PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 29:

Time reversal symmetry and Magnetic groups Chap. 16 in DDJ

 Effects of magnetic configurations on point groups and space groups
Examples of magnetic point groups

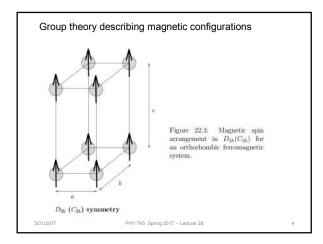
Note: These slides contain materials from an electronic version of the Dresselhaus textbook. 301/2017 PHY745 Spring 2017 - Lecture 28 1

			the constants we seeme		1.0
23	Mon: 03/20/2017	Chap. 7.7	Jahn-Teller Effect	#15	03/24/2017
24	Wed: 03/22/2017	Chap. 7.7	Jahn-Teller Effect		
25	Fri: 03/24/2017		Spin 1/2	#16	03/27/2017
26	Mon: 03/27/2017		Dirac equation for H-like atoms	#17	03/29/2017
27	Wed: 03/29/2017	Chap. 14	Angular momenta	#18	03/31/2017
28	Fri: 03/31/2017	Chap. 16	Time reversal symmetry	#19	04/07/2017
29	Mon: 04/03/2017	Chap. 16	Magnetic point groups		
30	Wed: 04/05/2017				
31	Fri: 04/07/2017	T	opic for presentation		
32	Mon: 04/10/2017				
33	Wed: 04/12/2017			1	
	Fri: 04/14/2017		Good Friday Holiday no class	1	
34	Mon: 04/17/2017				
35	Wed: 04/19/2017				
36	Fri: 04/21/2017			1	
1	Mon: 04/24/2017		Presentations I		
	Wed: 04/26/2017		Presentations II	1	

Presentation ideas

3/31/2017

- 1. Digest the content of a literature paper which involves aspects of group theory and present the theory and results.
- 2. Find a particular molecule or crystal and analyze its group theoretic aspects
 - a. Band structure analysis; find at least 3 special kpoints or directions, analyzing their groups and compatibility relationships
 - b. Point group analysis, finding selection rules for various transitions between representations
 - c. Vibrational mode analysis



When is magnetic ordering important? $H = H_0 + H_M$ Effective magnetic model (Heisenberg): $H_M = -J\sum_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$ What does time reversal symmetry have to do with magnetic configurations? • Time reversal symmetry does not effect charge density • Time reversal symmetry does effect internal spin so that the effects of the *T* operator on the group operations must be taken into account

PHY 745 Spring 2017 -- Lecture 28

5

3/31/2017

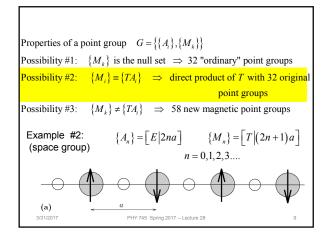
For the purpose of analyzing magnetic groups, it is convenient to distinguish two kinds of elements: $\{A_i\}$ and $\{M_k\}$ where $M_k \equiv TA_k$ Note that $\{M_k\}$ are "antioperators" In general, we can describe the group as $G = \{\{A_i\}, \{M_k\}\}$ Note that: $A_iA_i = A_i$. $M_kM_k = A_i$. $A_iM_k = M_k$. $M_kA_i = M_k$.

	point group $G = \{\{A_i\}, \{M_k\}\}$
Possibility #1:	$\{M_k\}$ is the null set \Rightarrow 32 "ordinary" point groups
Possibility #2:	$\{M_i\} = \{TA_i\} \implies$ direct product of T with 32 original
	point groups
Possibility #3:	$\{M_k\} \neq \{TA_i\} \implies 58$ new magnetic point groups
Example #	1:
¢,	$\begin{cases} A_i \} = E, i \\ T \text{ is not a symmetry element for} \\ \text{this ferromagnetic configuration} \end{cases}$
3/31/2017	PHY 745 Spring 2017 Lecture 28 7

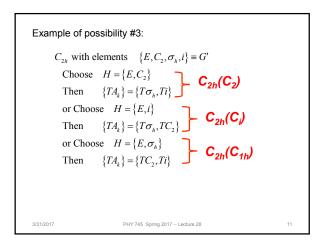
Г

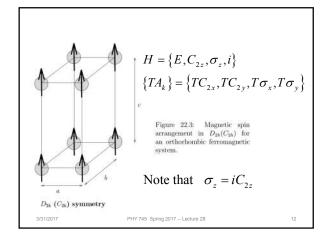
Properties of a point grou	$\operatorname{up} G = \left\{ \left\{ A_i \right\}, \left\{ M_k \right\} \right\}$
Possibility #1: $\{M_k\}$ is	the null set \Rightarrow 32 "ordinary" point groups
Possibility #2: $\{M_i\} \equiv$	$\{TA_i\} \Rightarrow \text{direct product of } T \text{ with 32 original}$
	point groups
Possibility #3: $\{M_k\} \neq$	$\{TA_i\} \Rightarrow 58$ new magnetic point groups
Example #2:	
	$\{A_i\} = E, i$
•	$\{M_i\} = T, Ti$
	(non-magnetic crystal)
3/31/2017	PHY 745 Spring 2017 Lecture 28 8

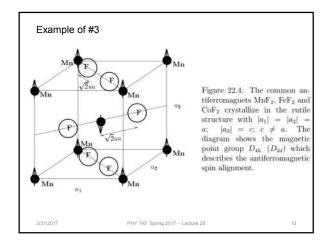
T



Properties of a point group $G = \{\{A_i\}, \{M_k\}\}$
Possibility #1: $\{M_k\}$ is the null set \Rightarrow 32 "ordinary" point groups
Possibility #2: $\{M_i\} = \{TA_i\} \implies$ direct product of T with 32 origin
point groups
Possibility #3: $\{M_k\} \neq \{TA_i\} \implies 58$ new magnetic point groups
Define $G' = \{\{A_i\}, \{A_k\}\}$ where $\{A_i\}$ and $\{A_k\}$ have distinct elements Magnetic group can be formed from $G = \{\{A_i\}, \{TA_k\}\}$
Additional properties:
$H = \{A_i\}$ forms an invariant subgroup of G
$\{TA_k\}$ is a coset of H and therefore has the
same order as H
$A_k^n \neq E$ for <i>n</i> odd
3/31/2017 PHY 745 Spring 2017 Lecture 28 10

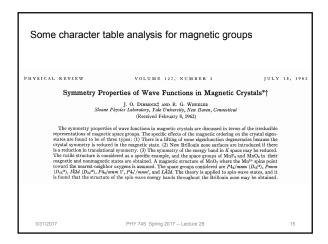


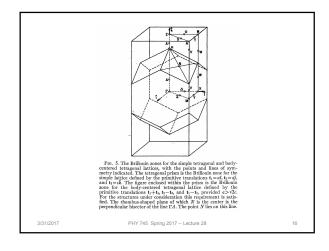


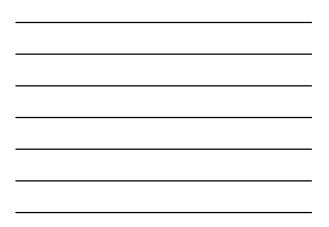




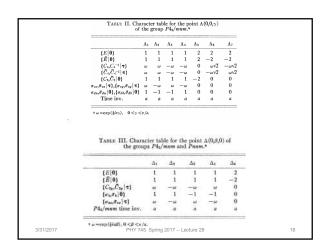
D _{4h} (D _{2i}	_հ) continu	ed	
	н		TA _k
1.	$\{E 0\}$	9.	$\{i 0\}$
2.	$\{C_2 0\}$		$\{\sigma_h 0\} = \{C_2 0\}\{i 0\}$
3.	$\{C_{2\varepsilon} 0\}$	11.	$\{\sigma_{d\xi} 0\} = \{C_{2\xi} 0\}\{i 0\}$
4.	$\{C_{2\nu} 0\}$	12.	$\{\sigma_{d\nu} 0\} = \{C_{2\nu} 0\}\{i 0\}$
5.	$\{C_4 \tau_0\}$	13.	$\{S_4^{-1} \tau_0\} = \{C_4 \tau_0\}\{i 0\}$
6.	$\{C_4^{-1} \tau_0\}$	14.	$\{S_4 \tau_0\} = \{C_4^{-1} \tau_0\}\{i 0\}$
7.	$\{C_{2x} \tau_0\}$		$\{\sigma_{vx} \tau_0\} = \{C_{2x} \tau_0\}\{i 0\}$
8.	$\{C_{2y} \tau_0\}$	16.	$\{\sigma_{vy} \tau_0\} = \{C_{2y} \tau_0\}\{i 0\}$
	$\vec{\tau}_0 =$	$= \frac{1}{2}(\vec{a_1} + \vec{a_2})$	
3/31/2017		PHY 745 Spring 201	17 Lecture 28 1-







									group					
	Γ_1^+		Γ_2^+	Γ_4^+	Γ_{δ}^+	Γ_1^-	Γ_2 ~	Γ_3	Γ_4	Γ_{δ}	Γ_6^+	Γ_7^+	Γ_6^-	Γ_7
{E 0}	1	1	1	1	2	1	1	1	1	2	2	2	2	2
{ <i>E</i> 0}	1	1	1	1	2	1	1	1	1	2	$^{-2}$	-2	-2_{-}	-2
$\{C_4, C_4^{-1} \neq \}$	1	1	-1	-1	0	1	1	-1	-1	0	v2	- \sqrt{2}	√Z	v2
$\{\bar{C}_4, \bar{C}_4^{-1} \tau\}$	1	1	-1	-1	0	1	1	-1	-1	0	$-\sqrt{2}$	v2	$-\sqrt{2}$	√2
$(C_2, \bar{C}_2 0)$	1	-1	1	1	-2	1	1	1	1	-2	0	0	0	0
$\{C_{2x}, \vec{C}_{2x} \mathbf{\tau}\}, \{C_{2y}, \vec{C}_{2y} \mathbf{\tau}\}$	1	-1	1	-1	0	1	-1	1	-1	0	0	0	0	0
$\{C_{2a}, \tilde{C}_{2a} 0\}, \{C_{2b}, \tilde{C}_{2b} 0\}$	1	-1	-1	1	2	-1	-1	-1	-1	-2	2	2	-2	-2
{I 0} {I 0}	1	1	1	1	2	-1			-1	-2	-2	-2	-2	-2
	1	1	-1	-1	0	-1	-1	-1	-1	-2	-2 VZ	$-2 - \sqrt{2}$	$-\sqrt{2}$	2 v2
$\{S_{4}, S_{4}^{-1} \mathbf{\tau}\}$ $\{\tilde{S}_{4}, \tilde{S}_{4}^{-1} \mathbf{\tau}\}$	1	1	-1	-1	0	-1	-1	1	1	0	$-\sqrt{2}$	- v2 √2	- V2 V2	$-\sqrt{2}$
$\{\sigma_{4}, \sigma_{4} \mathbf{\tau}\}$ $\{\sigma_{k}, \sigma_{k} 0\}$	1	1	-1	-1	-2	-1	-1	-1	-1	2	- 12	0	0	- 12
$\{\sigma_{x}, \sigma_{x} \mathbf{v}\}$ $\{\sigma_{vx}, \overline{\sigma}_{vx} \mathbf{v}\}, \{\sigma_{vy}, \overline{\sigma}_{vy} \mathbf{v}\}$	1	-1	1	-1	-2	-1	-1	-1	-1	0	0	0	0	0
$\{\sigma_{da}, \bar{\sigma}_{da} 0\}, \{\sigma_{db}, \bar{\sigma}_{db} 0\}$	1	-1	-1	-1	0	-1	1	1	-1	0	0	0	ő	ő
Time inv.	a	a	- 1 a	a	a	-1 a	a	a	-1	a	a	a	a	a



			1	TABLE XIV.	. Compa	tibility t	ables for	r the gro	up P42/mnn	<i>u</i> .			
Γ ₁ +	Γ_2^+	Гз+	Γ4+	Γ ₆ +	Γ1	Γ_2^-	Гз-	Γ4-	Γ5 ⁻	Γ_6^+	Γ_7^+	Γ6-	Γ7-
$\Lambda_1 \\ \Sigma_1 \\ \Delta_1$	$egin{array}{c} \Lambda_2 \ \Sigma_2 \ \Delta_2 \end{array}$	$egin{array}{c} \Lambda_3 \ \Sigma_2 \ \Delta_1 \end{array}$	$egin{array}{c} \Lambda_4 \ \Sigma_1 \ \Delta_2 \end{array}$	$\begin{smallmatrix} \Lambda_5 \\ \Sigma_3 + \Sigma_4 \\ \Delta_3 + \Delta_4 \end{smallmatrix}$	$\begin{array}{c} \Lambda_2 \\ \Sigma_3 \\ \Delta_3 \end{array}$	$egin{array}{c} \Lambda_1 \ \Sigma_4 \ \Delta_4 \end{array}$	$\begin{array}{c} \Lambda_4 \\ \Sigma_4 \\ \Delta_3 \end{array}$	$\begin{array}{c} \Lambda_3 \ \Sigma_3 \ \Delta_4 \end{array}$	$\begin{smallmatrix} \Lambda_{\delta} \\ \Sigma_1 + \Sigma_2 \\ \Delta_1 + \Delta_2 \end{smallmatrix}$	${}^{\Lambda_6}_{\Sigma_6}$ ${}^{\Delta_6}$	$\begin{array}{c} \Lambda_7 \\ \Sigma_5 \\ \Delta_5 \end{array}$	$\begin{array}{c} \Lambda_6 \\ \Sigma_5 \\ \Delta_5 \end{array}$	$\begin{array}{c} \Lambda_7 \\ \Sigma_5 \\ \Delta_5 \end{array}$

