PHY 745 Group Theory

 11-11:50 AM MWF Olin 102
Plan for Lecture 32:

Introduction to linear Lie groups

1. Notion of linear Lie group
2. Notion of corresponding Lie algebra
3. Examples

Ref. J. F. Cornwell, Group Theory in Physics, Vol I and II, Academic Press (1984)
4/10/2017 PHY 745 Spring 2017 - Lecture 32

Definition of a linear Lie group

1. A linear Lie group is a group

- Each element of the group T forms a member of the group $T^{\prime \prime}$ when "multiplied" by another member of the group T " $=T \cdot T$ '
- One of the elements of the group is the identity E
- For each element of the group T, there is a group member a group member T^{-1} such that $T \cdot T^{-1}=E$.
- Associative property: $T \cdot\left(T^{\prime} \cdot T^{\prime \prime}\right)=\left(T \cdot T^{\prime}\right) \cdot T^{\prime \prime}$

2. Elements of group form a "topological space"
3. Elements also constitute an "analytic manifold"
\rightarrow Non countable number elements lying in a region "near" its identity
$441012017 \quad$ PHY 745 Spring 2017 - Leeture 32

Definition: Linear Lie group of dimension n
A group G is a linear Lie group of dimension n if it satisfied the following four conditions:

1. G must have at least one faithful finite-dimensional representation Γ which defines the notion of distance.
For represent Γ having dimension m, the distance
between two group elements T and T^{\prime} can be defined:
$d\left(T, T^{\prime}\right) \equiv\left\{\sum_{j=1}^{m} \sum_{k=1}^{m}\left|\Gamma(T)_{j k}-\Gamma\left(T^{\prime}\right)_{j k}\right|^{2}\right\}^{1 / 2}$
Note that $d\left(T, T^{\prime}\right)$ has the following properties
(i) $d\left(T, T^{\prime}\right)=d\left(T^{\prime}, T\right)$
(ii) $d(T, T)=0$
(iii) $d\left(T, T^{\prime}\right)>0$ if $T \neq T^{\prime}$
(iv) For elements T, T^{\prime}, and $T^{\prime \prime}$, $d\left(T, T^{\prime}\right) \leq d\left(T, T^{\prime \prime}\right)+d\left(T^{\prime}, T^{\prime \prime}\right)$
4/10/2017
PHY 745 Spring 2017 - Lecture 32

Definition: Linear Lie group of dimension n-- continued 2. Consider the distance between group elements T with respect to the identity $E-d(T, E)$. It is possible to define a sphere M_{δ} that contains all elements T^{\prime}
such that $d\left(E, T^{\prime}\right) \leq \delta$.
It follows that there must exist a $\delta>0$ such that every T^{\prime} of G lying in the sphere M_{δ} can be parameterized by n real parameters $x_{1}, x_{2}, \ldots . x_{n}$ such each T^{\prime} has a different set of parameters and for E the parameters are

$$
x_{1}=0, x_{2}=0, \ldots x_{n}=0
$$

4/10/2017 PHY 745 Spring 2017 - Lecture 32
\qquad

Definition: Linear Lie group of dimension n-- continued
3. There must exist
$\eta>0$ such that for every parameter set $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ corresponding to T^{\prime} in the sphere M_{δ} : \qquad

$$
\sum_{j=1}^{n} x_{j}^{2}<\eta^{2}
$$

4. There is a requirement that the corresponding representation is analytic

For element T^{\prime} within $M_{\delta}, \Gamma\left(T^{\prime}\left(x_{1}, x_{2}, . . x_{n}\right)\right)$ must be an analytic (polynomial) function of $\mathrm{x}_{1}, x_{2}, \ldots x_{n}$. \qquad
\qquad

Example: G is the group $\mathrm{SU}(2)$ of all 2×2 unitary matrices \qquad having determinant 1 .
An element of the group has the form:

$$
\mathbf{u}=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta^{*} & \alpha^{*}
\end{array}\right) \quad \text { with }|\alpha|^{2}+|\beta|^{2}=1
$$

\qquad

In terms of the real numbers $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$:
$\mathbf{u}=\left(\begin{array}{cc}\alpha_{1}+i \alpha_{2} & \beta_{1}+i \beta_{2} \\ -\left(\beta_{1}-i \beta_{2}\right) & \alpha_{1}-i \alpha_{2}\end{array}\right)$
3-dimensional mapping:
$\beta_{2}=\frac{1}{2} x_{1} \quad \beta_{1}=\frac{1}{2} x_{2} \quad \alpha_{2}=\frac{1}{2} x_{3} \quad \alpha_{1}=\left(1-\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\right)^{1 / 2}$

4/10/2017
PHY 745 Spring 2017 - Lecture 32

$$
\begin{aligned}
& \text { Example: } \mathrm{G} \text { is the group } \mathrm{SU}(2) \quad-\text { continued } \\
& \text { It can be shown that } \\
& \qquad \begin{array}{l}
d(\mathbf{u}, 1)=2\left(1-\left(1-\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\right)^{1 / 2}\right)^{1 / 2} \\
d(\mathbf{u}, 1)<\delta \\
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}<\left(2 \delta^{2}-\frac{1}{4} \delta^{4}\right)^{1 / 2} \equiv \eta
\end{array}
\end{aligned}
$$

\qquad

Note that $\delta<\sqrt{8}$
Alternatively define angles:

$$
\begin{aligned}
& 0 \leq \theta \leq \pi \quad 0 \leq \psi \leq 4 \pi \\
& \mathbf{u}=\left(\begin{array}{cc}
\cos \left(\frac{1}{2} \theta\right) e^{i \frac{i}{2}(\psi+\phi)} & \sin \left(\frac{1}{2} \theta\right) e^{i \frac{1}{2}(\psi-\phi)} \\
-\sin \left(\frac{1}{2} \theta\right) e^{-i \frac{1}{2}(\psi-\phi)} & \cos \left(\frac{1}{2} \theta\right) e^{-i \frac{1}{2}(\psi+\phi)}
\end{array}\right)
\end{aligned}
$$

$$
\text { 4/1012017 PHY } 745 \text { Spring } 2017 \text { - Lecture } 32
$$

[^0]\qquad
\qquad
\qquad
\qquad

Example: G is the group $\mathrm{SU}(2)$ of all 2×2 unitary matrices having determinant 1 .

In terms of the real numbers $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$:
$\mathbf{u}=\left(\begin{array}{cc}\alpha_{1}+i \alpha_{2} & \beta_{1}+i \beta_{2} \\ -\left(\beta_{1}-i \beta_{2}\right) & \alpha_{1}-i \alpha_{2}\end{array}\right)$
3-dimensional mapping:
$\beta_{2}=\frac{1}{2} x_{1} \quad \beta_{1}=\frac{1}{2} x_{2} \quad \alpha_{2}=\frac{1}{2} x_{3} \quad \alpha_{1}=\left(1-\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\right)^{1 / 2}$
$\Gamma\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{cc}\left(1-\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\right)^{1 / 2}+\frac{1}{2} i x_{3} & \frac{1}{2}\left(x_{2}+i x_{1}\right) \\ -\frac{1}{2}\left(x_{2}-i x_{1}\right) & \left(1-\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\right)^{1 / 2}-\frac{1}{2} i x_{3}\end{array}\right)$

4/10/2017
PHY 745 Spring 2017 - Lecture 32

Example: G is the group $\mathrm{SU}(2)$ of all 2×2 unitary matrices having determinant 1 -- continued
$\Gamma\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{cc}\left(1-\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\right)^{1 / 2}+\frac{1}{2} i x_{3} & \frac{1}{2}\left(x_{2}+i x_{1}\right) \\ -\frac{1}{2}\left(x_{2}-i x_{1}\right) & \left(1-\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\right)^{1 / 2}-\frac{1}{2} i x_{3}\end{array}\right)$ $\left.\mathbf{a}_{1} \equiv \frac{\partial \Gamma}{\partial x_{1}}\right|_{x_{1}=0, x_{2}=0, x_{3}=0}=\frac{1}{2}\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right) \quad \mathbf{a}_{2}=\frac{1}{2}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \quad \mathbf{a}_{3}=\frac{1}{2}\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$

It can be shown that the matrices a_{p} form the basis for an n-dimensional vector space.

4/10/2017
PHY 745 Spring 2017 - Lecture 32
\qquad
Correspondence between a linear Lie group and its
corresponding Lie algebra
Definition: For any matrix M, the matrix exponential function

$$
\text { is defined as follows: } e^{M} \equiv \sum_{j=0}^{\infty} \frac{M^{j}}{j!}
$$

Some theorems
If M and N are $m \times m$ which commute $(M N=N M)$
then $\quad e^{M} e^{N}=e^{N} e^{M}=e^{(M+N)}$
If M and N are $m \times m$ where $M N \neq N M$, but the
entries are sufficiently small, then
$e^{M} e^{N}=e^{O}$ where
$O=M+N+\frac{1}{2}[M, N]+\frac{1}{12}([M,[M, N]]+[N,[N, M]])+\ldots$
4/102017

> If M and N are $m \times m$ where $M N \neq N M$, but the entries are sufficiently small, then
> $e^{M} e^{N}=e^{O}$ where
> $O=M+N+\frac{1}{2}[M, N]+\frac{1}{12}([M,[M, N]]+[N,[N, M]])+\ldots$

Note that the last result is attributed to Campbell-BakerHausdorff formula.

Note that the matrix exponential function has some very convenient properties:
Inverse: $\quad\left(e^{M}\right)^{-1}=e^{-M}$
Similarity transformations: $\quad S e^{M} S^{-1}=e^{S M S^{-1}}$

4/10/2017
PHY 745 Spring 2017 - Lecture 32

Definition: Real Lie algebra
A real Lie algebra of dimension $n \geq 1$ is a real vector space of dimension n which includes a comutator $[M, N]$ as follows:

1. For all M, N in algebra, $[M, N]$ is also in algebra
2. For real numbers α and β, and members M, N, O,
$[\alpha M+\beta N, O]=\alpha[M, O]+\beta[N, O]$
3. $[M, N]=-[N, M]$
4. $[M,[N, O]]+[N,[O, M]]+[O,[M, N]]=0$

4/10/2017 PHY 745 Spring 2017 - Lecture 32

Structure constants of Lie algebra

Consider the n basis matrices of the algebra $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}$:
$\left[\mathbf{a}_{p}, \mathbf{a}_{q}\right]=\sum_{r=1}^{n} c_{p q}^{r} \mathbf{a}_{r} \quad$ for $p, q=1,2 \ldots \mathrm{n}$
Example: $\quad \mathrm{G}$ is the group $\mathrm{SU}(2)$ of all 2×2 unitary matrices
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad having determinant 1 \qquad
$\mathbf{a}_{1}=\frac{1}{2}\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right) \quad \mathbf{a}_{2}=\frac{1}{2}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \quad \mathbf{a}_{3}=\frac{1}{2}\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$ \qquad
Structure constants for this case:
$\left[\mathbf{a}_{1}, \mathbf{a}_{2}\right]=-\mathbf{a}_{3}$
$\left[\mathbf{a}_{2}, \mathbf{a}_{3}\right]=-\mathbf{a}_{1}$
$\left[\mathbf{a}_{3}, \mathbf{a}_{1}\right]=-\mathbf{a}_{2}$
4/10/2017
PHY 745 Spring 2017 - Lecture 32

Fundamental theorem -

For every linear Lie group there exisits a corresponding real Lie algebra of the same dimension. For example if the linear Lie group has dimension n and has mxm matrices $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots . \mathbf{a}_{\mathbf{n}}$ then these matrices form a basis for the real Lie algebra.

[^0]: Some more details
 4. There is a requirement that the corresponding representation is analytic
 For element T^{\prime} within $M_{\delta}, \Gamma\left(T^{\prime}\left(x_{1}, x_{2}, . . x_{n}\right)\right)$ must
 be an analytic (polynomial) function of $\mathrm{x}_{1}, x_{2}, \ldots . x_{n}$.
 Because of the mapping to the n parameters $x_{1}, x_{2} \ldots x_{n}$ to
 each group element $T^{\prime}, \Gamma\left(T^{\prime}\left(x_{1}, x_{2} \ldots x_{n}\right)\right)=\Gamma\left(x_{1}, x_{2} \ldots x_{n}\right)$. The analytic property of $\Gamma\left(x_{1}, x_{2} \ldots x_{n}\right)$ also means that derivatives

 $$
 \frac{\partial^{\alpha} \Gamma_{j k}\left(x_{1}, x_{2} \ldots x_{n}\right)}{\partial^{\alpha} x_{p}} \text { must exist for all } \alpha=1,2, \ldots
 $$

 Define $n m \times m$ matrices:

 $$
 \left.\quad\left(\mathbf{a}_{p}\right)_{j k} \equiv \frac{\partial \Gamma_{j k}\left(x_{1}, x_{2} \ldots x_{n}\right)}{\partial x_{p}}\right|_{\substack{x_{1}=0, x_{2}=0, \ldots x_{n}=0 \\ \text { PHY } 7455 \\ \text { Spping 2017 } \\ \text { 4/10/2017 -Lecture 32 }}}
 $$

