PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 21:

Symmetry of lattice vibrations

Chapter 11 in DDJ

1. Review of vibrations in a one-dimensional lattice
2. Vibrations in a three-dimensional lattice
3. Lattice modes and "molecular" modes Some materials taken from DDJ and also Solid State Physics text by Grosso and Parravicini (2014)

Figure 9.1 Longitudinal displacements in a one-dimensional monoatomic lattice. The equilibrium positions $t_{n}=n a$ are indicated by circles; the displacements u_{n} at a given instant are indicated by arrows.
The ground electronic state depends on the nuclear positions

$$
E_{0}\left(\left\{\mathbf{R}^{a}\right\}\right) \quad \text { Suppose } \mathbf{R}^{a}=\mathbf{R}^{a 0}+\mathbf{u}^{a}
$$

For one-dimensional case:

$$
\begin{aligned}
& E_{0}\left(\left\{u_{n}\right\}\right)=E_{0}(0)+\frac{1}{2} \sum_{n n^{\prime}}\left(\frac{\partial^{2} E_{0}}{\partial u_{n} \partial u_{n^{\prime}}}\right)_{0} u_{n} u_{n^{\prime}} \\
&+\frac{1}{3!} \sum_{n n^{\prime} n^{\prime \prime}}\left(\frac{\partial^{3} E_{0}}{\partial u_{n} \partial u_{n^{\prime}} \partial u_{n^{\prime \prime}}}\right)_{n} u_{n} u_{n^{\prime}} u_{n^{*}}+\cdots \\
& E_{0}^{(\mathrm{harms})}\left(\left\{u_{n} \mid\right)=E_{0}(0)+\frac{1}{2} \sum_{n n^{\prime}} D_{n n^{\prime} \cdot u_{n} u_{n^{\prime}} \cdot \quad D_{n n^{\prime}}=\left(\frac{\partial^{2} E_{0}}{\partial u_{n} \partial u_{n^{\prime}}}\right)_{0}}\right.
\end{aligned}
$$

Relationships:

$$
\begin{gathered}
D_{n n^{\prime}}=D_{n^{\prime} n .} \quad D_{n n^{\prime}}=D_{m m^{\prime}} \quad \text { if } \quad t_{n}-t_{n^{\prime}}=t_{m}-t_{m^{\prime}} \\
\sum_{n^{\prime}} D_{n n^{\prime}}=0 \quad \text { for any } \quad n ;
\end{gathered}
$$

11/4/2015
PHY 752 Fall 2015 - Lecture 28

Classical equations of motion:

$$
M \ddot{u}_{n}=-\sum_{n^{\prime}} D_{n n^{\prime}} u_{n^{\prime}}
$$

Solution

$$
\begin{aligned}
& u_{n}(t)=A e^{i(q n a-\omega t)} \\
& -M \omega^{2} A=-\sum_{n^{\prime}} D_{n n^{\prime}} e^{-i q\left(m a-n^{\prime} a\right)} A . \\
& \quad M \omega^{2}(q)=D(q) . \\
& \text { where } \\
& \quad D(q)=\sum_{n^{\prime}} D_{m n^{\prime}} e^{-i q\left(n a-n^{\prime} a\right)} ;
\end{aligned}
$$

Analytic result for monoatomic chain with only nearest neighbor interactions

$$
D_{n n}=2 C . \quad D_{n n+1}=D_{n-1 n}=-C . \quad D_{n n^{\prime}}=0 \quad \text { if }\left|n^{\prime}-n\right|>1
$$

$D(q)=\sum_{n,} D_{n n^{\prime}} e^{i q \alpha\left(n-n^{\prime}\right)}=C\left(2-e^{i q a}-e^{-i q a}\right)=4 C \sin ^{2}(q a / 2)$ \qquad
$\rightarrow \omega=\sqrt{\frac{4 C}{M}}\left|\sin \frac{1}{2} q a\right|$ \qquad

Figure 9.2 Phonon dispersion curve for a monoutomic linear lattice with nearest neighber interactions ouly; the Brillowin zone is the scgnener between $-\pi / a$ and $+\pi / a$. 1/4/2015 PHY 752 Fall 2015 - Lecture 28

Figure 9.2 Phonon dispersion curve for a monoatomic linear latice with nearest ncighbor inter actions only; the Brillewin zone is the segment between $-\pi / a$ and $+\pi / a$.
$\omega=\sqrt{\frac{C}{M}} a q \equiv v_{s} q \quad(q a \ll 1):$
velocity of sound in the material

[^0]PHY 752 Fall 2015 - Lecture 28

Solution: $\quad u_{n}(t)=A_{1} e^{i\left(q n a_{0}-\omega t\right)}$ and $v_{n}(t)=A_{2} e^{i\left(q n a_{0}+q a_{0} / 2-\omega t\right)}$

$$
-M_{1} \omega^{2} A_{1}=-C\left(2 A_{1}-A_{2} e^{-i q a_{0} / 2}-A_{2} e^{i g a_{0} / 2}\right)
$$

$$
-M_{2} \omega^{2} A_{2}=-C\left(2 A_{2}-A_{1} e^{-i q a_{0} / 2}-A_{1} e^{i q a_{0} / 2}\right)
$$

convenient constant

$$
\left|\begin{array}{cc}
2 C-M_{1} \omega^{2} & -2 C \cos \left(q a_{0} / 2\right) \\
-2 C \cos \left(q a_{0} / 2\right) & 2 C-M_{2} \omega^{2}
\end{array}\right|=0 .
$$

\qquad
\qquad
\qquad

One-dimensional diatomic lattice -- continued
Normal modes

$$
\omega^{2}=C\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right) \pm C \sqrt{\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right)^{2}-\frac{4 \sin ^{2}\left(q a_{0} / 2\right)}{M_{1} M_{2}}} .
$$

\qquad
\qquad
\qquad
\qquad
 interacting with spring constant C. The masses of the atoms are M_{1} and M_{2} (with $M_{1}>M_{2}$): M^{*} is the reduced mass.

11/4/2015
PHY 752 Fall 2015 - Lecture 28

$$
\begin{aligned}
& \text { Lattice modes of general three-dimensional crystals } \\
& \qquad E_{0}^{(\mathrm{hamm})}\left(\left\{\mathbf{u}_{n v \mid} \mid\right)=E_{0}(0)+\frac{1}{2} \sum_{n v a n^{\prime} v \sigma^{\prime}} D_{n \mathrm{va}, n^{\prime} v \alpha^{\prime} u_{n v a} u_{n^{\prime}} v \sigma^{\prime}}\right. \\
& D_{n v u, n^{\prime} v^{\prime} \alpha^{\prime}}=\left(\frac{\partial^{2} E_{0}}{\partial u_{n v a} \partial u_{n} v \alpha^{\prime}}\right)_{0} .
\end{aligned}
$$

Relationships:

$$
\begin{aligned}
& D_{n v a, n^{\prime} v^{\prime} \alpha^{\prime}}=D_{n^{\prime} v^{\prime}, n v \sigma} \\
& D_{n v a n^{\prime} v^{\prime} \alpha^{\prime}}=D_{m v a, m^{\prime} v^{\prime} \sigma^{\prime}} \text { if } \mathbf{t}_{m}-\mathbf{t}_{n^{\prime}}=\mathbf{t}_{m}-\mathbf{t}_{m^{\prime}} \\
& \sum_{n^{\prime} \vee} D_{n \mathrm{va}, n^{\prime} v \alpha^{\prime}} \equiv 0 .
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lattice modes of general three-dimensional crystals -continued

Equations of motion

$$
M_{v} \ddot{u}_{n v a}=-\sum_{n^{\prime} v a^{\prime}} D_{n v \alpha, n^{\prime} v^{\prime} \sigma^{\prime} u_{n^{\prime} v \sigma^{\prime}} ~ . ~}
$$

Solution

$$
\begin{aligned}
& \mathbf{u}_{n v}(t)=\mathbf{A}_{v}(\mathbf{q} \cdot \omega) e^{i(\boldsymbol{q} \cdot \mathbf{t}-\omega t)} \\
& -M_{v} \omega^{2} A_{v u}=-\sum_{n^{\prime} v \alpha^{\prime}} D_{n v \alpha, n^{\prime} v} v^{\prime} e^{-i \boldsymbol{q} \cdot\left(\mathbf{L}-\mathbf{L}_{n^{\prime}}\right)} A_{v^{\prime} \alpha} \\
& D_{v a, v^{\prime} \alpha^{\prime}}(\mathbf{q})=\sum_{n^{\prime}} D_{n v a, n^{\prime} v^{\prime} a^{\prime}} e^{-i q \cdot\left(\mathbf{q}_{n}-\mathbf{L}_{n^{\prime}}\right)} . \\
& \left\|D_{v \alpha, v^{\prime} \alpha^{\prime}}(\mathbf{q})-M_{v} \omega^{2} \delta_{\alpha u^{\prime}} \delta_{v, v}\right\|=0 \\
& \text { 111/4/2015 PHY752 Fall 2015-Lecture } 28
\end{aligned}
$$

```
Lattice modes of general three-dimensional crystals --
continued
Some special values
\[
\begin{aligned}
& \sum_{V} D_{v a, v^{\prime}}(\mathbf{q}=0) \equiv 0: \\
& \sum_{v \alpha^{\prime}} D_{v a, v^{\prime}}(\mathbf{q}=0) A_{\alpha^{\prime}} \equiv 0 .
\end{aligned}
\]
```


Orthogonality of normal modes

$$
\sum_{v \sigma} M_{v} A_{v \alpha}^{*}(\mathbf{q} \cdot p) A_{v v}\left(\mathbf{q} \cdot p^{\prime}\right)=\delta_{p, p^{\prime}}
$$

1/4/2015

Example for fcc Al lattice

Figure 9.5 Phonon dispersion curves of aluminum along symmetry directions. The solid lines represents the calculations of Fig. 1. Phys. Rev. B 46, 10734 (1992). Longitudinal and transverse acoustic branchesare indicated by LA and TA (or TA_{1} and TA 2), respectively. The experimental points are from the papers of G. Gilat and R. M. Nicklow, Phys. Rev, 143, 487 (1966) and R. Stedman. S. Almqvist and G. Nilsson. Phys. Rev. 162, 549 (1967)

11/4/2015
PHY 752 Fall 2015 - Lecture 28
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example for Si and Ge lattices

Ge

Figure 9.6 Phonon dispersion curves and density-of-states of Si and Ge calculated by Figs. 1 . 2. Phys. Rev. B 43. 7231 (1991). Longitutinal and transvense acoustic (or optical) modes are indicated by LA and TA (LO and TO), respectively. The experimental points are from G. Dolling, in "Inclastic Scattering of Neutrons in Solirss and Lifyuids" cdited by S. Ekland (IAEA. Vienna,
1963) Vol. II. p. 37, G. Nilsson and G. Nclin. Phys. Rev. B 3, 364 (1971) and Phys. Rev. B 6 . ${ }^{1963)}$ Vol. II. p. 37; G. Nilsson and G. Nelin, Phys. Rev. B 3, 364 (1971) and Phys. Rev. B 6

\qquad

Notation for O_{h} symmetry

	BSW	Molecular
	Γ_{1}	A_{19}
	Γ_{2}	A_{29}
	Γ_{12}	E_{9}
	$\Gamma_{15}{ }^{\prime}$	T_{19}
	$\Gamma_{25}{ }^{\prime}$	$\mathrm{T}_{2 \mathrm{~g}}$
	$\Gamma_{1}{ }^{\prime}$	A_{14}
	$\Gamma_{2}{ }^{\prime}$	$\mathrm{A}_{2 u}$
	$\Gamma_{12}{ }^{\prime}$	E_{u}
	Γ_{15}	$\mathrm{T}_{1 u}$
	Γ_{25}	$\mathrm{T}_{2 \mathrm{u}}$
${ }^{3 / 112017}$		

Under all symmetry operations of O_{h} each Na and Cl atom site is transformed either into itself or into an equivalent atom site separated by a lattice vector \vec{R}_{m}. Thus,
(14.4)
$\chi_{\text {atom sitem }}=2 A_{1 \mathrm{~g}}$
(14.5)

3/01/2017 lastice modes $=2 A_{1 g} \otimes T_{1 u}=2 T_{1 u}$ PHY 745 Spring 2017 - Lecture 21 22

[^0]: 11/4/2015

