof of the Great Orthonality Theorem	nent.) #W #1	Due date 01/20/2017 01/23/2017				
1 2 3 4 5	Lecture date Wed: 01/11/2017 Fri: 01/13/2017 Mon: 01/16/2017 Wed: 01/18/2017 Fri: 01/20/2017 Mon: 01/23/2017	(Preliminary DDJ Reading Chap. 1 Chap. 1 Chap. 2 Chap. 2 Chap. 3	schedule subject to frequent adjustr Topic Definition and properties of groups Theory of representations MLK Holiday - no class Theory of representations Proof of the Great Orthonality Theorem Notion of character of a representation	nent.) #W #1 #2 #2	Due date 01/20/2017 01/23/2017 01/25/2017				
1 2 3 4 5 6	Lecture date Wed: 01/11/2017 Fri: 01/13/2017 Mon: 01/16/2017 Wed: 01/18/2017 Fri: 01/20/2017 Mon: 01/23/2017 Wed: 01/25/2017	(Preliminary DDJ Reading Chap. 1 Chap. 1 Chap. 2 Chap. 2 Chap. 3	schedule subject to frequent adjustr Topic Definition and properties of groups Theory of representations <i>MLR</i> Hoiday - no class Theory of representations Proof of the Great Orthonality Theorem Notion of character of a representation	nent.) HW #1 #2 #3	Due date 01/20/2017 01/23/2017 01/23/2017				

Proof of the great orthogonality theorem

- Prove that all representations can be unitary matrices
- Prove Schur's lemma part 1 any matrix which commutes with all matrices of an irreducible representation must be a constant matrix

PHY 745 Spring 2017 - Lecture 5

Prove Schur's lemma part 2Put all parts together

1/23/2017

Proof of the great orthogonality theorem • Prove that all representations can be unit

- Prove that all representations can be unitary matrices
- Prove Schur's lemma part 1 any matrix which commutes with all matrices of an irreducible representation must be a constant matrix
 Prove Schur's lemma part 2
- Put all parts together

 $\sum_{R} \left(\Gamma^{i}(R)_{\mu\nu} \right)^{*} \Gamma^{j}(R)_{\alpha\beta} = \frac{h}{l_{i}} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$ 1/23/2017 PHY 745 Spring 2017 - Lecture 5

5

Construct a
$$\ell_2 \times \ell_1$$
 matrix
 $\mathcal{M} = \sum_R \Gamma^2(R) X \Gamma^1(R^{-1})$
Note that: $\Gamma^2(S) \mathcal{M} = \mathcal{M} \Gamma^1(S)$ where *S* is a member of the group
For $\ell_2 \neq \ell_1$ Schur's lemma shows that $\mathcal{M} = 0$
For $X = 0$ except $X_{\mu\nu} = 1$:
 $\left(\sum_R \Gamma^2(R) X \Gamma^1(R^{-1})\right)_{\alpha\beta} = \sum_R \left(\Gamma^2(R)\right)_{\alpha\mu} \left(\Gamma^1(R^{-1})\right)_{\nu\beta}$
 $= \sum_R \left(\Gamma^2(R)\right)_{\alpha\mu} \left(\Gamma^1(R)\right)_{\beta\nu}^* = 0$

Construct a
$$\ell_2 \times \ell_1$$
 matrix
 $M \equiv \sum_R \Gamma^2(R) X \Gamma^1(R^{-1})$
Note that: $\Gamma^2(S)M = M \Gamma^1(S)$ where *S* is a member of the group
For 2 = 1, Schur's lemma shows that $M = sI$ $I \equiv (\ell_1 \times \ell_1)$ identity
 $\left(\sum_R \Gamma^1(R) X \Gamma^1(R^{-1})\right)_{\alpha\beta} = s \delta_{\alpha\beta}$
For $X = 0$ except for $X_{\mu\nu} = 1$: $\sum_R \Gamma^1_{\alpha\mu}(R) \Gamma^1_{\nu\beta}(R^{-1}) = s_{\mu\nu} \delta_{\alpha\beta}$
Here $s_{\mu\nu}$ denotes the scalar constant for the particular choice of *X*.
Consider $\alpha = \beta$ and sum over all α :
 $\sum_R \Gamma^1_{\alpha\mu}(R) \Gamma^1_{\nu\alpha}(R^{-1}) = \sum_{R\alpha} \Gamma^1_{\nu\alpha}(R^{-1}) \Gamma^1_{\alpha\mu}(R) = \sum_R \Gamma^1_{\nu\mu}(R^{-1}R) = h \Gamma^1_{\nu\mu}(E)$
 $\Rightarrow \sum_{R\alpha} \Gamma^1_{\alpha\mu}(R) \Gamma^1_{\nu\alpha}(R^{-1}) = h \delta_{\mu\nu} = s_{\mu\nu} \sum_{\alpha} \delta_{\alpha\alpha} = s_{\mu\nu} \ell_1$
1232017 PHY 745 Spring 2017 - Lecture 5 7

Proof continued:

$$\sum_{R} \Gamma^{1}_{\ \alpha\mu}(R) \Gamma^{1}_{\ \nu\beta}(R^{-1}) = s_{\mu\nu} \delta_{\alpha\beta}$$

$$h\delta_{\mu\nu} = s_{\mu\nu} \ell_{1} \qquad \Rightarrow s_{\mu\nu} = \frac{h}{\ell_{1}} \delta_{\mu\nu}$$

$$\sum_{R} \Gamma^{1}_{\ \alpha\mu}(R) \Gamma^{1}_{\ \nu\beta}(R^{-1}) = \sum_{R} \Gamma^{1}_{\ \alpha\mu}(R) (\Gamma^{1}(R))^{*}_{\beta\nu} = \frac{h}{\ell_{1}} \delta_{\mu\nu} \delta_{\alpha\beta}$$

$$\sum_{R} (\Gamma^{i}(R)_{\mu\nu})^{*} \Gamma^{j}(R)_{\alpha\beta} = \frac{h}{\ell_{i}} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$$
1/232017 PYY745 Spring 2017 - Lecture 5 8

$$\sum_{R} \left(\Gamma^{i}(R)_{\mu\nu} \right)^{*} \Gamma^{j}(R)_{\alpha\beta} = \frac{h}{l_{i}} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$$

Geometric interpretation:

Geometric interpretation:

h dimensional vector space should be spanned by representations $\Gamma^i(R)_{\alpha\beta}$ each of which consists of l_i^2 components.

PHY 745 Spring 2017 - Lecture 5

9

$$\Rightarrow \sum_{i} l_i^2 = h$$

1/23/2017

For P(3): $1+1+2^2 = 6$ For P(4): $1+1+2^2+3^2+3^2=24$

Characters

The character of a representation *i* for a group element *R* is defined: $\chi^{i}(R) \equiv \operatorname{Tr}\left(\Gamma^{i}(R)\right) \equiv \sum_{k} \left(\Gamma^{i}(R)\right)_{aa}$ Note that the character is unique for each irreducible representation. Suppose $M' = U^{\dagger}MU$ $\operatorname{Tr}(M') = \operatorname{Tr}(M)$ Details: $\sum_{i} M'_{ii} = \sum_{ijk} U^{\dagger}_{ij}M_{jk}U_{ki} = \sum_{ijk} U_{ki}U^{\dagger}_{ij}M_{jk} = \sum_{j} \delta_{jk}M_{jk} = \sum_{j} M_{jj}$ Note that all members of a class has the same character for any given representation. Details: $\chi^{i}(X^{-1}RX) = \sum_{a} \Gamma^{i}_{aa}(X^{-1}RX)$ $= \sum_{a\beta\Gamma} \Gamma^{i}_{a\beta}(X^{-1})\Gamma^{i}_{\beta\gamma}(R)\Gamma^{i}_{\gamma a}(X) = \sum_{a\beta\gamma} \Gamma^{i}_{\gamma a}(X)\Gamma^{i}_{a\beta}(X^{-1})\Gamma^{i}_{\beta\gamma}(R)$ $= \sum_{a\beta\gamma} \Gamma^{i}_{\gamma\beta}(E)\Gamma^{i}_{\beta\gamma}(R) = \sum_{\alpha} \Gamma^{i}_{\alpha\alpha}(R)$

Great orthogonality theorem for characters

$$\sum_{R} \left(\Gamma^{i}(R)_{\mu\nu} \right)^{*} \Gamma^{j}(R)_{\alpha\beta} = \frac{h}{l_{i}} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$$
Let $\mu = \nu$ and $\alpha = \beta$ and perform summations

$$\sum_{R\mu\alpha} \left(\Gamma^{i}(R)_{\mu\mu} \right)^{*} \Gamma^{j}(R)_{\alpha\alpha} = \frac{h}{l_{i}} \delta_{ij} \sum_{\mu\alpha} \delta_{\mu\alpha} \delta_{\mu\alpha}$$

$$\sum_{R} \left(\chi^{i}(R) \right)^{*} \chi^{j}(R) = h \delta_{ij}$$
In terms of classes \boldsymbol{e} , each with $N_{\boldsymbol{e}}$ elements :

$$\sum_{R} N_{\boldsymbol{e}} \left(\chi^{i}(\boldsymbol{e}) \right)^{*} \chi^{j}(\boldsymbol{e}) = h \delta_{ij}$$

$$\sum_{\mu\nu} N_{\boldsymbol{e}} \left(\chi^{i}(\boldsymbol{e}) \right)^{*} \chi^{j}(\boldsymbol{e}) = h \delta_{ij}$$

Some further conclusions:

$$\sum_{\boldsymbol{e}} N_{\boldsymbol{e}} \left(\chi^{i}(\boldsymbol{e}) \right)^{*} \chi^{j}(\boldsymbol{e}) = h \delta_{ij}$$

The characters χ^i behave as a vector space with the dimension equal to the number of classes.

→The number of characters=the number of classes

PHY 745 Spring 2017 - Lecture 5

15

Second character identity:

$$\sum_{i} \left(\chi^{i}(\boldsymbol{e}_{k}) \right)^{*} \chi^{i}(\boldsymbol{e}_{l}) = \frac{h}{N_{\boldsymbol{e}_{k}}} \delta_{kl}$$

1/23/2017

5

The regular r matrices con example:	epresentation is co structed as follows	mposed o , shown wi	f <i>h</i> x <i>h</i> th the <i>P(3)</i>	
		100000	Γ reg (Δ)=	100000
	I ^{ica} (⊏)=	010000	1 0 (7 4)	000001
EABCD	-	001000		000010
	-	000010		000100
B-1 BFEDC	Ă →	000001		001000
C ⁻¹ CDFEA	В с	L	Г	- - -
D ⁻¹ FBCAE	D 0010	00 Trea	$(C) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	00
F ⁻¹ DCABF	E I (B)= 0000	10		10
	1000	00	1000	00
		01	0010	00
Treg (D)=	000010 0001	00	_ 0100	00
1 · (D)			01	_
	010000	-)- 0001	00	
	000001	0100	00	
	100000	1000	00	
	- 2	0000	10	
1/23/2017	PHY 745 Spring 2	017 – Lecture 5	-	16

Regular representation continued -Note that the regular representation matrices satisfy the multiplication table of the group and have the same class structure as the group. Since the characters of the irreducible representations form a spanning vector space, we can decompose $\chi^{reg}(R)$ into a linear combination: $\chi^{reg}(R) = \sum_{i} a_i \chi^i(R) \quad \text{where} \quad a_i = \frac{1}{h} \sum_{R} \left(\chi^i(R) \right)^* \chi^{reg}(R)$ By construction: $\chi^{reg}(R) = h\delta_{RE}$ Also note: $\chi^i(E) = \ell_i$ so that $a_i = \ell_i$ $\Rightarrow \chi^{reg}(R) = \sum_{i} \ell_{i} \chi^{i}(R)$ $\chi^{reg}(E) = \sum_{i} \ell_{i} \chi^{i}(E) \qquad \Rightarrow h = \sum_{i} \ell_{i}^{2}$ $1/23/2017 \qquad PHY 745 \text{ Spring 2017 - Lecture 5}$

17

