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PHY 752 Solid State Physics
11-11:50 AM  MWF  Olin 107

Plan for Lecture 29:

 Chap. 22 in Marder & pdf file on 
“Maximally Localized Wannier
Functions” 
 Electromagnetic properties of 

insulators
 Modern theory of polarization
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Electromagnetic properties of insulating materials
Some references:
• “Maximally localized Wannier functions: 

Theory and applications”, Marzari et al., RMP 
84, 1419 (2012)

• “Macroscopic polarization in crystalline 
dielectrics: the geometric phase approach”, 
Resta, RMP 66, 899 (1994)

• “Electric polarization as a bulk quantity and its 
relation to surface charge”, Vanderbilt and 
King-Smith, PRB 48,  4442 (1993)
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Notion of an electric dipole moment

summing over eigenstates
of the system

When the system is a periodic solid

and the eigenstates are Bloch waves,

,  this definition is problem t( .) a icn k r

”Modern” theory of polarization can be formulated 
in terms of Wannier functions or in terms a Berry-
phase expression.   All of the formulations define the 
polarization modulo eR/V, where R is a lattice 
translation and V is the volume of the unit cell.
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Ambiguity of polarization

P1 P2
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Notion of Wannier functions formed from
Bloch eigenstates:   
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Construction of Wannier function from Bloch states

Inverse transform:

Non-uniqueness of Wannier functions;   suppose a Bloch 
function is multiplied by an arbitrary phase:

 constructed 
Wannier function 
would change
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Simple example of Wannier function
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Simple plane wave in a cubic unit cell of length 
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In addition to the arbitrary phase problem, it is often 
the case that there are multiple or entangled bands 
needed to form the Wannier states.

Turning problem into an advantage – notion of 
maximally localized Wannier functions
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Some details:
Normalization of Bloch waves:

Orthogonality of Wannier functions:
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Notion of maximally localized Wannier function is to use 
the non-uniqueness to choose the phase in order to 
maximize the localization of the Wannier function
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Wannier function in the center cell ( =0):
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Practical calculation of localization function

Actually these expressions must be evaluated using 
finite differences in k.    The localization function
is minimized by means of a unitary transformation on
the phase of the Bloch functions:
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Some examples Graphene
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Wannier functions used to evaluate polarization

Wannier function in central cell:
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Polarization of system depends on position weighted 
sum of both electronic charges and on ionic charges:

e n n  0 r 0
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Note that we previously noticed that the Bloch functions 
and the corresponding Wannier functions are not unique, 
but we can shown that rn is unique up to a lattice translation
(thanks to Vanderbilt and King-Smith)

We assume the Bloch waves have the symmetry:

Consider the transformed Bloch wave:
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Vanderbilt and King-Smith note that with this definition of 
the polarization, the surface charge of a polar material is 
consistent with


