PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 4:

The "great" orthogonality theorem
\qquad
\qquad
\qquad
Reading: Chapter 2 in DDJ

1. Schur's lemmas
2. Prove the "Great Orthgonality Theorem"

representations
Notation: $\quad h \equiv$ order of the group
$R \equiv$ element of the group
$\Gamma^{i}(R)_{\alpha \beta} \equiv i$ th representation of R
${ }_{\mu v \alpha \beta}$ denote matrix indices
$l_{i} \equiv$ dimension of the representation

$$
\sum_{R}\left(\Gamma^{i}(R)_{\mu \nu}\right)^{*} \Gamma^{j}(R)_{\alpha \beta}=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha} \delta_{\nu \beta}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Proof of the great orthogonality theorem

- Prove that all representations can be unitary matrices
- Prove Schur's lemma part 1 - any matrix which commutes with all matrices of an irreducible representation must be a constant matrix
- Prove Schur's lemma part 2 \qquad
- Put all parts together

Proof of the great orthogonality theorem

- Prove that all representations can be unitary matrices
- Prove Schur's lemma part 1 - any matrix which commutes with all matrices of an irreducible representation must be a constant matrix
- Prove Schur's lemma part 2 \qquad
- Put all parts together

Schur's lemma part 1:
A matrix M which commutes with all of the matrices of an irreducible representation must be a constant \qquad matrix: $M=s I$ where s is a scalar constant and I is the identity matrix

[^0]PHY 745 Spring 2017 - Lecture 4

[^1]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example irreducible representation:

$$
\begin{aligned}
& \Gamma^{3}(E)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \Gamma^{3}(A)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \Gamma^{3}(B)=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right) \\
& \Gamma^{3}(\mathrm{C})=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right) \quad \Gamma^{3}(D)=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) \quad \Gamma^{3}(F)=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
\end{aligned}
$$

\qquad

Extension of proof to more general matrix M :
Note that $M=H_{1}+i H_{2}$

$$
\text { where } \begin{aligned}
H_{1} & =M+M^{\dagger} \\
H_{2} & =-i\left(M-M^{\dagger}\right)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

In these terms, the premise is:
$\left(H_{1}+i H_{2}\right) \Gamma^{i}(R)=\Gamma^{i}(R)\left(H_{1}+i H_{2}\right)$ for all elements of the group R
\qquad

$$
\begin{gathered}
\left(H_{1}+i H_{2}\right) \Gamma^{i}(R)=\Gamma^{i}(R)\left(H_{1}+i H_{2}\right) \text { for all elements of the group } R \\
\Rightarrow H_{1} \Gamma^{i}(R)=\Gamma^{i}(R) H_{1} \quad \text { and } \quad H_{2} \Gamma^{i}(R)=\Gamma^{i}(R) H_{2}
\end{gathered}
$$

Hermitian matrices can be diagonalized by a unitary

\qquad transformation U
$U H_{1} \Gamma^{i}(R) U^{\dagger}=U \Gamma^{i}(R) H_{1} U^{\dagger} \quad$ for all R
$U H_{1} U^{\dagger} U \Gamma^{i}(R) U^{\dagger}=U \Gamma^{i}(R) U^{\dagger} U H_{1} U^{\dagger}$
$d \Gamma^{, i}(R)=\Gamma^{i}(R) d \quad$ for all R
where $\quad \Gamma^{i i}(R) \quad$ is an equivalent representation of the group

The same construction holds for H_{2},

1/20/2017
PHY 745 Spring 2017 - Lecture 4

Proof of the great orthogonality theorem

- Prove that all representations can be unitary matrices
- Prove Schur's lemma part 1 - any matrix which commutes with all matrices of an irreducible representation must be a constant matrix
Prove Schur's lemma part 2 \qquad
- Put all parts together

Schur's lemma part 2 \qquad
Consider two irreducible representations of the same group
\qquad Suppose there exists a rectangular $\ell_{1} \times \ell_{2}$ matrix M such that $M \Gamma^{1}(R)=\Gamma^{2}(R) M$ for all R. It follows that either $M \equiv 0$ or $\Gamma^{1}(R)$ and $\Gamma^{2}(R)$ are equivalent.
1/20/2017 PHY 745 Spring 2017 - Lecture 4

Schur's lemma part 2
Consider two irreducible representations of the same group \qquad $\Gamma^{1}(R)$ with dimension ℓ_{1} and $\Gamma^{2}(R)$ with dimensions ℓ_{2}. Suppose there exists a rectangular $\ell_{1} \times \ell_{2}$ matrix M such that \qquad $M \Gamma^{1}(R)=\Gamma^{2}(R) M$ for all R. It follows that either $M \equiv 0$ or $\Gamma^{1}(R)$ and $\Gamma^{2}(R)$ are equivalent. \qquad
Suppose $M \Gamma^{1}(R)=\Gamma^{2}(R) M \quad$ for all R
$\left(M \Gamma^{1}(R)\right)^{\dagger}=\left(\Gamma^{2}(R) M\right)^{\dagger}$
$\left(\Gamma^{1}(R)\right)^{\dagger} M^{\dagger}=M^{\dagger}\left(\Gamma^{2}(R)\right)^{\dagger}$
$\Gamma^{1}\left(R^{-1}\right) M^{\dagger}=M^{\dagger} \Gamma^{2}\left(R^{-1}\right) \quad$ for all R $\Rightarrow \Gamma^{1}(R) M^{\dagger}=M^{\dagger} \Gamma^{2}(R) \quad$ for all R

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
12

Proof of the great orthogonality theorem

- Prove that all representations can be unitary matrices
- Prove Schur's lemma part 1 - any matrix which \qquad commutes with all matrices of an irreducible representation must be a constant matrix
- Prove Schur's lemma part 2 \qquad
- Put all parts together

$$
\sum_{R}\left(\Gamma^{i}(R)_{\mu \nu}\right)^{*} \Gamma^{j}(R)_{\alpha \beta}=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha} \delta_{\nu \beta}
$$

```
Construct a \ell }\mp@subsup{\ell}{2}{}\times\mp@subsup{\ell}{1}{}\mathrm{ matrix
M\equiv\mp@subsup{\sum}{R}{}\mp@subsup{\Gamma}{}{2}(R)X\mp@subsup{\Gamma}{}{1}(\mp@subsup{R}{}{-1})
Note that: }\mp@subsup{\Gamma}{}{2}(S)M=M\mp@subsup{\Gamma}{}{1}(S)\quad\mathrm{ where S is a member of the group
    Details: }\mp@subsup{\Gamma}{}{2}(S)M=\mp@subsup{\sum}{R}{}\mp@subsup{\Gamma}{}{2}(S)\mp@subsup{\Gamma}{}{2}(R)X\mp@subsup{\Gamma}{}{1}(\mp@subsup{R}{}{-1}
```



```
        = \mp@subsup{\sum}{R}{}\mp@subsup{\Gamma}{}{2}(SR)X\mp@subsup{\Gamma}{}{1}(\mp@subsup{R}{}{-1})\mp@subsup{\Gamma}{}{1}(\mp@subsup{S}{}{-1})\mp@subsup{\Gamma}{}{1}(S)
```



```
        =M 滴 (S)
    1/20,2017
        PHY 745 Spring 2017 - Lecture 4
```

Proof continued:
$\qquad \sum_{R}\left(\Gamma^{i}(R)_{\mu \nu}\right)^{*} \Gamma^{j}(R)_{\alpha \beta}=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha} \delta_{\nu \beta}$

```

Construct a \(\ell_{2} \times \ell_{1}\) matrix
\(M \equiv \sum_{R} \Gamma^{2}(R) X \Gamma^{1}\left(R^{-1}\right)\)
Since: \(\Gamma^{2}(S) M=M \Gamma^{1}(S) \quad\) where \(S\) is a member of the group, for \(\ell_{2} \neq \ell_{1} \quad M=0\) for arbitrary \(X\). Choosing particular indices:
\[
\begin{aligned}
\left(\sum_{R} \Gamma^{2}(R) X \Gamma^{1}\left(R^{-1}\right)\right)_{\alpha \beta} & =\sum_{R}\left(\Gamma^{2}(R)\right)_{\alpha \mu}\left(\Gamma^{1}\left(R^{-1}\right)\right)_{\nu \beta} \\
& =\sum_{R}\left(\Gamma^{2}(R)\right)_{\alpha \mu}\left(\Gamma^{1}(R)\right)_{\nu \beta}^{*}=0
\end{aligned}
\]
\[
\begin{aligned}
& \text { Proof continued: } \sum_{R}\left(\Gamma^{i}(R)_{\mu \nu}\right)^{*} \Gamma^{j}(R)_{\alpha \beta}=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha} \delta_{\nu \beta} \\
& \text { Construct a } \ell_{2} \times \ell_{1} \text { matrix } \\
& M \equiv \sum_{R} \Gamma^{2}(R) X \Gamma^{1}\left(R^{-1}\right) \\
& \text { Since: } \Gamma^{2}(S) M=M \Gamma^{1}(S) \quad \text { where } S \text { is a member of the group, } \\
& \text { for } 2=1 \quad M=s I \quad \text { for arbitrary } X \text {. Choosing particular indices: } \\
& \left(\sum_{R} \Gamma^{1}(R) X \Gamma^{1}\left(R^{-1}\right)\right)_{\alpha \beta}=s \delta_{\alpha \beta} \quad{ }^{*} \\
& \text { For particular choice of } X: \sum_{R \mu} \Gamma^{1}{ }_{\alpha \mu}(R) \Gamma^{1}{ }_{\mu \beta}\left(R^{-1}\right)=s \delta_{\alpha \beta} \sum_{\mu}=s \ell_{1} \delta_{\alpha \beta} \\
& \sum_{R} \Gamma^{1}{ }_{\alpha \beta}\left(R R^{-1}\right)=h \Gamma^{1}{ }_{\alpha \beta}(E)=h \delta_{\alpha \beta}=s \ell_{1} \delta_{\alpha \beta} \\
& \Rightarrow s=\frac{h}{\ell_{1202017}} \\
& \text { PHY745 Spring 2017-Lecture 4 }
\end{aligned}
\]
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)```


[^0]:    1/2012017

[^1]:    Schur's lemmas part 1:
    A matrix $M$ which commutes with all of the matrices of an irreducible representation must be a constant matrix: $M=s l$ where $s$ is a scalar constant and $I$ is the identity matrix

    Proof:
    Suppose $M$ is a diagonal matrix $d$, the premise becomes
    $d \Gamma^{i}(R)=\Gamma^{i}(R) d$ for all elements of the group $R$
    $\Rightarrow\left(d \Gamma^{i}(R)\right)_{k l}=\left(\Gamma^{i}(R) d\right)_{k l}$
    $d_{k k}\left(\Gamma^{i}(R)\right)_{k l}=\left(\Gamma^{i}(R)\right)_{k l} d_{l l}$
    $\left(d_{k k}-d_{l l}\right)\left(\Gamma^{i}(R)\right)_{k l}=0$ for all $k, l$ and for all $R$
    $\Rightarrow d_{k k}=d_{l l} \quad$ if $\Gamma^{i}(R)$ is irreducible

    1/20/2017
    PHY 745 Spring 2017 - Lecture 4

