PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107

Plan for Lecture 3:

Reading: Chapter 1 & 2 in MPM;

Continued brief introduction to group theory

- 1. Group multiplication tables
- 2. Representations of groups

1/21/2015

3. The "great" orthogonality theorem

PHY 752 Spring 2015 - Lecture 3

MW	F 11-11:50 AM	OPL 107 http://www.wfu.edu/~	natalie/s15phy752/	
Instructor:	Natalie Holzwart	h Phone:758-5510 Office:300 O	PL e-mail: <u>natalie@</u>	wfu.edu
	•			
	Course	e schedule for Spring	g 2015	
	Course	e schedule for Spring	j 2015 adjustment)	
Lecture date	Course (Preliminary s	e schedule for Spring chedule subject to frequent Topic	adjustment.)	Due date
Lecture date Mon: 01/12/2015	Course (Preliminary s MPM Reading Chap. 1 & 2	e schedule for Spring chedule subject to frequent Topic Crystal structures	adjustment.) Assign. #1	Due date 01/23/2015
Lecture date Mon: 01/12/2015 Wed: 01/14/2015	Course (Preliminary s MPM Reading Chap. 1 & 2 Chap. 1 & 2	e schedule for Spring chedule subject to frequent Topic Crystal structures Some group theory	adjustment.) Assign. #1 #2	Due date 01/23/2015 01/23/2015
Lecture date Mon: 01/12/2015 Wed: 01/14/2015 Fri: 01/16/2015	Course (Preliminary s MPM Reading Chap. 1 & 2 Chap. 1 & 2 No class	e schedule for Spring chedule subject to frequent Topic Crystal structures Some group theory NAWH out of town	adjustment.) Assign. #1 #2	Due date 01/23/2015 01/23/2015
Lecture date Mon: 01/12/2015 Wed: 01/14/2015 Fri: 01/16/2015 Mon: 01/19/2015	Course (Preliminary s MPM Reading Chap. 1 & 2 Chap. 1 & 2 No class No class	e schedule for Spring chedule subject to frequent Topic Crystal structures Some group theory NAWH out of town MLK Holiday	g 2015 adjustment.) 4ssign. #1 #2	Due date 01/23/2015 01/23/2015

Short digression on abstract group theory What is group theory ?

A group is a collection of "elements" $-A, B, C, \ldots$ and a "multiplication" process. The abstract multiplication (\cdot) pairs two group elements, and associates the "result" with a third element. (For example $(A \cdot B = C)$.) The elements and the multiplication process must have the following properties.

- 1. The collection of elements is closed under multiplication. That is, if elements A and B are in the group and $A \cdot B = C$, element C must be in the group.
- 2. One of the members of the group is a "unit element" (*E*). That is, for any element *A* of the group, $A \cdot E = E \cdot A = A$.
- 3. For each element A of the group, there is another element A^{-1} which is its "inverse". That is $A \cdot A^{-1} = A^{-1} \cdot A = E$.
- The multiplication process is "associative". That is for sequential mulplication of group elements A, B, and C, (A ⋅ B) ⋅ C = A ⋅ (B ⋅ C).
 PHY 752 Sering 2015 – Lecture 3

Example of a 6-member group E,A,B,C,D,F,G Group multiplication table Group of order 6 E A B C D F E A B C D F E A Α Е D F B C в B F E D C A C D F E A B С D D C A B F E F F B C A E D 1/21/2015 PHY 752 Spring 2015 - Lecture

E	E	A	В	C	D	F	Check on group properties: 1. Closed; multiplication table
A	A	A	B	F	B	F C	uniquely generates group
В	В	F	E	D	C	A	2 Unit element included
С	С	D	F	Е	A	в	3. Each element has inverse.
D	D	С	Α	в	F	Е	4. Multiplication process is
F	F	в	С	Α	Е	D	associative.
	De	fini Su hav Cla ger	tior bgr ve tl ass: nera	the particular formula X_i^{-1}	o: m prop emb by YX _i	emt erty ers the wł	pers of larger group which of a group of a group which are construction here X_i and Y are group elements
1/21	/2015					PHY 7	52 Spring 2015 – Lecture 3 6

Group theory – some comments
The elements of the group may be abstract; in general, we will use them to describe symmetry properties of our system
Representations of a group
A representation of a group is a set of matrices (one

for each group element) – $\Gamma(A)$, $\Gamma(B)$... that satisfies the multiplication table of the group. The dimension of the matrices is called the dimension of the representation.

1/21/2015

PHY 752 Spring 2015 – Lecture 3

Exa	amp	le:				
	Е	Α	В	C	D	F
E	Е	A	В	С	D	F
A	Α	Е	D	F	В	С
в	В	F	Е	D	С	Α
С	С	D	F	Е	A	в
D	D	С	A	в	F	Е
F	F	в	C	A	Е	D
lote the ${}^{1}(A) = A^{2}$	hat th = $\Gamma^1($ noth $\frac{2}{2}(A)$	B = B B = B B = B B = B B = B	$\Gamma^{1}($ $\Gamma^{1}($ $\Gamma^{0}($ $\Gamma^{2}($ R	men C) = lime	sion $\Gamma^{1}($ ension $\Gamma^{2}($	al "i D) = onal
1	(A)	- 1	(D) = 1	. ((-)=
Γ	$^{2}(E)$	= Γ	$^{2}(D$) =	$\Gamma^2(x)$	F)=
1/21/2	015				F	PHY 75

4

Simplified analysis in terms of the "characters" of the representations

$$\chi^{j}(R) \equiv \sum_{\mu=1}^{l_{j}} \Gamma^{j}(R)_{\mu\mu}$$

Character orthogonality theorem

$$\sum_{R} \left(\chi^{i}(R) \right)^{*} \chi^{j}(R) = h \delta_{ij}$$

PHY 752 Spring 2015 - Lecture 3

14

Note that all members of a class have the same character for any given representation *i*.

1/21/2015