PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107

Plan for Lecture 3:

Reading: Chapter 1 \& 2 in MPM;
Continued brief introduction to group theory

1. Group multiplication tables
2. Representations of groups
3. The "great" orthogonality theorem

1/21/2015
PHY 752 Spring 2015 - Lecture 3

PHY 752 Solid State Physics

|MWF 11-11:50 AM OPL 107 http://www.wfu.edu/~natalie/s15phy752|
Instructor: Natalie Holzwarth Phone:758-5510 Office:300 OPL|e-mail:natalie@wfu.edu

Course schedule for Spring 2015

(Preliminary schedule -- subject to frequent adjustment.)

PHY 752 Solid State Physics					
\|MWF 11-11:50 AM OPL 107 http://www.wfu.edu/~natalie/s15phy7521					
Instructor:Natalie Holzwarth Phone:758-5510 Office:300 OPL\|e-mail:natalie@wfu.edu					
Course schedule for Spring 2015 (Preliminary schedule -- subject to frequent adjustment.)					
	Lecture date	MPM Reading	Topic	Assign.	Due date
1	Mon: 01/12/2015	Chap. 1 \& 2	Crystal structures	\#1	01/23/2015
2	Wed: 01/14/2015	Chap. 1 \& 2	Some group theory	\#2	\|01/23/2015
	Fri: 01/16/2015	No class	NAWH out of town		
	Man: 01/19/2015	No class	MLK Holiday		
3	Wed: 01/21/2015	Chap. 1 \& 2	Some group theory	\#3	01/23/2015
1/21/2015			PHY 752 Spring 2015 - Lecture 3		2

1/21/2015
PHY 752 Spring 2015 - Lecture 3

WFU Physics Colloquium

TITLE: Quantum Poetics: The Word and Its Earthwork SPEAKER: Dr. Amy Catanzano,

Department of English
Wake Eorest University
TIME: Wednesday January 21, 2015 at 4:00 PM
PLACE: Room 101 Olin Physical Laboratory
Refreshments will be served at 3:30 PM in the Olin Lounge. All interested persons are cordially invited to attend.

ABSTRACT

Poetry and science are ordinarily considered to be different disciplines with distinct goals, methods, and questions. I am part of a contemporary and historical lineage of poets who methods, and questions. I am part of a contemporary and historical lineage of poets who
explore the intersections of poetry and science. My work focuses on poetry in relation to relativity, quantum mechanics, and string theory. My methodology follows in the tradition of

1/21/2015
PHY 752 Spring 2015 - Lecture 3

\qquad

Short digression on abstract group theory What is group theory?

A group is a collection of "elements" - A, B, C, \ldots and a "multiplication" process. The abstract multiplication (•) pairs two group elements, and associates the "result" with a third element. (For example $(A \cdot B=C)$.) The elements and the multiplication process must have the following properties.

1. The collection of elements is closed under multiplication. That is, if elements A and B are in the group and $A \cdot B=C$, element C must be in the group.
2. One of the members of the group is a "unit element" (E). That is, for any element A of the group, $A \cdot E=E \cdot A=A$.
3. For each element A of the group, there is another element A^{-1} which is its "inverse". That is $A \cdot A^{-1}=A^{-1} \cdot A=E$.
4. The multiplication process is "associative". That is for sequential mulplication of group elements A, B, and $C,(A \cdot B) \cdot C=A \cdot(B \cdot C)$. 1/21/2015 PHY 752 Spring 2015 - Lecture 3

Example of a 6-member group E, A, B, C, D, F, G

Group multiplication table

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

21/2015
PHY 752 Spring 2015 - Lecture \qquad

	E	A	B	C	D	F	Check on group properties: 1. Closed; multiplication table uniquely generates group members. 2. Unit element included. 3. Each element has inverse. 4. Multiplication process is associative. s of larger group which f a group a group which are nstruction re X_{i} and Y are group elements	
E	E	A	B	C	D	F		
A	A	E	D	F	B	C		
B	B	F	E	D	C	A		
C	C	D	F	E	A	B		
D	D	C	A	B	F	E		
F	F	B	C	A	E	D		
Definitions Subgroup: members of larger group which have the property of a group Class: members of a group which are generated by the construction $\mathcal{C}=X_{i}^{-1} Y X_{i}$ where X_{i} and Y are group elements								
1/212015								

Group theory - some comments
 - The elements of the group may be abstract; in general, we will use them to describe symmetry properties of our system

Representations of a group

A representation of a group is a set of matrices (one for each group element) -- $\Gamma(A), \Gamma(B) \ldots$ that satisfies the multiplication table of the group. The dimension of the matrices is called the dimension of the representation.

1/21/2015
PHY 752 Spring 2015 - Lecture 3

Example:

	E	A	B	C	D	F
E	E	A	B	C	D	F
A	A	E	D	F	B	C
B	B	F	E	D	C	A
C	C	D	F	E	A	B
D	D	C	A	B	F	E
F	F	B	C	A	E	D

Note that the one-dimensional "identical representation"
$\Gamma^{1}(A)=\Gamma^{1}(B)=\Gamma^{1}(C)=\Gamma^{1}(D)=\Gamma^{1}(E)=\Gamma^{1}(F)=1$ is always possible
Another one-dimensional representation is
$\Gamma^{2}(A)=\Gamma^{2}(B)=\Gamma^{2}(C)=-1$
$\Gamma^{2}(E)=\Gamma^{2}(D)=\Gamma^{2}(F)=1$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1/21/2015 PHY 752 Spring 2015 - Lecture 3 \qquad

Example:

What about 3 or 4 dimensional representations for this group?
$\Gamma(E)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad \Gamma(A)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right) \quad \Gamma(B)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$
$\Gamma(C)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right) \quad \Gamma(D)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right) \quad \Gamma(F)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$

The only "irreducible" representations for this group are 2 one-dimensional and 1 two-dimensional
\qquad

Comment about representation matrices
A representation is not fundamentally altered by \qquad
a similarity transformation
$\Gamma^{\prime}(A)=S^{-1} \Gamma(A) S$
Check:
$\Gamma^{\prime}(A B)=S^{-1} \Gamma(A B) S=S^{-1} \Gamma(A) \Gamma(B) S$
$=S^{-1} \Gamma(A) S S^{-1} \Gamma(B) S$
$=\Gamma^{\prime}(A) \Gamma^{\prime}(B)$

- Typically, unitary matrices are chosen for representations
- Typically representations are reduced to block diagonal form and the irreducible blocks are considered in the representation theory

1/21/2015
PHY 752 Spring 2015 - Lecture 3

The great orthogonality theorem
Notation: $\quad h \equiv$ order of the group
$R \equiv$ element of the group
$\Gamma^{i}(R)_{\alpha \beta} \equiv i$ th representation of R
${ }_{\alpha \beta}$ denote matrix indices
$l_{i} \equiv$ dimension of the representation

$$
\sum_{R}\left(\Gamma^{i}(R)_{\mu \nu}\right)^{*} \Gamma^{j}(R)_{\alpha \beta}=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha} \delta_{\nu \beta}
$$

Great orthogonality theorem continued

$$
\sum_{R}\left(\Gamma^{i}(R)_{\mu \nu}\right)^{*} \Gamma^{j}(R)_{\alpha \beta}=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha} \delta_{\nu \beta}
$$

Analysis shows that

$$
\sum_{i} l_{i}^{2}=h
$$

Simplified analysis in terms of the "characters" of the representations

$$
\chi^{j}(R) \equiv \sum_{\mu=1}^{l_{j}} \Gamma^{j}(R)_{\mu \mu}
$$

Character orthogonality theorem

$$
\sum_{R}\left(\chi^{i}(R)\right)^{*} \chi^{j}(R)=h \delta_{i j}
$$

Note that all members of a class have the same character for any given representation i.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

