

21	Wed: 03/18/2015	Chap. 16	Electron Transport	#20	03/20/2015
22	Fri: 03/20/2015	Chap. 16	Electron Transport	#21	03/23/2015
23	Mon: 03/23/2015	Chap. 17	Electron Transport	#22	03/25/2015
24	Wed: 03/25/2015	Chap. 17 & 18	Electron Transport		
25	Fri: 03/27/2015	Chap. 18	Microscopic picture of transport	#23	03/30/2015
26	Mon: 03/30/2015	Chap. 19	Semiconductor devices	#24	04/01/2015
27	Wed: 04/01/2015	Chap. 20	Models of dielectric functions	#25	04/06/2015
	Fri: 04/03/2015	Good Friday	No class		
28	Mon: 04/06/2015	Chap. 21	Optical properties of solids	#26	04/08/2015
29	Wed: 04/08/2015	Chap. 22	Modern theory of polorization	#27	04/10/2015
30	Fri: 04/10/2015		Surface properties of solids	#28	04/13/2015
31	Mon: 04/13/2015		X-ray and neutron diffraction in solids	#29	04/15/2015
32	Wed: 04/15/2015	Chap. 26	The Hubbard model	#30	04/17/2015
33	Fri: 04/17/2015	Chap. 26	The Hubbard Model		
34	Mon: 04/20/2015	Chap. 26	The Hubbard Model		
35	Wed: 04/22/2015	Chap. 26	The Hubbard Model		
36	Fri: 04/24/2015		Review		
	Mon: 04/27/2015		Presentations I		
	Wed: 04/29/2015		Presentations II		
	Fri: 05/01/2015		Presentations III & Take home exam		

WFU Physics Colloquium

TITLE: Physics Honors Theses Presentations I

- SPEAKERS: Five Undergraduate Thesis Students
- TIME: Wednesday April 22, 2015 at 4:00 PM

PLACE: Room 101 Olin Physical Laboratory

Refreshments will be served at 3:30 PM in the Olin Lounge. All interested persons are cordially invited to attend. PROGRAM

- Jay Einhorn & Andy Lundeen -- "Effects of Conformally invariant Quantum Fields on Future Singularities"
- Erica Freund -- "Long-term Storage Conditions of Nanoparticle Encapsulated Orlistat to Maintain Cytotoxicity"
- Billy Nicholson -- "Quantifying the Stability of Acridness to Putative Ribosomal DNA G-Quadruplexes"
- Kelli Simms --"TBA"

4/22/2015

PHY 752 Spring 2015 -- Lecture 35

Details of the self-interaction problem Assuming all states occupied equally with up and down spins: $E_{H} = 2e^{2} \sum_{p,q(occ)} \int d^{3}r \int d^{3}r' \frac{\Psi_{p}^{*}(\mathbf{r})\Psi_{p}(\mathbf{r})\Psi_{q}^{*}(\mathbf{r}')\Psi_{q}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$ $E_{s} = -e^{2} \sum_{p,q(occ)} \int d^{3}r \int d^{3}r' \frac{\Psi_{p}^{*}(\mathbf{r})\Psi_{q}(\mathbf{r})\Psi_{q}^{*}(\mathbf{r})\Psi_{p}(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$ Form of exchange energy used in LDA (local density approximation) $E_x^{LDA} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} e^2 \int d^3 r \left(\rho(\mathbf{r})\right)^{4/3}$ Hartree-Fock formalism removes self-interaction error · LDA+U approximately removes self-interaction error and can possibly add some additional physics PHY 752 Spring 2015 -- Lecture 35 4/22/2015

8

71, 035105 (2005)					
n of the effective interaction parameters U method					
Stefano de Gironcoli nd INFM-DEMOCRITOS National Simulation Center, 14 Trieste, Italy ished 18 January 2005)					
In this work we reexamine the LDA+U method of Anisimov and co-workers in the framework of a plane-wave pseudopotential approach. A simplified rotational-invariant formulation is adopted. The calculation of the Fubboard U entering the expression of the functional is discussed and a linear response approach is proposed that is internally consistent with the chosen definition for the occupation matrix of the relevant localized orbitals. In this way we obtain a scheme whose functionality should not depend strongly on the particular implementation of the model in <i>ab intro calculations</i> . We demonstrate the accuracy of the method, computing structural and electronic properties of a few systems including transition and rare-earth correlated metals, transition metal monoxides, and iron silicate.					
PACS number(s): 71.15.Mb, 71.15.Nc, 71.20b					

PHY 752 Spring 2015 -- Lecture 35

4/22/2015

LDA+U - continued

4/22/2015

Approach is particularly important for describing *d* and *f* electrons where spin and orbital degeneracies also appear. Cococcioni and de Gironcoli use dominating spherically symmetric contribution and allow site occupancies n_l to vary consistently.

PHY 752 Spring 2015 -- Lecture 35

Simplified LDA+U Hamiltonian

$$\begin{split} E_{U}[\{n_{mm}^{l\sigma}\}] &= E_{\text{Hub}}[\{n_{mm'}^{l}\}] - E_{\text{DC}}[\{n^{l}\}] \\ &= \frac{U}{2}\sum_{I}\sum_{m,\sigma} \left\{n_{mm}^{l\sigma} - \sum_{m'} n_{mm'}^{l\sigma} n_{m'm'}^{l\sigma}\right\} \end{split}$$

$$= \frac{U}{2} \sum_{I,\sigma} \operatorname{Tr}[\mathbf{n}^{I\sigma}(1 - \mathbf{n}^{I\sigma})].$$

Atomic site occupations $n^{l\sigma}$ depend on choice of basis functions, but net result should be robust.

Behavior of energy with expectation value.

For statistical ensemble of atoms with N or N + 1 electrons, we expect the average energy to be

$$\langle E \rangle = (1 - \nu) E_N + \nu E_{N+1}$$

PHY 752 Spring 2015 -- Lecture 35

12

<section-header><section-header><text><section-header><section-header><text><text><text><text><text>

