PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 31:

Introduction to linear Lie groups

- 1. Definitions
- 2. Properties
- 3. Examples

Ref. J. F. Cornwell, Group Theory in Physics, Vol I and II, Academic Press (1984)

4/7/2017

PHY 745 Spring 2017 -- Lecture 31

Sophus Lie 1842-1899 Norweigian mathematician

https://www.britannica.com/biography/Sophus-Lie

PHY 745 Spring 2017 -- Lecture 31

Definition of a linear Lie group

- 1. A linear Lie group is a group
 - Each element of the group T forms a member of the group T* when "multiplied" by another member of the group T*=T T'
 - One of the elements of the group is the identity E
 - For each element of the group *T*, there is a group member a group member *T¹* such that *T*·*T¹=E*.
 - Associative property: $T \cdot (T' \cdot T'') = (T \cdot T') \cdot T''$
- 2. Elements of group form a "topological space"
- 3. Elements also constitute an "analytic manifold"
- →Non countable number elements lying in a region "near" its identity

PHY 745 Spring 2017 -- Lecture 31

Definition: Linear Lie group of dimension *n*A group G is a linear Lie group of dimension *n* if it satisfied the following four conditions:

1. G must have at least one faithful finite-dimensional represention Γ which defines the notion of distance.

For represent Γ having dimension m, the distance between two group elements T and T' can be defined:

$$d(T,T') = \left\{ \sum_{j=1}^{m} \sum_{k=1}^{m} \left| \Gamma(T)_{jk} - \Gamma(T')_{jk} \right|^{2} \right\}^{1/2}$$

Note that d(T,T') has the following properties

(i) d(T,T') = d(T',T)

(ii) d(T,T)=0

 ${\rm (iii)}\,d(T,T')\,>0\quad {\rm if}\quad T\neq T'$

(iv) For elements T,T', and T'',

 $d(T,T') \leq d(T,T") + d(T',T")$

4/7/2017

5

Definition: Linear Lie group of dimension n -- continued

2. Consider the distance between group elements T with respect to the identity E - d(T,E). It is possible to define a sphere M_{δ} that constains all elements T' such that $d(E,T') \leq \delta$.

It follows that there must exist a $\delta > 0$ such that every T' of G lying in the sphere M_{δ} can be parameterized by n real parameters $x_1, x_2, ..., x_n$ such each T' has a different set of parameters and for E the parameters are

$$x_1 = 0, x_2 = 0, x_n = 0$$

4/7/2017

PHY 745 Spring 2017 -- Lecture 31

2

Definition: Linear Lie group of dimension n -- continued

There must exist

 $\eta>0$ such that for every parameter set $\ \{x_1,x_2,...x_n\}$ corresponding to T^+ in the sphere M_δ :

$$\sum_{j=1}^n x_j^2 < \eta^2$$

4. There is a requirement that the corresponding representation is analytic

For element T' within M_{δ} , $\Gamma(T'(x_1, x_2, ...x_n))$ must be an analytic (polynomial) function of x_1, x_2,x_n.

4/7/2017

PHY 745 Spring 2017 -- Lecture 31

Example: G is the group of all real numbers $t \neq 0$ under multiplication. E = 1

 \Rightarrow Faithful representation $\Gamma(t) = t$ n = 1

$$\Rightarrow d(t,t') = |t-t'|$$

For $\delta = \frac{1}{2}$ and parameterization $t = e^{x_1}$

$$d(t,1) = |t-1|$$

$$M_{\delta} \implies \frac{1}{2} < t < \frac{3}{2}$$

For
$$\eta = \ln\left(\frac{3}{2}\right)$$
 $x_1^2 < \left(\ln\left(\frac{3}{2}\right)\right)^2$

Representation:

$$\Gamma(t(x_1)) = e^{x_1}$$

4/7/2017

PHY 745 Spring 2017 -- Lecture 31

Example: G is the group SU(2) of all 2×2 unitary matrices having determinant 1.

An element of the group has the form:

$$\mathbf{u} = \begin{pmatrix} \alpha & \beta \\ -\beta * & \alpha * \end{pmatrix} \quad \text{with } |\alpha|^2 + |\beta|^2 = 1$$

In terms of the real numbers $\alpha_1, \alpha_2, \beta_1, \beta_2$:

$$\mathbf{u} = \begin{pmatrix} \alpha_1 + i\alpha_2 & \beta_1 + i\beta_2 \\ -(\beta_1 - i\beta_2) & \alpha_1 - i\alpha_2 \end{pmatrix}$$

3-dimensional mapping:

$$\beta_2 = \frac{1}{2}x_1$$
 $\beta_1 = \frac{1}{2}x_2$ $\alpha_2 = \frac{1}{2}x_3$ $\alpha_1 = \left(1 - \frac{1}{4}\left(x_1^2 + x_2^2 + x_3^2\right)\right)^{1/2}$

4/7/2017

PHY 745 Spring 2017 -- Lecture 31

Example: G is the group SU(2) -- continued It can be shown that

$$d(\mathbf{u},1) = 2\left(1 - \left(1 - \frac{1}{4}\left(x_1^2 + x_2^2 + x_3^2\right)\right)^{1/2}\right)^{1/2}$$

$$d(\mathbf{u},1) < \delta$$

$$\left(x_1^2 + x_2^2 + x_3^2\right)^{1/2} < \left(2\delta^2 - \frac{1}{4}\delta^4\right)^{1/2} \equiv \eta$$
Note that $\delta < \sqrt{8}$

4/7/2017

PHY 745 Spring 2017 -- Lecture 31

Homomorphic mapping of SU(2) onto SO(3)

Suppose \boldsymbol{u} denotes an element of the group SU(2)

It is possible to find a corresponding element R(u)=R(-u)of the group SO(3).

$$\mathbf{R}(\mathbf{u})_{jk} = \frac{1}{2} \operatorname{tr} \left(\sigma_j \mathbf{u} \sigma_k \mathbf{u}^{-1} \right)$$

Result:
$$\mathbf{R}(\mathbf{u})_{jk} = \frac{1}{2} \operatorname{tr} \left(\sigma_{j} \mathbf{u} \sigma_{k} \mathbf{u}^{-1} \right)$$
where $\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Some justification

Consider
$$\mathbf{m}(\mathbf{r}) \equiv \begin{pmatrix} z & x - iy \\ x + iy & -z \end{pmatrix}$$

Note that for a 2×2 unitary matrix \mathbf{u} (which is an element of SU(2))

$$\mathbf{um}(\mathbf{r})\mathbf{u}^{-1} = \mathbf{m}(\mathbf{r}') = \begin{pmatrix} z' & x' - iy' \\ x' + iy' & -z' \end{pmatrix}$$

Need to show that $\mathbf{r} \leftrightarrow \mathbf{r'}$ corresponding to $\mathbf{r'} = R(\mathbf{u})\mathbf{r}$

PHY 745 Spring 2017 -- Lecture 31

Recall:

In terms of the real numbers $\alpha_1, \alpha_2, \beta_1, \beta_2$:

$$\mathbf{u} = \begin{pmatrix} \alpha_1 + i\alpha_2 & \beta_1 + i\beta_2 \\ -(\beta_1 - i\beta_2) & \alpha_1 - i\alpha_2 \end{pmatrix}$$

3-dimensional mapping:

$$\beta_2 = \frac{1}{2}x_1$$
 $\beta_1 = \frac{1}{2}x_2$ $\alpha_2 = \frac{1}{2}x_3$ $\alpha_1 = \left(1 - \frac{1}{4}\left(x_1^2 + x_2^2 + x_3^2\right)\right)^{1/2}$

Alternatively define angles:

$$0 \le \theta \le \pi$$
 $0 \le \psi \le 4\pi$ $0 \le \phi \le 2\pi$

$$\mathbf{u} = \begin{pmatrix} \cos\left(\frac{1}{2}\theta\right)e^{\frac{1}{2}(\psi+\phi)} & \sin\left(\frac{1}{2}\theta\right)e^{\frac{1}{2}(\psi-\phi)} \\ -\sin\left(\frac{1}{2}\theta\right)e^{-\frac{1}{2}(\psi-\phi)} & \cos\left(\frac{1}{2}\theta\right)e^{-\frac{1}{2}(\psi+\phi)} \end{pmatrix}$$

4/7/2017

PHY 745 Spring 2017 -- Lecture 31

Mapping the 3 angles to the Euler angles, find rotation matrix

$$R(\theta,\psi,\phi) = \begin{pmatrix} -\sin\phi \sin\psi + \cos\theta \cos\phi \cos\psi & \cos\phi \sin\psi + \cos\theta \sin\phi \cos\psi & -\sin\theta \cos\psi \\ -\sin\phi \cos\psi - \cos\theta \cos\phi & \sin\psi & \cos\phi \cos\psi - \cos\theta \sin\phi \sin\psi & \sin\theta \sin\psi \\ \sin\theta \cos\phi & \sin\theta \sin\psi & \cos\theta \end{pmatrix}$$

Recall:
$$\mathbf{R}(\mathbf{u})_{jk} = \frac{1}{2} \operatorname{tr} \left(\sigma_j \mathbf{u} \sigma_k \mathbf{u}^{-1} \right)$$

where
$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

$$\mathbf{u} = \begin{pmatrix} \cos(\frac{1}{2}\theta)e^{i\frac{1}{2}(\psi+\phi)} & \sin(\frac{1}{2}\theta)e^{i\frac{1}{2}(\psi+\phi)} \\ -\sin(\frac{1}{2}\theta)e^{-i\frac{1}{2}(\psi+\phi)} & \cos(\frac{1}{2}\theta)e^{-i\frac{1}{2}(\psi+\phi)} \end{pmatrix}$$

$$\mathbf{u} = \begin{pmatrix} \cos\left(\frac{1}{2}\theta\right)e^{i\frac{1}{2}(\psi+\phi)} & \sin\left(\frac{1}{2}\theta\right)e^{i\frac{1}{2}(\psi-\phi)} \\ -\sin\left(\frac{1}{2}\theta\right)e^{-i\frac{1}{2}(\psi-\phi)} & \cos\left(\frac{1}{2}\theta\right)e^{-i\frac{1}{2}(\psi+\phi)} \end{pmatrix}$$

4/7/2017

PHY 745 Spring 2017 -- Lecture 31

Check: $\mathbf{p}_{i} = 1 \cdot \left[\left(1 - 0 \right) \left[\cos \left(\frac{1}{2} \theta \right) e^{i \mathbf{q}(\mathbf{v}, \theta)} - \sin \left(\frac{1}{2} \theta \right) e^{i \mathbf{q}(\mathbf{v}, \theta)} \right] \left(1 - 0 \right) \left[\cos \left(\frac{1}{2} \theta \right) e^{-i \mathbf{q}(\mathbf{v}, \theta)} - \sin \left(\frac{1}{2} \theta \right) e^{-i \mathbf{q}(\mathbf{v}, \theta)} \right] \right]$) <u>p</u> + 4((n - p)]]
$\mathbf{R}(\mathbf{u})_{33} = \frac{1}{2} \mathrm{tr} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos\left(\frac{1}{2}\theta\right) e^{\frac{i\pi}{2}(\psi-\theta)} & \sin\left(\frac{1}{2}\theta\right) e^{\frac{i\pi}{2}(\psi-\theta)} \\ -\sin\left(\frac{1}{2}\theta\right) e^{\frac{i\pi}{2}(\psi-\theta)} & \cos\left(\frac{1}{2}\theta\right) e^{\frac{i\pi}{2}(\psi-\theta)} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos\left(\frac{1}{2}\theta\right) e^{\frac{i\pi}{2}(\psi-\theta)} & -\sin\left(\frac{1}{2}\theta\right) \\ \sin\left(\frac{1}{2}\theta\right) e^{\frac{i\pi}{2}(\psi-\theta)} & \cos\left(\frac{1}{2}\theta\right) e^{\frac{i\pi}{2}(\psi-\theta)} \end{pmatrix}$	$\left(e^{i \left(\psi + \phi \right)} \right)$
$=\frac{1}{2}\operatorname{tr}\left(\frac{\cos(\frac{1}{2}\theta)e^{\frac{i\beta(\nu+\theta)}{2}}\sin(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}}{\sin(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}-\cos(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\sin(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\cos(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\sin(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\cos(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\cos(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\cos(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\cos(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\cos(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\sin(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\cos(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}\sin(\frac{1}{2}\theta)e^{\frac{i\beta(\nu-\theta)}{2}}e^{\frac{i\beta(\nu-\theta)}{2}}\sin(\frac{1}{2}\theta)e^{i\beta($	
$\mathbf{R}(\mathbf{u})_{33} = \cos \theta$	
Note that $R(\mathbf{u}) \leftrightarrow \mathbf{u}(R)$	
$\mathbf{u}(R)$ is a "two-valued" two-dimensional representation	n —
of SO(3) since $\mathbf{u}(R)$ and $-\mathbf{u}(R)$ are both valid mapping	ngs.
$\mathbf{u}(R_1)\mathbf{u}(R_2) = \pm \mathbf{u}(R_1R_2)$	
	-
4/7/2017 PHY 745 Spring 2017 Lecture 31	16