
1/20/2017

1

1/20/2017 PHY 745  Spring 2017 -- Lecture 4 1

PHY 745 Group Theory
11-11:50 AM  MWF  Olin 102

Plan for Lecture 4:

The “great” orthogonality theorem

Reading: Chapter 2 in DDJ

1. Schur’s lemmas

2. Prove the “Great Orthgonality
Theorem”
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The great orthogonality theorem on unitary irreducible 
representations
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Proof of the great orthogonality theorem
• Prove that all representations can be unitary 

matrices
• Prove Schur’s lemma part 1 – any matrix which 

commutes with all matrices of an irreducible 
representation must be a constant matrix

• Prove Schur’s lemma part 2
• Put all parts together
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Proof of the great orthogonality theorem
• Prove that all representations can be unitary 

matrices
• Prove Schur’s lemma part 1 – any matrix which 

commutes with all matrices of an irreducible 
representation must be a constant matrix

• Prove Schur’s lemma part 2
• Put all parts together

Schur’s lemma part 1:
A matrix M which commutes with all of the matrices of 
an irreducible representation must be a constant 
matrix:  M=sI where s is a scalar constant and I is the 
identity matrix.
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Schur’s lemmas part 1:
A matrix M which commutes with all of the matrices of 
an irreducible representation must be a constant 
matrix:  M=sI where s is a scalar constant and I is the 
identity matrix.
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Example irreducible representation:
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Extension of proof to more general matrix :

Note that 
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In these terms, the premise is:
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Proof of the great orthogonality theorem
• Prove that all representations can be unitary 

matrices
• Prove Schur’s lemma part 1 – any matrix which 

commutes with all matrices of an irreducible 
representation must be a constant matrix

• Prove Schur’s lemma part 2
• Put all parts together

1
1

1 2

1

2
2

Schur's lemma part 2

Consider two irreducible representations of the same group
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Schur's lemma part 2

Consider two irreducible representations of the same group
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Schur’s lemma part 2 -- continued
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Schur’s lemma part 2 -- continued
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Proof of the great orthogonality theorem
• Prove that all representations can be unitary 

matrices
• Prove Schur’s lemma part 1 – any matrix which 

commutes with all matrices of an irreducible 
representation must be a constant matrix

• Prove Schur’s lemma part 2
• Put all parts together
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Construct a  matrix

Note that:  
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