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PHY 745 Group Theory
11-11:50 AM  MWF  Olin 102

Plan for Lecture 2:

Representation Theory

Reading: Chapter 2 in DDJ

1. Review of group definitions

2. Theory of representations

1/13/2017 PHY 745  Spring 2017 -- Lecture 2 2

1/13/2017 PHY 745  Spring 2017 -- Lecture 2 3

Group theory 
An abstract algebraic construction in mathematics

Definition of a group:
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Some definitions:

Order of the group  number of elements (members) in 
the group (positive integer for finite 
group, ∞ for infinite group)

Subgroup  collection of elements within a group 
which by themselves form a group

Coset  Given a subgroup gi of a group a 
right coset can be formed by multiply 
an element of g with each element of gi

Class members of a group generated by the 
conjugate construction 1
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Example of a 6-member group E,A,B,C,D,F,G
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Example of cyclic group of order 4:
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Example of non-cyclic group of order 4
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Representations of a group

( ), ( )... that satisfies

the multip

A representation of a group is a 

lication table of the group.  The

set of matrices (on
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Example:

1 1 1 1 1 1

Note that the one-dimensional "identical representa

( ) ( ) ( ) ( ) ( ) ( ) 1 is always possible

tion"

A B C D E F           

2 2 2

2 2 2

Another one-dimensional  representation is

( ) ( ) ( ) 1 

( ) ( ) ( ) 1 

A B C

E D F

      

     
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Example:

   

   

   

3 31 1
2 2 2 2

3 31 1
2 2 2 2

3 31 1

3 3

3 3

3 32 2 2 2

3 31 1
2 2 2 2

A two-dimensional  representation is

1 0 1 0
         

0 1 0 1

  C
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   
       

 

 

 
   

    
      

     
    
        

 
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     

     

31
2 2

3 1
2 2

3 3 31 1 1
2 2 2 2 2 2

3 3 31 1 1
2 2 2 2 2 2

1 0 01 0 0 1 0 0

0 1 0         0 1 0     0  

0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0

0   0   0

0 0 0

E A B

C D F

    
           

          

     
     

            
     

       

 







 

What about 3 or 4 dimensional representations for this group?

For example, the following 3 dimensional representation satisfies 
the multiplication table:
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     

     

31
2 2

3 1
2 2

3 3 31 1 1
2 2 2 2 2 2

3 3 31 1 1
2 2 2 2 2 2

1 0 01 0 0 1 0 0

0 1 0         0 1 0     0  

0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0

0   0   0

0 0 0

E A B

C D F

    
           

          

     
     

            
     

       

 







 

Reduced form of representation

In this example, the “irreducible” representations for the 
group are 2 one-dimensional and 1 two-dimensional
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Comment about representation matrices 
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   
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 

                                  = ( ) ( )

S

A B  

• Typically, unitary matrices are chosen for 
representations

• Typically representations are reduced to block 
diagonal form and the irreducible blocks are 
considered in the representation theory

† †unitary matrix:    1UU U U 
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similarity transformation

distinct
irreducible 
representation

block diagonal form
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The great orthogonality theorem

order of the group

                   element of the group

                 ( )  th representation of 

                           

Notation:    

 denote matrix indices
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Great orthogonality theorem continued

 
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Analysis shows that

i
i

l h
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Simplified analysis in terms of the “characters” of the 
representations

1

( ) ( )
jl

j jR R 





 

Character orthogonality theorem

 
*

( ) ( )ji

R
ijhR R  

Note that all members of a class have the same
character for any given representation i.
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What the great (“wonderful”) orthogonality theorem will do 
for us:

1. Show that there are a fixed number of distinct 
irreducible representations and help us find them

2. Show that the irreducible representations of a group 
have properties of orthogonal vector spaces.

3. Result in a simplified orthogonality theorem based on 
the “characters” of the group

Often the irreducible representations are related to physical 
quantities such as quantum mechanical wavefunctions or 
operators.
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Example similarity transformation
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