PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 21:

Symmetry of lattice vibrations

Chapter 11 in DDJ

- 1. Review of vibrations in a one-dimensional lattice
- 2. Vibrations in a three-dimensional lattice

3. Lattice modes and "molecular" modes

Some materials taken from DDJ and also Solid State Physics text by Grosso and Parravicini (2014) PHYTAS Spring 2017 - Leture 21

13	Fri: 02/10/2017	Chap. 5	Atomic orbitals	#11	02/13/2017
14	Mon: 02/13/2017	Chap. 6	Direct product groups	#12	02/15/2017
15	Wed: 02/15/2017	Chap. 7	Molecular orbital	#13	02/17/2017
16	Fri: 02/17/2017	Chap. 9	Introduction to Space Groups	#14	02/20/2017
17	Mon: 02/20/2017	Chap. 10	Group theory for the periodic lattice		
18	Wed: 02/22/2017	Chap. 10	Group theory for the periodic lattice		
19	Fri: 02/24/2017	Chap. 1-10	Review Distribute take-home exam		
20	Mon: 02/27/2017	Chap. 10	Space group representations		Exam
21	Wed: 03/01/2017	Chap. 11	Symmetry of vibrations		Exam
22	Fri: 03/03/2017	Chap. 11	Symmetry of vibrations	1	Exam Due
	Mon: 03/06/2017		Spring break - no class		
	Wed: 03/08/2017		Spring break - no class		
	Fri: 03/10/2017		Spring break - no class		
	Mon: 03/13/2017	1	APS Meeting - no class		
	Wed: 03/15/2017	1	APS Meeting - no class		
	Fri: 03/17/2017	1	APS Meeting - no class		
23	Mon: 03/20/2017	1			
24	Wed: 03/22/2017				

Notation	for O _h symmetry		
	BSW	Molecular	
	Въ Г1	A _{1g}	
	Γ ₁	A _{2g}	
	Γ ₁₂	Eq	
	Γ ₁₅ '	T _{1g}	
	Γ ₂₅ '	T _{2g}	
	Γ ₁ '	A _{1u}	
	Γ2'	A _{2u}	
	Γ ₁₂ '	Eu	
	Γ_{15}	T _{1u}	
	Γ_{25}	T _{2u}	
3/01/2017	PHY 745 Spring	2017 Lecture 21	20

O(432)		E	$8C_3$	$3C_2 = 3C_4^2$	$6C_2$	$6C_4$
Γ_1	A_1	1	1	1	1	1
Γ_2	A_2	1	1	1	-1	-1
Γ_{12} $(x^2 - y^2, 3z^2 - r^2)$	A_2 E	2	-1	2	0	0
$ \left. \begin{array}{cc} \Gamma_{12} & (x^2 - y^2, 3z^2 - r^2) \\ \Gamma_{15} & (R_x, R_y, R_z) \\ (x, y, z) \end{array} \right\} $	T_1	3	0	$^{-1}$	$^{-1}$	1
Γ_{25} yz, zx, xy	T_2	3	0	-1	1	-1
			(m3n)	(6)		
Under all symmetry opera- transformed either into itse by a lattice vector \vec{R}_m . The	tions o If or in	of O_h	each 1	Na and Cl aton		
Under all symmetry operatives transformed either into itset by a lattice vector \vec{R}_m . The	tions o If or in	of O _h to an	each 1 equival	Na and Cl aton		
Under all symmetry operatives transformed either into itset by a lattice vector \vec{R}_m . The	tions α lf or in us, Xatom si	of O_h to an tes = 1	each l equival 2A _{1g}	Na and Cl aton lent atom site se	parated	
Under all symmetry opera- transformed either into itse by a lattice vector \vec{R}_m . Th	tions of lf or in us, $\chi_{\text{atom sit}}$ T_{1u} , so	of O_h to an test = $\frac{1}{2}$ to that	each M equival $2A_{1g}$ at $\vec{k} =$	Na and Cl aton lent atom site se	parated	

