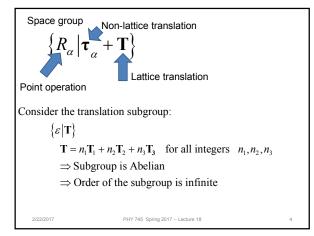
PHY 745 Group Theory 11-11:50 AM MWF Olin 102

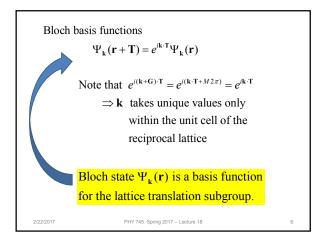
Plan for Lecture 18:

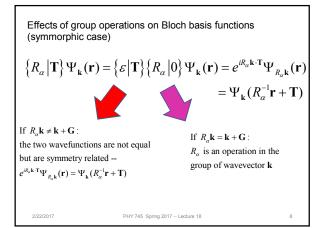
Group theory for the periodic lattice


Reading: Chapter 10 in DDJ

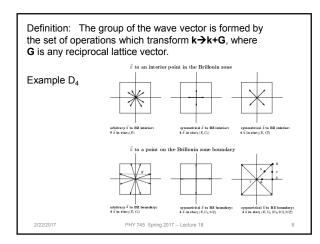

- 1. Symmetry of the wave vector
- 2. Compatibility relations
- 3. Symmorphic and non-symmorphic space groups

This lecture contains some materials from an electronic version of the DDJ text.

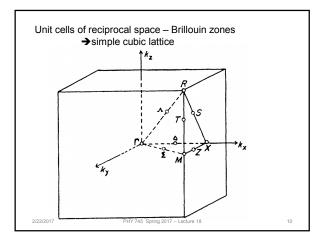

	Wed: 02/01/2017	Chap. 8	Vibrational excitations	#Z	02/03/2017
10	Fri: 02/03/2017	Notes	Continuous groups	#8	02/06/2017
11	Mon: 02/06/2017	Notes	Group of three-dimensional rotations	#9	02/08/2017
12	Wed: 02/08/2017	Notes	Continuous groups	#10	02/10/2017
13	Fri: 02/10/2017	Chap. 5	Atomic orbitals	#11	02/13/2017
14	Mon: 02/13/2017	Chap. 6	Direct product groups	#12	02/15/2017
15	Wed: 02/15/2017	Chap. 7	Molecular orbital	#13	02/17/2017
16	Fri: 02/17/2017	Chap. 9	Introduction to Space Groups	#54	02/20/2017
17	Mon: 02/20/2017	Chap. 10	Group theory for the periodic lattice		1
18	Wed: 02/22/2017	Chap. 10	Group theory for the periodic lattice		
19	Fri: 02/24/2017	Chap. 1-10	Review - Distribute take-home exam	1	1
20	Mon: 02/27/2017				Exam
21	Wed: 03/01/2017				Exam
22	Fri: 03/03/2017	1			Exam Due
	Mon: 03/06/2017		Spring break - no class		
	Wed: 03/08/2017		Spring break - no class	1	
	Fri: 03/10/2017	1	Spring break - no class		
	Mon: 03/13/2017		APS Meeting - no class		
	Wed: 03/15/2017		APS Meeting - no class		
	Fri: 03/17/2017		APS Meeting - no class		
23	Mon: 03/20/2017				1
24	Wed: 03/22/2017			1	

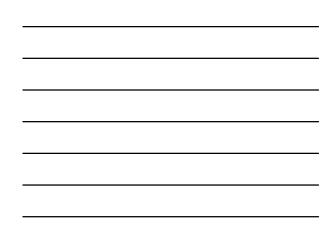


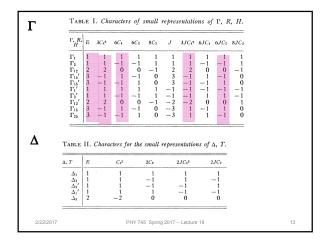
Reciprocal lattice Define $\mathbf{G}_i \cdot \mathbf{T}_j = 2\pi \delta_{ij}$ General reciprocal lattice vector: $\mathbf{G} = m_1 \mathbf{G}_1 + m_2 \mathbf{G}_2 + m_3 \mathbf{G}_3$ Effects of point group operations on lattice translations and reciprocal lattice vectors. Note that $\mathbf{G} \cdot \mathbf{T} = 2\pi N_1$ If R_a is a point operation of the crystal, $R_a \mathbf{T} = \mathbf{T}'$ $\Rightarrow \mathbf{G} \cdot R_a \mathbf{T} = 2\pi N_2 = R_a^{-1} \mathbf{G} \cdot \mathbf{T}$ If R_a point operations act on the translation vectors of the crystal R_a^{-1} point operations act on the reciprocal lattice vectors



2

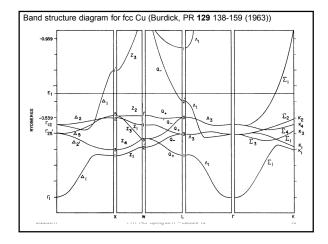

Note that $\{R_{\alpha}|0\}\mathbf{r} = R_{\alpha}^{-1}\mathbf{r}$ $\Rightarrow \{R_{\alpha}|0\}e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot R_{\alpha}^{-1}\mathbf{r}}u_{\mathbf{k}}(R_{\alpha}^{-1}\mathbf{r})$ $= e^{iR_{\alpha}\mathbf{k}\cdot\mathbf{r}}u_{R_{\alpha}\mathbf{k}}(\mathbf{r}) = \Psi_{R_{\alpha}\mathbf{k}}(\mathbf{r})$ defining $u_{R_{\alpha}\mathbf{k}}(\mathbf{r}) \equiv u_{\mathbf{k}}(R_{\alpha}^{-1}\mathbf{r})$ $\{\varepsilon|\mathbf{T}\}\{R_{\alpha}|0\}\Psi_{\mathbf{k}}(\mathbf{r}) = e^{iR_{\alpha}\mathbf{k}\cdot\mathbf{T}}\Psi_{R_{\alpha}\mathbf{k}}(\mathbf{r})$ $\Rightarrow \text{The symmetry of the wavefunction depends on }\mathbf{k}$ $\Rightarrow \text{For each }\mathbf{k}, \text{ the spatial point symmetries must be considered.}$





Definition: The group of the wave vector is formed by the set of operations which transform $k \rightarrow k+G$, where **G** is any reciprocal lattice vector. Example – simple cubic lattice \overbrace{f}_{a} For k=0 (Γ) group of the wave vector is full O_k point symmetry For $k=k_x \hat{x} 0 < k_x < \frac{\pi}{a}$ (Δ) group of the wave vector has C_{4v} symmetry

		cubic					sentatio		· 11 - 1	, TT
	.е	1. <i>Cn</i>		3 0 1 3		repres	seniario		1, 1	., 11.
г, <i>R</i> , <i>Н</i>	E	$3C_{4^{2}}$	6C4	6C2	8C3	J	$3JC_{4^2}$	6 <i>JC</i> 4	6JC ₂	8 <i>JC</i> 3
$ \begin{array}{c} \Gamma_{1} \\ \Gamma_{2} \\ \Gamma_{15}' \\ \Gamma_{55}' \\ \Gamma_{1}' \\ \Gamma_{2}' \\ \Gamma_{12}' \\ \Gamma_{15} \\ \Gamma_{25} \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ -1 \\ -1 \\ 1 \\ 2 \\ -1 \\ -1 \\ \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 0 \\ -1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ -1 \\ -1 \\ -2 \\ -3 \\ -3 \end{array} $	$ \begin{array}{c} 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ 1\\ \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 1 \\ 0 \\ -1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 1 \\ 0 \\ 1 \\ -1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $
2/22/20	017			PHY 745	5 Spring 201	7 Lecture	9 18			12




$H^{R,}$ E	$3C_{4^{2}}$	6C4	6C2	8 <i>C</i> 3	J	$3JC_{4^{2}}$	6 <i>JC</i> 4	$6JC_2$	8 <i>JC</i> 3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ -1 \\ -1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 0 \\ -1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{r}1\\1\\2\\3\\-1\\-1\\-2\\-3\\-3\end{array}$	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -2 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 1 \\ 0 \\ -1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 1 \\ 0 \\ 1 \\ -1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} \Rightarrow \Delta_1 \\ \Rightarrow \Delta_2 \\ \Rightarrow \Delta_1 \Delta_2 \\ \Rightarrow \Delta_1 \Delta_2 \\ \Rightarrow \Delta_1' \Delta \end{array} $

Com	patability rela	ations computed	by BSW:	
Г1	Γ_2	Γ_{12}	Γι::'	Γ_{25}'
Δ_1	Δ_2	$\Delta_1 \Delta_2$	$\Delta_1'\Delta_5$	$\Delta_2'\Delta_5$
Γ1'	Γ_{2}'	Γ12'	Γ15	Γ ₂₅
Δ_1'	Δ_{2}'	$\Delta_1'\Delta_2'$	$\Delta_1 \Delta_5$	$\Delta_2 \Delta_5$
2/22/2017		PHY 745 Spring 2017 L	.ecture 18	15

