PHY 745 Group Theory 11-11:50 AM MWF Olin 102 Plan for Lecture 2: Representation Theory Reading: Chapter 2 in DDJ 1. Review of group definitions 2. Theory of representations

PHY 745 Spring 2017 - Lecture 2

1/13/2017

		PH	745 Group Theo	ry	
	M	WF 11-11:50 AM	OPL 102 http://www.wfu.edu/~natali	e/s17phy745/	
	Instructo	w: Natalie Holzw	ath Phone:758-5510 Office:300 OPL e-	mail:natalie@w	rfu edu
	1	(Preliminar	se schedule for Spring 20 schedule – subject to frequent adjust	stment.)	N 51 100 10
	Lecture date	(Preliminar) DDJ Reading	v schedule — subject to frequent adjus Topic	stment.) HW	Due date
1	Wed: 01/11/2017	(Preliminar) DDJ Reading Chap. 1	y schedule subject to frequent adjus Topic Definition and properties of groups	stment.)	01/18/2017
1 2	Wed: 01/11/2017 Fri: 01/13/2017	(Preliminar) DDJ Reading	schedule – subject to frequent adjust Topic Definition and properties of groups Theory of representations	stment.) HW	
1 2 3	Wed: 01/11/2017 Fri: 01/13/2017 Mon: 01/16/2017	(Preliminar) DDJ Reading Chap. 1	y schedule subject to frequent adjus Topic Definition and properties of groups	stment.) HW	01/18/2017
Ĉ	Wed: 01/11/2017 Fri: 01/13/2017	(Preliminar) DDJ Reading Chap. 1	schedule – subject to frequent adjust Topic Definition and properties of groups Theory of representations	stment.) HW	01/18/2017

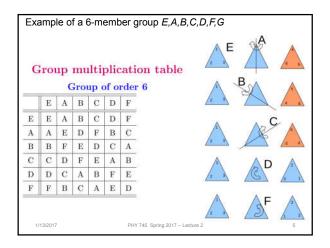
Group theory

An abstract algebraic construction in mathematics Definition of a group:

A group is a collection of "elements" $-A, B, C, \ldots$ and a "multiplication" process. The abstract multiplication (\cdot) pairs two group elements, and associates the "result" with a third element. (For example $(A \cdot B = C)$.) The elements and the multiplication process must have the following properties.

- 1. The collection of elements is closed under multiplication. That is, if elements A and B are in the group and $A\cdot B=C,$ element C must be in the group.
- 2. One of the members of the group is a "unit element" (E). That is, for any element A of the group, $A \cdot E = E \cdot A = A$.
- 3. For each element A of the group, there is another element A^{-1} which is its "inverse". That is $A \cdot A^{-1} = A^{-1} \cdot A = E$.
- The multiplication process is "associative". That is for sequential mulplication of group elements A, B, and C, (A · B) · C = A · (B · C).
 2017 PHY745 Spring 2017 - Leture 2

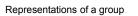
Some definitions:	
Order of the grou	up → number of elements (members) in the group (positive integer for finite group, ∞ for infinite group)
Subgroup	➔ collection of elements within a group which by themselves form a group
Coset	→ Given a subgroup g _i of a group a right coset can be formed by multiply an element of g with each element of g _i
Class	→members of a group generated by the conjugate construction $\mathcal{C} = X_i^{-1}YX_i$ where <i>Y</i> is a fixed group element and X_i are all of the
1/13/2017	elements of the group. PHY 745 Spring 2017 – Lecture 2 4



	E	A	B	C	D	F		
E	E	A	в	C	D	F	Subgroups:	
A	A	Е	D	F	в	С	E (E,A)	(E,D,F)
В	В	F	Е	D	С	A	(E,B)	
С	С	D	F	Е	A	в	(E,C)	
D	D	С	Α	в	F	Е		
F	F	в	С	Α	Е	D		
							Classes: $\mathcal{C}_1 = E$ $\mathcal{C}_2 = A, B, C$ $\mathcal{C}_3 = D, F$	
	/2017						45 Spring 2017 – Lecture 2	6

	E	A	A ²	A ³		
Е	E	Α	A ²	A ³		
Α	Α	A ²	A ³	Е		
A ²	A ²	A ³	Е	Α		
A ³	A ³	E	Α	A ²		
(4	E, A^2)		$\mathcal{C}_1 = E$ $\mathcal{C}_2 = A$ $\mathcal{C}_3 = A^2$ $\mathcal{C}_4 = A^3$			

	E	Α	В	С		
E	E	A	B	c		
A	A	E	C	В		
в	В	c	E	A		
С	с	В	Α	E		
	ups: (E, A) (E, B) (E, C)		Classes $\mathcal{C}_1 = E$ $\mathcal{C}_2 = A$ $\mathcal{C}_3 = B$ $\mathcal{C}_4 = C$	5.		



1/13/2017

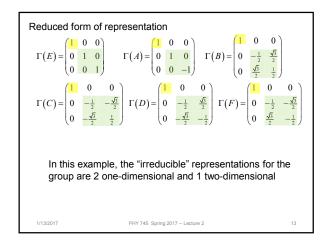
A representation of a group is a set of matrices (one for each group element) -- $\Gamma(A)$, $\Gamma(B)$... that satisfies the multiplication table of the group. The dimension of the matrices is called the dimension of the representation.

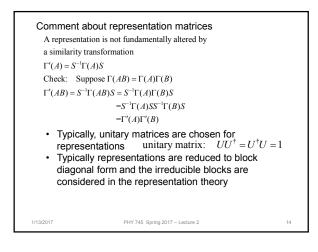
PHY 745 Spring 2017 - Lecture 2

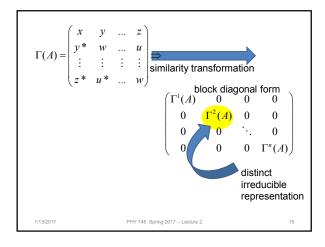
9

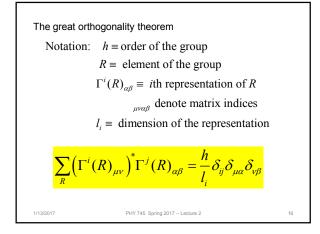
	E	A	В	C	D	F
E	Е	Α	в	C	D	F
1	Α	E	D	\mathbf{F}	В	F C
В	B	F	Е	D	C	Α
3	С	D	F	E	A	AB
)	D	С	Α	в	F	E
F	F	в	С	Α	Е	D
	3/2017					PHY

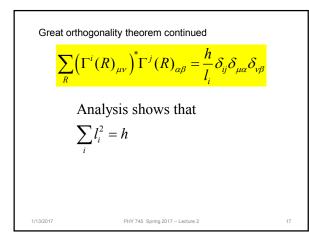
What about 3 or 4 dimensional representations for this gr	oup?
For example, the following 3 dimensional representation the multiplication table:	ı satisfies
$\Gamma(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \Gamma(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \Gamma(B) = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \\ 0 & \frac{\sqrt{5}}{2} \end{pmatrix}$	$\begin{pmatrix} 0 \\ \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}$
$\Gamma(C) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{5}}{2} \\ 0 & -\frac{\sqrt{5}}{2} & \frac{1}{2} \end{pmatrix} \Gamma(D) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{5}}{2} \\ 0 & -\frac{\sqrt{5}}{2} & -\frac{1}{2} \end{pmatrix} \Gamma(F) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{\sqrt{5}}{2} & -\frac{1}{2} \\ 0 & -\frac{\sqrt{5}}{2} & -\frac{1}{2} \end{pmatrix}$	$\begin{array}{ccc} 0 & 0 \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}$
1/13/2017 PHY 745 Spring 2017 – Lecture 2	12











Simplified analysis in terms of the "characters" of the representations

$$\chi^{j}(R) \equiv \sum_{\mu=1}^{l_{j}} \Gamma^{j}(R)_{\mu\mu}$$

Character orthogonality theorem

$$\sum_{R} \left(\chi^{i}(R) \right)^{*} \chi^{j}(R) = h \delta_{ij}$$

PHY 745 Spring 2017 - Lecture 2

18

Note that all members of a class have the same character for any given representation *i*.

What the great ("wonderful") orthogonality theorem will do for us:

- 1. Show that there are a fixed number of distinct irreducible representations and help us find them
- 2. Show that the irreducible representations of a group have properties of orthogonal vector spaces.
- 3. Result in a simplified orthogonality theorem based on the "characters" of the group

Often the irreducible representations are related to physical quantities such as quantum mechanical wavefunctions or operators.

PHY 745 Spring 2017 - Lecture 2

19

1/13/2017

Example similarity transformation Let $M = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad S = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \qquad S^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-i\theta}{\sqrt{2}} \end{pmatrix}$ $S^{-1}MS = S^{-1}\begin{pmatrix} \frac{1}{\sqrt{2}}e^{-i\theta} & \frac{1}{\sqrt{2}}e^{i\theta} \\ \frac{1}{\sqrt{2}}e^{-i\theta} & \frac{-1}{\sqrt{2}}e^{i\theta} \end{pmatrix} = \begin{pmatrix} e^{-i\theta} & 0 \\ 0 & e^{i\theta} \end{pmatrix}$ Note: Two representations $\Gamma^{i}(R)$ and $\Gamma^{i}(R)$ are equivalent if $\Gamma^{i}(R) = S^{-1}\Gamma^{i}(R)S$