PHY 745 Group Theory 11-11:50 AM MWF Olin 102

\qquad
Plan for Lecture 33:
Introduction to linear Lie groups -continued

1. Linear Lie group and real Lie algebra
2. Fundamental theorem
3. Examples

Ref. J. F. Cornwell, Group Theory in Physics, Vol I and II, Academic Press (1984)

23 Mon: 03202017	Chap 7.7	Wahn-Telier Etyect	\#15	03/24/2017
24 Wed 03122/2017	Chap. 77	Jahn-Teller Ethect		
25 Fic 03/24/2017		$\operatorname{spin} 1 / 2$		03/27/2017
28 Mton: 03/27/2017		Oirac equation for H -ilixe atoms	417	03/2922017
27 Wed 03/292017	Chap. 14	Angular momenta	\#18	03/31/2017
28 Fri 033120017	Chap. 16	Time reversal symmetry	\#19	04082017
29 Mon: 040332017	Chap. 16	Magnetic point groups		
30 Wed 04,05/2017	Literature	Topoiogy and group theory in Bloch states	122	0407/2017
31 Fri. 0407/2017		Introduction to Lie groups	\$21	04/1012017
32 Mon : 08/102017		Introduction to Lie groups		
33 Wad 04/1222017		Introduction to Lie groups		
Fricenf1/2017		Cood Fiday Hoiday - Do class		
34 Mon: 0a/17/2017				
35 Wed 04/192017				
36 For 04/21/2017				
Mon: 04/242017		Presentations 1		
Wed. 04/2662017		Presentations 11		

[^0]PHY 745 Spring 2017 - Lecture 33
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mon. April 17, 2017 - David Harrisan. WFU (Ph. D. Thesis. Mentor. T. Thontausen) Improvirg Eristra and asscuearg Now Hw troen Stcerean Maternals Using Computational Materiais Modetina Note: Public talk will begin
at 1230 PMII ZSR 200
Mon. Aprll 17, 2017 - Ryan Godmin. WFU (Ph. D. Thesis. Mentor F. Salsbury) Bindina NEMO Advertives it Molscular Dynamica Note: Public tak will begin al 3.00 PM n Cilin 101
Wod. Aprill 19, 2017 - Honors presentations Part 1-
Fri. April 21, 2017 - Lary Rush, WFU (MS. Thesis; Mentor: N. Holzwarth) Note: Public tak will begin at $12: 30$ PM in Scales 009
Mon. April 24, 2017 - Xieohua (Nina) Lu, WFU (Ph. D. Thesis: Mentor: D. Kim-Shappro) 'Etlects of Red Blood Cels on Nitric Oxide Bloactevity' Note: Public takk will begin at 10:00 AMP in ZSR 204
Wed. Apr. 26,2017 - Honors presentations PartII -
ThuL. April 27,2017 - Cystal Bolden, WFU (Ph. D. Thesis; Mentor. D. Kim-Shapro) "Interaction between RSNO and H_{2} S. The tormation. stabity, and NO-donating capacty of SSNO' and the effects of SSNO' on platele activaton** Note: Pubicic takk will begin at 900 AM in ?

4/12/2017 PHY 745 Spring 2017 - Lecture 33

Definition of a linear Lie group

1. A linear Lie group is a group

- Each element of the group T forms a member of the group $T^{\prime \prime}$ when "multiplied" by another member of the group T " $=T \cdot T$
- One of the elements of the group is the identity E
- For each element of the group T, there is a group member a group member T^{-1} such that $T \cdot T^{-1}=E$.
- Associative property: $T \cdot\left(T^{\prime} \cdot T^{\prime \prime}\right)=\left(T \cdot T^{\prime}\right) \cdot T^{\prime \prime}$

2. Elements of group form a "topological space"
3. Elements also constitute an "analytic manifold"
\rightarrow Non countable number elements lying in a region "near" its identity
\qquad

Definition: Linear Lie group of dimension n
A group G is a linear Lie group of dimension n if it satisfied the following four conditions:

1. G must have at least one faithful finite-dimensional representation Γ which defines the notion of distance.

For represent Γ having dimension m, the distance
between two group elements T and T^{\prime} can be defined:
$d\left(T, T^{\prime}\right) \equiv\left\{\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\Gamma(T)_{j k}-\Gamma\left(T^{\prime}\right)_{j k}\right|^{2}\right\}^{1 / 2}$
\qquad
\qquad
\qquad

Note that $d\left(T, T^{\prime}\right)$ has the following properties
(i) $d\left(T, T^{\prime}\right)=d\left(T^{\prime}, T\right)$
(ii) $d(T, T)=0$
(iii) $d\left(T, T^{\prime}\right)>0$ if $T \neq T^{\prime}$
(iv) For elements T, T^{\prime}, and $T^{\prime \prime}$, $d\left(T, T^{\prime}\right) \leq d\left(T, T^{\prime \prime}\right)+d\left(T^{\prime}, T^{\prime \prime}\right)$
4/1220017 PHY 745 Spring 2017 - Lecture 33

Definition: Linear Lie group of dimension n-- continued 2. Consider the distance between group elements T with respect to the identity $E-d(T, E)$. It is possible to define a sphere M_{δ} that contains all elements T^{\prime} such that $d\left(E, T^{\prime}\right) \leq \delta$.
It follows that there must exist a $\delta>0$ such that every T^{\prime} of G lying in the sphere M_{δ} can be parameterized by n real parameters $x_{1}, x_{2}, \ldots . x_{n}$ such each T^{\prime} has a different set of parameters and for E the parameters are $x_{1}=0, x_{2}=0, \ldots x_{n}=0$

4/1/2/2017 PHY 745 Spring 2017 - Lecture 33

Definition: Linear Lie group of dimension n-- continued

3. There must exist
$\eta>0$ such that for every parameter set $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ corresponding to T^{\prime} in the sphere M_{δ} :

$$
\sum_{j=1}^{n} x_{j}^{2}<\eta^{2}
$$

4. There is a requirement that the corresponding representation is analytic

For element T^{\prime} within $M_{\delta}, \Gamma\left(T^{\prime}\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)$ must be an analytic (polynomial) function of $x_{1}, x_{2}, \ldots x_{n}$.

Some more details

4. There is a requirement that the corresponding representation is analytic
For element T^{\prime} within $M_{\delta}, \Gamma\left(T^{\prime}\left(x_{1}, x_{2}, . . x_{n}\right)\right)$ must
be an analytic (polynomial) function of $\mathrm{x}_{1}, x_{2}, \ldots x_{n}$.
Because of the mapping to the n parameters $x_{1}, x_{2} \ldots x_{n}$ to
each group element $T^{\prime}, \Gamma\left(T^{\prime}\left(x_{1}, x_{2} \ldots x_{n}\right)\right)=\Gamma\left(x_{1}, x_{2} \ldots x_{n}\right)$.
The analytic property of $\Gamma\left(x_{1}, x_{2} \ldots x_{n}\right)$ also means that derivatives

$$
\frac{\partial^{\alpha} \Gamma_{j k}\left(x_{1}, x_{2} \ldots x_{n}\right)}{\partial^{\alpha} x_{p}} \text { must exist for all } \alpha=1,2, \ldots
$$

Define $n m \times m$ matrices:
$\left.\left(\mathbf{a}_{p}\right)_{j k} \equiv \frac{\partial \Gamma_{j k}\left(x_{1}, x_{2} \ldots x_{n}\right)}{\partial x_{p}}\right|_{x_{1}=0, x_{2}=0, \ldots x_{n}=0}$
4/12/2017 PHY 745 Spring 2017--Lecture 33
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Definition: Real Lie algebra
A real Lie algebra of dimension $n \geq 1$ is a real vector space of dimension n which includes a comutator $[M, N]$ as follows:

1. For all M, N in algebra, $[M, N]$ is also in algebra
2. For real numbers α and β, and members M, N, O,
$[\alpha M+\beta N, O]=\alpha[M, O]+\beta[N, O]$
3. $[M, N]=-[N, M]$
4. $[M,[N, O]]+[N,[O, M]]+[O,[M, N]]=0$

4/12/2017 PHY 745 Spring 2017 - Lecture 33

Structure constants of Lie algebra
Consider the n basis matrices of the algebra $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}$:
$\left[\mathbf{a}_{p}, \mathbf{a}_{q}\right]=\sum_{r=1}^{n} c_{p q}^{r} \mathbf{a}_{r} \quad$ for $p, q=1,2 \ldots \mathrm{n}$
Example: $\quad \mathrm{G}$ is the group $\mathrm{SU}(2)$ of all 2×2 unitary matrices having determinant 1
$\mathbf{a}_{1}=\frac{1}{2}\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right) \quad \mathbf{a}_{2}=\frac{1}{2}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \quad \mathbf{a}_{3}=\frac{1}{2}\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$
Structure constants for this case:
$\left[\mathbf{a}_{1}, \mathbf{a}_{2}\right]=-\mathbf{a}_{3}$
$\left[\mathbf{a}_{2}, \mathbf{a}_{3}\right]=-\mathbf{a}_{1}$
$\left[\mathbf{a}_{3}, \mathbf{a}_{1}\right]=-\mathbf{a}_{2}$
PHY 745 Spring 2017 - Lecture 33

4/1212017

Fundamental theorem -

For every linear Lie group there exisits a corresponding real Lie algebra of the same dimension. For example if the linear Lie group has dimension n and has mxm matrices $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots . \mathbf{a}_{\mathbf{n}}$ then these matrices form a basis for the real Lie algebra.
One-parameter subgroup of a linear Lie group
A "one-parameter subgroup" of a linear Lie group
fullfills the requirements of a Lie group as a subgroup
whose elements $T(t)$ depend on a real parameter t with
$-\infty<t<\infty$ where

$$
T(s) T(t)=T(s+t)
$$

Note that $T(s) T(t)=T(t) T(s)$ so that the subgroup
is Abelian. It follows that $T(t=0)=E$
Theorem: Every one-parameter subgroup of a linear Lie
group of $m \times m$ matrices is formed by exponentiation of
$m \times m$ matrices. $\quad \mathbf{A}(t)=e^{t \mathbf{a}} \quad \mathbf{a}=\left.\frac{d \mathbf{A}}{d t}\right|_{t=0}$
PHY 745 Spring 2017-Leture 33

Theorem: Every one-parameter subgroup of a linear Lie group of $m \times m$ matrices is formed by exponentiation of \qquad
$m \times m$ matrices. $\quad \mathbf{A}(t)=e^{\mathbf{a} t} \quad \mathbf{a}=\left.\frac{d \mathbf{A}}{d t}\right|_{t=0}$
$\frac{d \mathbf{A}(t)}{d t}=\lim _{s \rightarrow 0}\left(\frac{\mathbf{A}(t+s)-\mathbf{A}(t)}{s}\right)=\lim _{s \rightarrow 0}\left(\mathbf{A}(t)\left(\frac{\mathbf{A}(s)-\mathbf{A}(0)}{s}\right)\right)$
$=\mathbf{A}(t) \mathbf{a}$
$\mathbf{A}(t)=e^{\mathrm{a} t}$

Correspondence between each linear Lie group \mathcal{G} and a real Lie algebra \mathcal{L} Simplify the consideration to \mathcal{G} \qquad consisting of $m x m$ matrices $\mathbf{T}=\mathbf{A}$ and $\Gamma(\mathbf{T})=\mathbf{A}$.

As part of the definition of the linear Lie group, there are \qquad n parameters $x_{1}, x_{2}, \ldots x_{n}$ such that all $\mathbf{A}\left(x_{1}, x_{2}, \ldots x_{n}\right)$ are analytic functions of the parameters, and the $n m \times m$ \qquad matrices

$$
\left(\mathbf{a}_{p}\right)_{j k}=\left.\frac{\partial \mathbf{A}}{\partial x_{p}}\right|_{x_{1}=x_{2}=. x_{n}=0}
$$

form the basis of an n-dimensional real vector space.

Definition: Analytic curve in $\mathcal{\mathcal { G }}$
Suppose $x_{1}(t), x_{2}(t) \ldots x_{n}(t)$ are analytic functions of $0 \leq t \leq t_{0} \quad$ within which $\quad \sum_{j=1}^{n} x_{j}^{2}(t) \leq \eta^{2}$, then the set of $m \times m$ matrices $\quad \mathbf{A}(\mathrm{t})=\mathbf{A}\left(x_{1}(t), x_{2}(t) \ldots x_{n}(t)\right)$ are said to form an analytic curve in $\mathcal{\mathcal { G }}$.

Definition: Tangent vector of an analytic curve in $\boldsymbol{\mathcal { G }}$ The tangent vector of an analytic curve $\mathbf{A}(t)$ in $\boldsymbol{\mathcal { G }}$ is defined to be the $m \times m$ matrix $\mathbf{a}=\left.\frac{d \mathbf{A}(t)}{d t}\right|_{t=0}$.

4/122/2017 PHY 745 Spring 2017 - Lecture 33

```
Theorem The tangent vector of any analytic curve in \mathscr{\mathcal{E}}\mathrm{ is a}
member of the real vector space having the matrices
\mp@subsup{\mathbf{a}}{1}{},\mp@subsup{\mathbf{a}}{2}{},\ldots...\mp@subsup{\mathbf{a}}{n}{}}\mathrm{ as its basis. Conversely, every member
of the real vector space is the tangent vector of some
analytic curve in \mathscr{G}
Theorem If a and b}\mathrm{ are the tangent vectors of the analytic curves
A(t) and \mathbf{B}(t)\mathrm{ in }\mathcal{G}\mathrm{ , then }\mathbf{c}=[\mathbf{a,b}]\mathrm{ is the tangent vector}
of the analytic curve }\mathbf{C}(t)\mathrm{ in }\mathcal{G}\mathrm{ ,where
    C}(t)=\mathbf{A}(\sqrt{}{t})\mathbf{B}(\sqrt{}{t})(\mathbf{A}(\sqrt{}{t})\mp@subsup{)}{}{-1}(\mathbf{B}(\sqrt{}{t})\mp@subsup{)}{}{-1
Note that }\quad\mathbf{A}(\sqrt{}{t})\approx1+\mathbf{a}\sqrt{}{t}+O(t
    C}(t)\approx(1+\mathbf{a}\sqrt{}{t}\ldots)(1+\mathbf{b}\sqrt{}{t}\ldots)(1-\mathbf{a}\sqrt{}{t}\ldots)(1-\mathbf{b}\sqrt{}{t}\ldots
    \approx1+\mathbf{ab}t-\mathbf{ba}t\ldots.}=>\frac{d\mathbf{C}(t)}{dt}\mp@subsup{|}{t=0}{}=[\mathbf{a},\mathbf{b}
4/12/2017 PHY 745 Spring 2017 - Lecture 33
```

Fundamental theorem: For every linear Lie group \mathcal{G} there exists a corresponding real Lie algebra \mathcal{L} of the same dimension. More precisely, if $\boldsymbol{\mathcal { G }}$ has dimenison n then the $m \times m$ matrices $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}$ form a basis for \mathcal{L}.

Converse to fundamental theorem: Every real Lie algebra is isomorphic to the real Lie algebra of some linear Lie group.

Example: SO(3)

[^0]: 4/1212017

