## PHY 745 Group Theory 11-11:50 AM MWF Olin 102

### Plan for Lecture 33:

## Introduction to linear Lie groups -continued

- 1. Linear Lie group and real Lie algebra
- 2. Fundamental theorem
- 3. Examples

Ref. J. F. Cornwell, Group Theory in Physics, Vol I and II, Academic Press (1984) 4/12/2017 PHY745 Spring 2017 - Lecture 33 1

| 23 | Mon: 03/20/2017                   | Chap. 7.7  | Jahn-Teller Effect                        | #15 | 03/24/2017 |
|----|-----------------------------------|------------|-------------------------------------------|-----|------------|
| 24 | Wed: 03/22/2017                   | Chap. 7.7  | Jahn-Teller Effect                        |     |            |
| 25 | Fri: 03/24/2017                   |            | Spin 1/2                                  | #16 | 03/27/2017 |
| 26 | Mon: 03/27/2017                   |            | Dirac equation for H-like atoms           | #17 | 03/29/2017 |
| 27 | Wed: 03/29/2017                   | Chap, 14   | Angular momenta                           | #18 | 03/31/2017 |
| 28 | Fri: 03/31/2017                   | Chap. 16   | Time reversal symmetry                    | #19 | 04/05/2017 |
| 29 | Mon: 04/03/2017                   | Chap, 16   | Magnetic point groups                     |     | 0          |
| 30 | Wed: 04/05/2017                   | Literature | Topology and group theory in Bloch states | #20 | 04/07/2017 |
| 31 | Fri: 04/07/2017                   |            | Introduction to Lie groups                | #21 | 04/10/2017 |
| 32 | Mon: 04/10/2017                   |            | Introduction to Lie groups                |     |            |
| 33 | Wed: 04/12/2017                   |            | Introduction to Lie groups                |     |            |
|    | Fri: 04/14/2017                   |            | Good Friday Holiday no class              |     |            |
| 34 | Mon: 04/17/2017                   |            |                                           |     |            |
| 35 | Wed: 04/19/2017                   |            |                                           |     |            |
| 36 | Fri: 04/21/2017                   |            |                                           |     |            |
|    | Mon: 04/24/2017                   |            | Presentations (                           |     | 18         |
|    | Wed: 04/26/2017                   | 1          | Presentations II                          |     |            |
|    | Fr: 04/21/2017<br>Mon: 04/24/2017 |            |                                           |     |            |









Wed. April 19, 2017 - Honors presentations Part I -Fri. April 21, 2017 - Larry Rush, WFU (MS. Thesis; Mentor: N. Holzwarth) Note: Public talk will begin at 12:30 PM in Scales 009.

Mon. April 24, 2017 -- Xlaohua (Nina) Llu, WFU (Ph. D. Thesis; Mentor: D. Kim-Shapiro) "Effects of Red Blood Cells on Nitric Oxide Bioactivity" Note: Public talk will begin at 10:00 AM in ZSR 204.

Wed. Apr. 26, 2017 - Honors presentations Part II --Thur. April 27, 2017 – Crystal Bolden, WFU (Ph. D. Thesis, Mentor, D. Kim-Shapro) "Interaction between RSNO and H<sub>2</sub>S. The formation, stability, and NO-donating capacity of SSNO<sup>+</sup> and the effects of SSNO<sup>+</sup> on platelet advation\* Net: Public task will begin at 500 AM Pr ??

4/12/2017

PHY 745 Spring 2017 -- Lecture 33

#### Definition of a linear Lie group

1. A linear Lie group is a group

- Each element of the group T forms a member of the group  $T^*$  when "multiplied" by another member of the group T''=T'T'
- One of the elements of the group is the identity E
- For each element of the group T, there is a group member a group member  $T^1$  such that  $T \cdot T^{-1} = E$ .
- Associative property:  $T \cdot (T' \cdot T'') = (T \cdot T') \cdot T''$
- 2. Elements of group form a "topological space"
- 3. Elements also constitute an "analytic manifold"

→Non countable number elements lying in a region "near" its identity PHY 745 Spring 2017 -- Lecture 33 4/12/2017

5

#### **Definition**: Linear Lie group of dimension *n* A group G is a linear Lie group of dimension *n* if it satisfied the following four conditions:

1. G must have at least one faithful finite-dimensional representation  $\Gamma$  which defines the notion of distance. For represent  $\Gamma$  having dimension *m*, the distance

between two group elements T and T' can be defined:

$$d(T,T') = \left\{ \sum_{j=1}^{m} \sum_{k=1}^{m} \left| \Gamma(T)_{jk} - \Gamma(T')_{jk} \right|^{2} \right\}^{1/2}$$

4/12/2017

Note that d(T,T') has the following properties (i) d(T,T') = d(T',T)(ii) d(T,T) = 0(iii) d(T,T') > 0 if  $T \neq T'$ (iv) For elements T,T', and T'',  $d(T,T') \le d(T,T'') + d(T',T'')$ PHY 745 Spring 2017 -- Lecture 33

**Definition:** Linear Lie group of dimension n -- continued 2. Consider the distance between group elements T with respect to the identity E -- d(T,E). It is possible to define a sphere  $M_{\delta}$  that contains all elements T' such that  $d(E,T') \le \delta$ . It follows that there must exist a  $\delta > 0$  such that every T' of G lying in the sphere  $M_{\delta}$  can be parameterized by n real parameters  $x_1, x_2, ..., x_n$  such each T' has a different set of parameters and for E the parameters are  $x_1 = 0, x_2 = 0, ..., x_n = 0$ 

4/12/2017

PHY 745 Spring 2017 -- Lecture 33

**Definition:** Linear Lie group of dimension n -- continued 3. There must exist  $\eta > 0$  such that for every parameter set  $\{x_1, x_2, ..., x_n\}$  corresponding to T' in the sphere  $M_{\sigma}$ :  $\sum_{j=1}^{n} x_j^2 < \eta^2$ 

4. There is a requirement that the corresponding representation is analytic

PHY 745 Spring 2017 -- Lecture 33

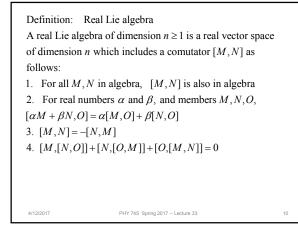
For element *T* ' within  $M_{\delta}$ ,  $\Gamma(T'(x_1, x_2, ..., x_n))$  must be an analytic (polynomial) function of  $x_1, x_2, ..., x_n$ .

8

# Some more details

4/12/2017

4. There is a requirement that the corresponding representation is analytic For element *T*' within  $M_{\delta}$ ,  $\Gamma(T'(x_1, x_2, ..., x_n))$  must be an analytic (polynomial) function of  $x_1, x_2, ..., x_n$ . Because of the mapping to the n parameters  $x_1, x_2...x_n$  to each group element *T*',  $\Gamma(T'(x_1, x_2...x_n)) = \Gamma(x_1, x_2...x_n)$ . The analytic property of  $\Gamma(x_1, x_2...x_n) = \Gamma(x_1, x_2...x_n)$ . The analytic property of  $\Gamma(x_1, x_2...x_n)$  also means that derivatives  $\frac{\partial^{\alpha} \Gamma_{jk}(x_1, x_2...x_n)}{\partial^{\alpha} x_p} \text{ must exist for all } \alpha = 1, 2, ...$ Define  $n \ m \times m$  matrices:  $\left(\mathbf{a}_p\right)_{jk} \equiv \frac{\partial \Gamma_{jk}(x_1, x_2...x_n)}{\partial x_p} \Big|_{x_1=0, x_2=0, ..., x_n=0}$ 



Structure constants of Lie algebra Consider the n basis matrices of the algebra  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ :  $[\mathbf{a}_p, \mathbf{a}_q] = \sum_{r=1}^n c_{pq}^r \mathbf{a}_r$  for  $p, q=1, 2 \dots n$ Example: G is the group SU(2) of all  $2 \times 2$  unitary matrices having determinant 1  $\mathbf{a}_1 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$   $\mathbf{a}_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$   $\mathbf{a}_3 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ Structure constants for this case:  $[\mathbf{a}_1, \mathbf{a}_2] = -\mathbf{a}_3$   $[\mathbf{a}_2, \mathbf{a}_3] = -\mathbf{a}_1$   $[\mathbf{a}_3, \mathbf{a}_1] = -\mathbf{a}_2$ 

PHY 745 Spring 2017 -- Lecture 33

11

12

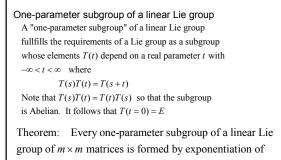
#### Fundamental theorem -

4/12/2017

4/12/2017

For every linear Lie group there exisits a corresponding real Lie algebra of the same dimension. For example if the linear Lie group has dimension *n* and has *mxm* matrices  $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$  then these matrices form a basis for the real Lie algebra.

PHY 745 Spring 2017 -- Lecture 33



*m*×*m* matrices. 
$$\mathbf{A}(t) = e^{t\mathbf{a}} = \frac{d\mathbf{A}}{dt}\Big|_{t=0}$$

13

15



Theorem: Every one-parameter subgroup of a linear Lie group of  $m \times m$  matrices is formed by exponentiation of  $m \times m$  matrices.  $\mathbf{A}(t) = e^{\mathbf{a}t} \quad \mathbf{a} = \frac{d\mathbf{A}}{dt}\Big|_{t=0}$  $\frac{d\mathbf{A}(t)}{dt} = \lim_{s \to 0} \left( \frac{\mathbf{A}(t+s) - \mathbf{A}(t)}{s} \right) = \lim_{s \to 0} \left( \mathbf{A}(t) \left( \frac{\mathbf{A}(s) - \mathbf{A}(0)}{s} \right) \right)$  $= \mathbf{A}(t)\mathbf{a}$  $\mathbf{A}(t) = e^{\mathbf{a}t}$ 



Correspondence between each linear Lie group  $\mathcal{G}$  and a real Lie algebra  $\mathcal{L}$  Simplify the consideration to  $\mathcal{G}$  consisting of *mxm* matrices **T=A** and  $\Gamma(\mathbf{T})=\mathbf{A}$ .

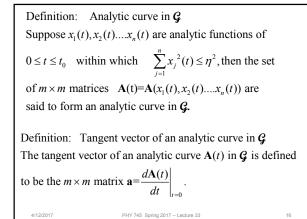
As part of the definition of the linear Lie group, there are

*n* parameters  $x_1, x_2, ..., x_n$  such that all  $A(x_1, x_2, ..., x_n)$  are analytic functions of the parameters, and the *n*  $m \times m$  matrices

$$\left(\mathbf{a}_{p}\right)_{jk} = \frac{\partial \mathbf{A}}{\partial x_{p}}\Big|_{x_{1}=x_{2}=..x_{n}=0}$$

form the basis of an *n*-dimensional real vector space.

PHY 745 Spring 2017 -- Lecture 33





Theorem The tangent vector of any analytic curve in  $\mathcal{G}$  is a member of the real vector space having the matrices  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$  as its basis. Conversely, every member of the real vector space is the tangent vector of some analytic curve in  $\mathcal{G}$ . Theorem If  $\mathbf{a}$  and  $\mathbf{b}$  are the tangent vectors of the analytic curves  $\mathbf{A}(t)$  and  $\mathbf{B}(t)$  in  $\mathcal{G}$ , then  $\mathbf{c}=[\mathbf{a},\mathbf{b}]$  is the tangent vector of the analytic curve  $\mathbf{C}(t)$  in  $\mathcal{G}$ , where  $C(t) = \mathbf{A}(\sqrt{t})\mathbf{B}(\sqrt{t})(\mathbf{A}(\sqrt{t}))^{-1}(\mathbf{B}(\sqrt{t}))^{-1}$ Note that  $\mathbf{A}(\sqrt{t}) \approx 1 + \mathbf{a}\sqrt{t} + O(t)$   $C(t) \approx (1 + \mathbf{a}\sqrt{t} \dots)(1 + \mathbf{b}\sqrt{t} \dots)(1 - \mathbf{a}\sqrt{t} \dots)(1 - \mathbf{b}\sqrt{t} \dots)$   $\approx 1 + \mathbf{a}\mathbf{b}t - \mathbf{b}\mathbf{a}t \dots \Rightarrow \frac{\mathbf{d}\mathbf{C}(t)}{dt}\Big|_{t=0} = [\mathbf{a},\mathbf{b}]$ 2412201 PHY 745 Spring 2017 – Lecture 33



Fundamental theorem: For every linear Lie group  $\mathcal{G}$  there exists a corresponding real Lie algebra  $\mathcal{L}$  of the same dimension. More precisely, if  $\mathcal{G}$  has dimension *n* then the  $m \times m$  matrices  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$  form a basis for  $\mathcal{L}$ .

Converse to fundamental theorem: Every real Lie algebra is isomorphic to the real Lie algebra of some linear Lie group.

PHY 745 Spring 2017 -- Lecture 33

4/12/2017

18

