PHY 745 Group Theory 11-11:50 AM MWF Olin 102

Plan for Lecture 12:

Continuous groups, their representations, and the great orthogonality theorem

Reading: Eric Carlson's lecture notes

Additional reference: Eugene Wigner, Group Theory

- 1. Importance of commutation relations
- 2. Integral relations

2/8/2017

	Lecture date	DDJ Reading	Topic	HW	Due date
1	Wed: 01/11/2017	Chap. 1	Definition and properties of groups	#1	01/20/2017
2	Fri: 01/13/2017	Chap. 1	Theory of representations		
	Mon: 01/16/2017		MLK Holiday - no class		
3	Wed: 01/18/2017	Chap. 2	Theory of representations		
4	Fri: 01/20/2017	Chap. 2	Proof of the Great Orthonality Theorem	#2	01/23/2017
5	Mon: 01/23/2017	Chap. 3	Notion of character of a representation	#3	01/25/2017
6	Wed: 01/25/2017	Chap. 3	Examples of point groups	#4	01/27/2017
7	Fri: 01/27/2017	Chap. 4 & 8	Symmetry of vibrational modes	#5	01/30/2017
8	Mon: 01/30/2017	Chap. 4 & 8	Symmetry of vibrational modes	#6	02/01/2017
9	Wed: 02/01/2017	Chap. 8	Vibrational excitations	#7	02/03/2017
10	Fri: 02/03/2017	Notes	Continuous groups	#8	02/06/2017
11	Mon: 02/06/2017	Notes	Group of three-dimensional rotations	#9	02/08/2017
12	Wed: 02/08/2017	Notes	Continuous groups	#10	02/10/2017
13	Fri: 02/10/2017	1			
14	Mon: 02/13/2017				
15	Wed: 02/15/2017				

N	ews	Events
	Major Manal Ahmistosch featured im article on gender diversity in 2 TEM	Wed. Feb. 8, 2017 Biophysics of Blood Clots Professor Hudson, East Carolina U. 4:00pm - Olin 101 Refreshments served 3:30pm - Olin Lounge
8	Congresidations to Dr. Alex Taylor, recent Ph.D. Recipsent	Web. Seb. 15, 2017 Career Advising Event Andrea Belanger Univ of Texas, Dalias 12:00pm - Olin Lounge Pizza will be served
	Congretulations to Dr. Xintu Lu.	Wed. Feb. 15, 2017 Electrochemical Energy Storage Professor Augustyn, NCSU

Group structure of SO(3) and SU(2)

$$O_R(\alpha, \hat{\mathbf{n}}) = e^{-i\alpha \mathbf{J} \cdot \hat{\mathbf{n}}/\hbar}$$

Multiplication rule:

$$O_R(\alpha_1, \, \hat{\mathbf{n}}_1)O_R(\alpha_2, \, \hat{\mathbf{n}}_2) = O_R(\alpha_3, \, \hat{\mathbf{n}}_3)$$

Example for $\hat{\mathbf{n}}_1 = \hat{\mathbf{n}}_2 = \hat{\mathbf{z}}$

$$O_R(\alpha_1, \, \hat{\mathbf{z}})O_R(\alpha_2, \, \hat{\mathbf{z}}) = O_R(\alpha_3, \, \hat{\mathbf{z}})$$

$$e^{-i\alpha_1 J_z/\hbar} e^{-i\alpha_2 J_z/\hbar} = e^{-i(\alpha_1 + \alpha_2) J_z/\hbar} \qquad \Rightarrow \alpha_3 = \alpha_1 + \alpha_2$$

2/8/2017

PHY 745 Spring 2017 -- Lecture 12

Group structure of SO(3) and SU(2)

$$O_R(\alpha, \hat{\mathbf{n}}) = e^{-i\alpha \mathbf{J} \cdot \hat{\mathbf{n}}/\hbar}$$

Multiplication rule:

$$O_R(\alpha_1, \ \hat{\mathbf{n}}_1)O_R(\alpha_2, \ \hat{\mathbf{n}}_2) = O_R(\alpha_3, \ \hat{\mathbf{n}}_3)$$

Example for $\hat{\mathbf{n}}_1 = \hat{\mathbf{x}}$ $\hat{\mathbf{n}}_2 = \hat{\mathbf{y}}$

$$O_R(\alpha_1, \hat{\mathbf{x}})O_R(\alpha_2, \hat{\mathbf{y}}) = O_R(\alpha_3, \hat{\mathbf{n}}_3)$$

$$e^{-i\alpha_1 J_x/\hbar} e^{-i\alpha_2 J_y/\hbar} = e^{-i\left(\alpha_1 J_x + \alpha_2 J_y - i\left[\alpha_1 J_x, \alpha_2 J_y\right]/(2\hbar)\right)/\hbar}$$

In this case: $\left[J_x, J_y\right] = i\hbar J_z$

2/9/2017

PHY 745 Spring 2017 -- Lecture 12

$e^{-i\alpha_1 J_x/\hbar} e^{-i\alpha_2 J_y/\hbar} = e^{-i\left(\alpha_1 J_x + \alpha_2 J_y - i\left[\alpha_1 J_x, \alpha_2 J_y\right]/(2\hbar)\right)/\hbar}$
$LHS = \left(1 - i\alpha_1 J_x / \hbar + \frac{1}{2!} \left(-i\alpha_1 J_x / \hbar\right)^2 + \frac{1}{3!} \left(-i\alpha_1 J_x / \hbar\right)^3 \dots\right)$
$\times \left(1 - i\alpha_2 J_y / \hbar + \frac{1}{2!} \left(-i\alpha_2 J_y / \hbar\right)^2 + \frac{1}{3!} \left(-i\alpha_2 J_y / \hbar\right)^3 \dots\right)$
$=1-i(\alpha_{1}J_{x}+\alpha_{2}J_{y})/\hbar-\frac{1}{2!}((\alpha_{1}J_{x})^{2}+(\alpha_{2}J_{y})^{2})/\hbar^{2}-\alpha_{1}\alpha_{2}J_{x}J_{y}/\hbar^{2}+$
RHS= $1 - i\alpha_1 J_x / \hbar - i\alpha_2 J_y / \hbar - \left[\alpha_1 J_x, \alpha_2 J_y\right] / \left(2\hbar^2\right)$
$+\frac{1}{2!}\Big(-i\alpha_{1}J_{_{X}}/\hbar-i\alpha_{2}J_{_{Y}}/\hbar-\left[\alpha_{1}J_{_{X}},\alpha_{2}J_{_{Y}}\right]/\left(2\hbar^{2}\right)\Big)^{2}+$
$=1-i\left(\alpha_{1}J_{x}+\alpha_{2}J_{y}\right)/\hbar-\frac{\alpha_{1}\alpha_{2}}{2}\left(J_{x}J_{y}-J_{y}J_{x}\right)/\hbar^{2}+\frac{1}{2!}\left(\left(\alpha_{1}J_{x}\right)^{2}+\left(\alpha_{2}J_{y}\right)^{2}\right)/\hbar^{2}$
$-\frac{\alpha_1\alpha_2}{2} \left(J_xJ_y + J_yJ_x\right)/\hbar^2 + \dots$
$= 1 - i \left(\alpha_1 J_x + \alpha_2 J_y \right) / \hbar - \alpha_1 \alpha_2 J_x J_y / \hbar^2 + \frac{1}{2!} \left(\left(\alpha_1 J_x \right)^2 + \left(\alpha_2 J_y \right)^2 \right) / \hbar^2 + \dots$ 28/2017 PHY 745 Spring 2017 Electure 12

2

Summary of result for $\hat{\mathbf{n}}_1 = \hat{\mathbf{x}}$ $\hat{\mathbf{n}}_2 = \hat{\mathbf{y}}$ $O_R(\alpha_1, \hat{\mathbf{x}})O_R(\alpha_2, \hat{\mathbf{y}}) = O_R(\alpha_3, \hat{\mathbf{n}}_3)$

$$e^{-i\alpha_1 J_x/\hbar} e^{-i\alpha_2 J_y/\hbar} = e^{-i\left(\alpha_1 J_x + \alpha_2 J_y - i\left[\alpha_1 J_x, \alpha_2 J_y\right]/(2\hbar)\right)/\hbar}$$

Since $[J_x, J_y] = i\hbar J_z$:

$$e^{-i\alpha_1 J_x/\hbar} e^{-i\alpha_2 J_y/\hbar} = e^{-i\left(\alpha_1 J_x + \alpha_2 J_y + \alpha_1 \alpha_2 J_z/2\right)/\hbar}$$

0/0/0047

PHY 745 Spring 2017 -- Lecture 12

Now consider the great orthogonality theorem:

$$\sum_{R} \left(D^{\Gamma_n} (R)_{\mu\nu} \right)^* D^{\Gamma_{n'}} (R)_{\alpha\beta} = \frac{h}{l_n} \delta_{nn'} \delta_{\mu\alpha} \delta_{\nu\beta}$$

For continuous groups, the summation becomes an integral:

$$\int \left(D^{\Gamma_n}(R)_{\mu\nu}\right)^* D^{\Gamma_{n'}}(R)_{\alpha\beta} dR = \frac{\delta_{nn'}\delta_{\mu\alpha}\delta_{\nu\beta}}{l_n} \int dR$$

2/8/2017

PHY 745 Spring 2017 -- Lecture 12

In terms of the characters of the representations:

$$\left\| \left(\chi^{\Gamma_n}(R) \right)^* \chi^{\Gamma_{n'}}(R) dR \right\| = \delta_{nn'} \int dR$$

Procedure for carrying out integration over group elements In general, there will be continuous parameter(s) which characterize each group element $R = R(\alpha, \beta, ...)$ $\int dR \Rightarrow \int g(R(\alpha, \beta...)) d\alpha d\beta... \quad \text{where } g(R(\alpha, \beta...)) \text{ represents}$ the density of group elements in the neighborhood of R in the parameter space of $\alpha, \beta...$

2/8/2017

Analysis of continuum properties of continuous groups, following notes of Professor Eric Carlson.

Notation:

Group elements R, S

Continuous parameters $x_1, x_2... \Rightarrow R(x_1, x_2...) \equiv R(\mathbf{x})$

Identity $E = R(\mathbf{e})$

Continuous group based on nearby mapping of continuous parameters

2/8/2017

PHY 745 Spring 2017 -- Lecture 12

Some details from Professor Carlson's Notes:

It will often be awkward to perform multiplication using the abstract group elements. We define the coordinate product function $\mu\big(x,y\big)$ by

$$\mu(\mathbf{x}, \mathbf{y}) = R^{-1}(R(\mathbf{x}) \cdot R(\mathbf{y})), \tag{1.5}$$

where R^{-1} is the inverse of R, which turns group elements into coordinates. In other words, multiply the group element corresponding to \boldsymbol{x} and the group element corresponding to \boldsymbol{y} and figure out the coordinates of the resulting group element. As an example, suppose we are working with the complex numbers, and we denote them by a pair of coordinates $R(x_1, x_2) = x_1 + ix_2$. Then we would have

$$\mu(\mathbf{x}, \mathbf{y}) = \mu(x_1, x_2; y_1, y_2) = R^{-1} [R(x_1, x_2) \cdot R(y_1, y_2)] = R^{-1} [(x_1 + ix_2)(y_1 + iy_2)]$$

$$= R^{-1} [(x_1y_1 - x_2y_2) + i(x_1y_2 + x_2y_1)] = (x_1y_1 - x_2y_2, x_1y_2 + x_2y_1)$$
(1.6)

Another example:

 $R(\alpha_1) = O_R(\alpha_1, \hat{\mathbf{z}})$

$$\mu(\alpha_1, \alpha_2) = R^{-1}(R(\alpha_1)R(\alpha_2)) = \alpha_1 + \alpha_2$$

2/8/2017

PHY 745 Spring 2017 -- Lecture 12

From the associative and identity properties of the group, it is easily proven that

$$\mu(x,e) = \mu(e,x) = x,$$
 (1.7a)

$$\mu(x,\mu(y,z)) = \mu(\mu(x,y),z)$$
 (1.7b)

Use of measure function to perform needed integrals

$$\int dR \ f(R) \Rightarrow \begin{cases} \int d_R R \ f(R) = C \int d^N \mathbf{x} \left[\partial \mu_i(\mathbf{y}, \mathbf{x}) / \partial y_i \right]_{\mathbf{y}=c}^{-1} f(R(\mathbf{x})), \\ \int d_L R \ f(R) = C \int d^N \mathbf{x} \left[\partial \mu_i(\mathbf{x}, \mathbf{y}) / \partial y_i \right]_{\mathbf{y}=c}^{-1} f(R(\mathbf{x})), \end{cases}$$
(1.11a)

(1.11b)

Jacobian for left or right measures

2/8/2017

We are particularly interested in showing that the great orthogonality theorem holds for continuous groups which requires:

$$\int f(R)dR = \int f(RS)dR = \int f(SR)dR, \quad (1.9)$$

Proof from Professor Carlson's notes:

Let S be any element of the group, then S = R(s) for some coordinate s. We wish to simplify the expression

$$\int d_{L}R f(S \cdot R) = C \int d^{N}\mathbf{x} |\partial \mu_{i}(\mathbf{x}, \mathbf{y})/\partial y_{i}|_{y=\mathbf{x}}^{-1} f(R(\mathbf{s}) \cdot R(\mathbf{x}))$$

$$= C \int d^{N}\mathbf{x} |\partial \mu_{i}(\mathbf{x}, \mathbf{y})/\partial y_{i}|_{z=\mathbf{x}}^{-1} f(R(\mathbf{\mu}(\mathbf{s}, \mathbf{x})))$$
(1.12)

2/8/2017

PHY 745 Spring 2017 -- Lecture 12

Changing variables --

Now, change variables on the right side. Let $z=\mu(s,x)$, then as x varies over all possible coordinates of the group, so will z, so we can replace the integral over all x with the integral over all z However, when performing such a change of variables, we know from multi-variable calculus that a Jacobian must be included in the integral, so that

$$\int d^{N}\mathbf{z} = \int d^{N}\mathbf{x} \left| \partial z_{i} / \partial x_{j} \right| = \int d^{N}\mathbf{x} \left| \partial \mu_{i}(\mathbf{s}, \mathbf{x}) / \partial x_{j} \right|$$
(1.13)

This allows us to rewrite (1.12) as

$$\int d_{L}R f(S \cdot R) = C \int d^{N}\mathbf{z} \left| \frac{\partial \mu_{i}(\mathbf{x}, \mathbf{x})}{\partial \mathbf{x}_{i}} \right|^{-1} \left| \frac{\partial \mu_{i}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{y}_{i}} \right|_{\mathbf{y} = \mathbf{z}}^{-1} f(R(\mathbf{z}))$$

$$= C \int d^{N}\mathbf{z} \left| \sum_{k} \frac{\partial \mu_{i}(\mathbf{x}, \mathbf{x})}{\partial \mathbf{x}_{k}} \frac{\partial \mu_{k}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{y}_{i}} \right|_{\mathbf{y} = \mathbf{z}}^{-1} f(R(\mathbf{z}))$$
(1.14)

2/8/2017

PHY 745 Spring 2017 -- Lecture 12

Using **z** varable:

$$\int d^{N}\mathbf{z} = \int d^{N}\mathbf{x} \left| \partial z_{i} / \partial x_{j} \right| = \int d^{N}\mathbf{x} \left| \partial \mu_{i}(\mathbf{s}, \mathbf{x}) / \partial x_{j} \right|$$
(1.13)

This allows us to rewrite (1.12) as

$$\int d_{L}R f(S \cdot R) = C \int d^{N}\mathbf{z} \left| \frac{\partial \mu_{i}(\mathbf{s}, \mathbf{x})}{\partial x_{j}} \right|^{-1} \left| \frac{\partial \mu_{i}(\mathbf{x}, \mathbf{y})}{\partial y_{j}} \right|_{\mathbf{y} = \mathbf{c}}^{-1} f(R(\mathbf{z}))$$

$$= C \int d^{N}\mathbf{z} \left| \sum_{k} \frac{\partial \mu_{i}(\mathbf{s}, \mathbf{x})}{\partial x_{k}} \frac{\partial \mu_{i}(\mathbf{x}, \mathbf{y})}{\partial y_{j}} \right|_{\mathbf{y} = \mathbf{c}}^{-1} f(R(\mathbf{z}))$$
(1.14)

where we have used the fact that the product of a determinant of two matrices equals the determinant of the product. Now, consider the expression

$$\frac{\partial \mu_{i}(\mathbf{z}, \mathbf{y})}{\partial y_{j}}\Big|_{\mathbf{y}=\mathbf{z}} = \frac{\partial \mu_{i}(\mathbf{\mu}(\mathbf{s}, \mathbf{x}), \mathbf{y})}{\partial y_{j}}\Big|_{\mathbf{y}=\mathbf{z}} = \frac{\partial \mu_{i}(\mathbf{s}, \mathbf{\mu}(\mathbf{x}, \mathbf{y}))}{\partial y_{j}}\Big|_{\mathbf{y}=\mathbf{z}}$$

$$= \sum_{k} \frac{\partial \mu_{i}(\mathbf{s}, \mathbf{y})}{\partial v_{k}}\Big|_{\mathbf{v}=\mathbf{g}(\mathbf{x}, \mathbf{z})} \frac{\partial \mu_{i}(\mathbf{x}, \mathbf{y})}{\partial y_{j}}\Big|_{\mathbf{y}=\mathbf{z}} = \sum_{k} \frac{\partial \mu_{i}(\mathbf{s}, \mathbf{x})}{\partial x_{k}} \frac{\partial \mu_{k}(\mathbf{x}, \mathbf{y})}{\partial y_{j}}\Big|_{\mathbf{y}=\mathbf{z}}$$
(1.16)

2/8/2017

When	the dust clears:	
J	$d_{L}R f(S \cdot R) = C \int d^{N}\mathbf{z} \left \frac{\partial \mu_{i}(\mathbf{z}, \mathbf{y})}{\partial y_{j}} \right _{\mathbf{y} = \mathbf{z}}^{-1} f(R(\mathbf{z})) = \int d_{L}R f(R)$	(1.17)
A nearly identic	al proof then shows that	
	$\int d_R R f(R \cdot S) = \int d_R R f(R)$	(1.18)
great orth	guments form the basis of the extension of th ogonality theorem to continuous groups. essor Carlson's notes for more details.	ne
2/8/2017	PHY 745 Spring 2017 Lecture 12	16