PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 22:

Symmetry of lattice vibrations

Chapter 11 in DDJ

- 1. Lattice vibrations of LiF & elephants
- 2. Lattice vibrations of diamond structured materials

Some materials for this lecture were taken from an electronic version of DDJ.

3	Fri: 02/10/2017	Chap. 5	Atomic orbitals	#11	02/13/2017
14	Mon: 02/13/2017	Chap. 6	Direct product groups	#12	02/15/2017
15	Wed: 02/15/2017	Chap. 7	Molecular orbital	#13	02/17/2017
16	Fri: 02/17/2017	Chap. 9	Introduction to Space Groups	#14	02/20/2017
17	Mon: 02/20/2017	Chap. 10	Group theory for the periodic lattice		
18	Wed: 02/22/2017	Chap. 10	Group theory for the periodic lattice		
19	Fri: 02/24/2017	Chap. 1-10	Review Distribute take-home exam		
20	Mon: 02/27/2017	Chap. 10	Space group representations		Exam
21	Wed: 03/01/2017	Chap. 11	Symmetry of vibrations		Exam
22	Fri: 03/03/2017	Chap. 11	Symmetry of vibrations		Exam Due
	Mon: 03/06/2017		Spring break - no class		3
	Wed: 03/08/2017		Spring break - no class		
	Fri: 03/10/2017		Spring break - no class		
	Mon: 03/13/2017	1	APS Meeting - no class		
	Wed: 03/15/2017		APS Meeting - no class		
	Fri: 03/17/2017		APS Meeting - no class		
23	Mon: 03/20/2017	1			
24	Wed: 03/22/2017				

Diago uso part	of the week of March 13 to pre	anare vour
		epare your
presentations for	r the end of April.	
Fri: 03/17/2017	APS Meeting - no class	
23 Mon: 03/20/2017	2	
24 Wed: 03/22/2017		
25 Fri: 03/24/2017		
26 Mon: 03/27/2017		
27 Wed: 03/29/2017		
28 Fri: 03/30/2017		
29 Mon: 04/03/2017		
30 Wed: 04/05/2017		
31 Fri: 04/07/2017		
32 Mon: 04/10/2017		
33 Wed: 04/12/2017		
Fri: 04/14/2017	Good Friday Holiday no class	
34 Mon: 04/17/2017		
35 Wed: 04/19/2017		
36 Fri: 04/21/2017		
Mon: 04/24/2017	Presentations I	
Wed: 04/28/2017	Presentations II	

Note that the splitting of the TO and LO vibrations for LiF is
beyond the group theory analysis which predicts a single triply
degenerate mode of symmetry Γ₁₅.MOLTER OF COLSPANDATE OF COLSPAN<

Lattice vibrations in polar crystals couple to electromagnetic fields, adding "non analytic" term to the dynamical matrix: $\tilde{C}_{ai,\beta j}^{na} = \frac{4\pi e^2}{\Omega} \frac{\sum\limits_{\gamma} Z_{i,\gamma a}^* q_{\gamma} \sum\limits_{\nu} Z_{j,\nu \beta}^* q_{\nu}}{\sum\limits_{\gamma,\nu} q_{\gamma} \epsilon_{\gamma \nu}^* q_{\nu}}$ $= \frac{4\pi e^2}{\Omega} \frac{(\mathbf{q} \cdot \mathbf{Z}_i^*)_a (\mathbf{q} \cdot \mathbf{Z}_j^*)_{\beta}}{\mathbf{q} \cdot \tilde{\epsilon}^* \cdot \mathbf{q}} ,$

PHY 745 Spring 2017 -- Lecture 22

3/03/2017

Notation	for O _h symmetry		
	BSW	Molecular	
	Г1	A _{1g}	
	Γ2	A _{2g}	
	Γ ₁₂	Eg	
	Γ ₁₅ '	T _{1g}	
	Γ ₂₅ '	T _{2g}	
	Γ ₁ '	A _{1u}	
	Γ2'	A _{2u}	
	Γ ₁₂ ΄	Eu	
	Γ ₁₅	T _{1u}	
	Γ ₂₅	T _{2u}	
3/03/2017	PHY 745 Spring	2017 Lecture 22	13

{E]0}	$\{8C_3 0\}$	$[3C_2 0] = \{6C'_2\}$	r } {6C ₄ r } {	$ \tau\rangle {8iC_3 \tau\rangle}$	$\{3iC_2 r\}$	$\{6iC_2^r 0\}$	[6i
1.5	2	2 0		0 0	0	2	
mposit	ion of Xate	om sites 111to ir	reducible repi	resentations	of O_h lea	ids	
v	= 4	1 + An	or $\Gamma_{\tau}^{+} + I$	7-			
A	1.5	19 1 1124	01 11 1 1	2 *			
the second s	= v	× v =	$(A_1 + A_2)$	$\otimes T_{1} = T$	$+T_{2}$	$= \Gamma_{-} +$	Γ^{\pm}
102 mode	8 Aa.s.	~ A vector -	(211g + 212u)	$\otimes 1_{1u} = 1$	1u + 1.2g	- 1 15 1	+ 25
and all the							
alveie	of phor	one for k	>0 in diar	nond etr	ucture		
alysis	of phor	nons for k	>0 in diar	mond str	ucture		
alysis	of phor	nons for k	>0 in diar	nond str	ucture		
alysis from l	of phor Boucka	nons for k ert, Smoli	>0 in diar uchowski,	nond str and Wlg	ucture gner:		
alysis from l	of phor 3oucka	ons for k ert, Smoli	>0 in diar uchowski,	nond str and Wlg	ucture gner:		
alysis from l	of phor Bouckae VII. Comp	nons for k ert, Smolu atibility relatio	>0 in diar uchowski, ns between Γ as	mond str and Wlg مط ۵, ۸, ۵.	ucture gner:		
from I	of phor Bouckae VII. Comp	nons for k ert, Smolu r_{11}	>0 in diar uchowski, ns between Γ as $\Gamma_{1s'}$	mond str and Wlg $\frac{M}{\Gamma_{15}}$	ucture jner:		
TABLE	of phor Bouckae VII. Comp	nons for k ert, Smolu atibility relation Γ_{12}	>0 in diar uchowski, ns between Γ as Γ_{11}'	mond str and Wlg $\frac{\Gamma_{55'}}{\Delta_{5}'\Delta_{5}}$	ucture mer:		
$\frac{\text{Alysis}}{\text{from I}}$	of phor Bouckar VII. Comp F2 A2	nons for k ert, Smolu atibility relation Γ_{12} $\Delta_1 \Delta_2$	>0 in diar uchowski, ns between Γ as $\frac{\Gamma_{12}'}{\Delta_{1}'\Delta_{3}}$	mond str and Wlg $\frac{1}{\Gamma_{15}'}$ $\frac{\Gamma_{15}'}{\Delta_{2}'\Delta_{5}}$	ucture gner:		
$\frac{\text{Alysis}}{\text{from I}}$	of phor Bouckae VII. Comp <u>r</u> 2 <u>A</u> 2 X	nons for k ert, Smolu autibility relation Γ_{11} $\Delta_1 \Delta_2$ Δ_3 $\Sigma_1 \Sigma_2$	>0 in diar uchowski, ns between Γ as $\frac{\Gamma_{15}'}{\Delta_{1}'\Delta_{5}}$ $\frac{\Delta_{1}'\Delta_{5}}{\Sigma_{2}\Sigma_{2}}$	mond str and Wlg $\frac{Md \Delta, \Lambda, \Sigma}{\frac{\Gamma_{25}'}{\Delta_2' \Delta_5}}$	ucture jner:		
alysis from I Table $\frac{\Gamma_1}{\Delta_1}$ Δ_1 Σ_1	of phor Bouckae VII. Comp $\frac{\Gamma_2}{\Delta_2}$ Δ_2 Δ_2 Δ_2 Δ_2 Δ_2 Δ_2	nons for k ert, Smolu atibility relation Γ_{12} $\Delta_1 \Delta_2$ Δ_3 $\Sigma_1 \Sigma_4$	>0 in diar uchowski, ns between Γ as $\frac{\Gamma_{12}'}{\Delta_{1}'\Delta_{3}}$ $\frac{\Delta_{2}\Delta_{3}}{\Sigma_{2}\Sigma_{2}\Sigma_{4}}$	mond str and Wlg $d_{\Delta}, \Lambda, \Sigma$. $P_{ts'}$ $\Delta_2'\Delta_b$ $\Delta_1\Lambda_3$ $\Sigma_1\Sigma_2\Sigma_3$	ucture mer:		
$\frac{\text{Alysis}}{\text{from I}}$ $\frac{\text{Table}}{\frac{\Gamma_1}{\Delta_1}}$ $\frac{\Sigma_1}{\Gamma_1'}$	of phor Bouckae VII. Comp Γ_2 Δ_2	$\frac{1}{\Gamma_{12}}$	>0 in diar uchowski, ns between Γ as $\frac{\Gamma_{15}'}{\Delta_1'\Delta_5}$ $\frac{\Delta_2 \Delta_3}{\Sigma_2 \Sigma_2 \Sigma_4}$ Γ_{15}	mond str and Wlg $ud \Delta, \Lambda, \Sigma$. Γ_{15}' $\Delta_{5}'\Delta_{5}$ $\Lambda_{1}\Lambda_{3}$ $\Sigma_{1}\Sigma_{2}\Sigma_{3}$ Γ_{15}	ucture mer:		
$\frac{\text{Alysis}}{\text{from I}}$ $\frac{\text{Table}}{\frac{\Gamma_1}{\Delta_1}}$ $\frac{\Gamma_1'}{\frac{\Gamma_1'}{\Delta_1'}}$	of phor Bouckae VII. $Comp$ Γ_2 Δ_2 Σ_4 Γ_2' Δ_2'	$\frac{1}{1}$	>0 in diar uchowski, ns between Γ av $\Gamma_{1s'}$ $\Delta_{1'}\Delta_{5}$ $\Delta_{2s}\Delta_{2s}Z_{s}$ Γ_{1s} $\Delta_{1}\Delta_{5}$	mond str and Wlg $r_{15'}$ $\Delta_{1}'\Delta_{5}$ $\Delta_{1}'\Delta_{5}$ $\Delta_{1}'\Delta_{5}$ $\Delta_{2}'\Delta_{5}$	ucture jner:		
$\begin{array}{c} \text{alysis} \\ \text{from I} \\ \hline \\ $	of phor Bouckar VII. Comp Γ_2 Δ_2 Δ_3 Σ_4 Γ_7' Δ_2' Λ_1	$\frac{1}{1}$	>0 in diar achowski, ns between Γ au Γ_{12}' $\Delta_1'\Delta_3$ $\Delta_2\Delta_2$ $\Sigma_1\Sigma_2\Sigma_2$ Γ_{15} $\Delta_1\Delta_5$ $\Delta_1\Delta_5$	mond str and Wlg $ud \Delta, \Lambda, \Sigma$. $r_{15'}$ $\Delta_{3'}\Delta_{5}$ $\Lambda_{1}\Lambda_{3}$ $\Sigma_{1}\Sigma_{2}\Sigma_{3}$ r_{23} $\Delta_{2}\Delta_{3}$ $\Lambda_{2}\Lambda_{3}$	ucture jner:		

<page-header><page-header><page-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text>

