PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107

Plan for Lecture 28:

- > Chap. 21 in Marder & pdf file from Bassani's text
 - > Optical properties of solids
 - > Interband transitions
 - > Excitons

PHY 752 Spring 2015 -- Lecture 28

20	Mon: 03/16/2015		Review Mid-term exam	#19	03/18/2015
21	Wed: 03/18/2015	Chap. 16	Electron Transport	#20	03/20/2015
22	Fri: 03/20/2015	Chap. 16	Electron Transport	#21	03/23/2015
23	Mon: 03/23/2015	Chap. 17	Electron Transport	#22	03/25/2015
24	Wed: 03/25/2015	Chap. 17 & 18	Electron Transport		
25	Fri: 03/27/2015	Chap. 18	Microscopic picture of transport	#23	03/30/2015
26	Mon: 03/30/2015	Chap. 19	Semiconductor devices	#24	04/01/2015
27	Wed: 04/01/2015	Chap. 20	Models of dielectric functions	#25	04/06/2015
	Fri: 04/03/2015	Good Friday	No class		
28	Mon: 04/06/2015	Chap. 21	Optical properties of solids	#26	04/08/2015
29	Wed: 04/08/2015				04/10/2015
30	Fri: 04/10/2015				04/13/2015
31	Mon: 04/13/2015				04/15/2015
32	Wed: 04/15/2015				04/17/2015
33	Fri: 04/17/2015				04/20/2015
34	Mon: 04/20/2015				
35	Wed: 04/22/2015				
36	Fri: 04/24/2015				
	Mon: 04/27/2015		Presentations I		
	Wed: 04/29/2015		Presentations II		
	Fri: 05/01/2015		Presentations III & Take home exam		

Treatment of electromagnetic fields in solids

Zero order Hamiltonian for electron

$$H_0 = \frac{p^2}{2m} + U(\mathbf{r})$$
 periodic potential Hamiltonian in the presence of an electromagnetic field

$$H = \frac{1}{2m} \left(\mathbf{p} + \frac{e}{c} \mathbf{A} \right)^2 + U(\mathbf{r}) + e\phi$$

First order perturbation

$$H_1 = \frac{e}{2mc}(\mathbf{A} \cdot \mathbf{p} + \mathbf{p} \cdot \mathbf{A}) + e\phi$$

PHY 752 Spring 2015 -- Lecture 28

Treatment of electromagnetic fields in solids

First order perturbation

$$H_1 = \frac{e}{2mc} (\mathbf{A} \cdot \mathbf{p} + \mathbf{p} \cdot \mathbf{A}) + e\phi$$

Possibility #1:

$$\mathbf{A} = \Re\left(\frac{\mathbf{E}_0 c}{i\omega} e^{-i\omega t}\right) \quad \text{and} \quad \phi = 0$$

Possibility #2:

$$\mathbf{A} = 0$$
 and $\phi = \Re(\mathbf{r} \cdot \mathbf{E}_0 e^{-i\omega t})$

4/6/2015

PHY 752 Spring 2015 -- Lecture 28

Treatment of electromagnetic fields in solids using possibility #1 and following Bassani's text

Fermi Golden Rule:

$$\mathcal{P}_{i\rightarrow f} = \frac{2\pi}{\hbar} \left| \left\langle f \middle| \mathcal{L} \left| i \right\rangle \right|^2 \delta(E_f - E_i \mp \hbar \omega).$$

In this case: $eA_0 \equiv \frac{\mathbf{E}_0 c}{i\omega}$

$$\mathscr{P}_{v_{\mathbf{k}S}\to c_{\mathbf{k}S}} = \frac{2\pi}{\hbar} \left(\frac{eA_0}{mc} \right)^2 |\mathbf{e} \cdot \mathbf{M}_{cv}(\mathbf{k})|^2 \, \delta(E_c(\mathbf{k}) - E_v(\mathbf{k}) - \hbar\omega),$$

$$\begin{split} \mathbf{e} \cdot \mathbf{M}_{cv}(\mathbf{k}) &= \langle \psi_{c\mathbf{k}} | \; \mathbf{e} \cdot \mathbf{p} \; | \psi_{v\mathbf{k}} \rangle \\ &= \mathbf{e} \cdot \int\limits_{\substack{\text{crystal} \\ \text{volume}}} \psi_c^*(\mathbf{k}, \mathbf{r}) \; (-i\hbar \nabla) \; \psi_v(\mathbf{k}, \mathbf{r}) \; d\mathbf{r}. \end{split}$$

4/6/2015

PHY 752 Spring 2015 -- Lecture 28

Treatment of electromagnetic fields in solids using possibility #1 and following Bassani's text

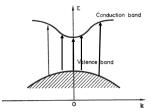


Fig. 5-1. Schematic representation in an energy band diagram of vertical transitions produced by a radiation field.

4/6/2015

PHY 752 Spring 2015 -- Lecture 28

Treatment of electromagnetic fields in solids using possibility #1 and following Bassani's text

$$W(\omega) = \frac{2\pi}{\hbar} \left(\frac{eA_0}{mc}\right)^2 \sum_{\mathbf{r},c} \int_{\mathbf{RZ}} \frac{2d\mathbf{k}}{(2\pi)^3} |\mathbf{e} \cdot \mathbf{M}_{cv}(\mathbf{k})|^2 \, \delta(E_c(\mathbf{k}) - E_v(\mathbf{k}) - \hbar\omega),$$

Normalizing the result in terms of imaginary part of dielectric constant:

$$\varepsilon_2(\omega) = \frac{4\pi^2 e^2}{m^2 \omega^2} \sum_{v,c} \int_{\mathbf{k}} \frac{2 d\mathbf{k}}{(2\pi)^3} |\mathbf{e} \cdot \mathbf{M}_{cv}(\mathbf{k})|^2 \delta(E_c(\mathbf{k}) - E_v(\mathbf{k}) - \hbar\omega).$$

4/6/2015

PHY 752 Spring 2015 -- Lecture 28

Treatment of electromagnetic fields in solids using possibility #1 and following Bassani's text

$$\varepsilon_2(\omega) = \frac{4\pi^2 e^2}{m^2 \omega^2} \sum_{v,c} \int_{BZ} \frac{2 d\mathbf{k}}{(2\pi)^3} |\mathbf{e} \cdot \mathbf{M}_{cv}(\mathbf{k})|^2 \delta(E_c(\mathbf{k}) - E_v(\mathbf{k}) - \hbar\omega).$$

From Kramers-Kronig transform:

$$\varepsilon_1(\omega) = 1 + \frac{2}{\pi} P \int_0^{\infty} \omega' \varepsilon_2(\omega') \frac{1}{\omega'^2 - \omega^2} d\omega',$$

Special results:

$$\int_{0}^{\infty} \omega \epsilon_{2}(\omega) d\omega = \frac{\pi}{2} \omega_{p}^{2}, \qquad \omega_{p} = \left(\frac{4\pi n e^{2}}{m}\right)^{1/2}$$

$$\epsilon_{1}(0) = 1 + \frac{2}{\pi} \int_{0}^{\infty} \frac{\epsilon_{2}(\omega)}{\omega} d\omega.$$

4/6/2015

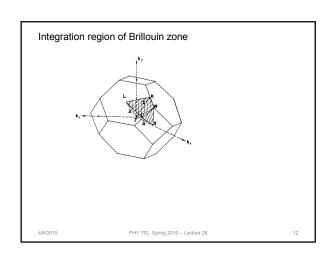
PHY 752 Spring 2015 -- Lecture 28

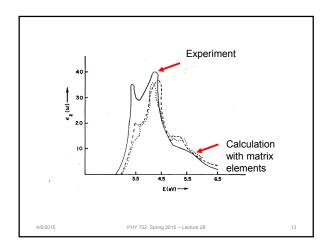
Treatment of electromagnetic fields in solids using possibility #1 and following Bassani's text

$$\varepsilon_2(\omega) = \frac{4\pi^2 e^2}{m^2 \omega^2} \sum_{v,c} \int_{BZ} \frac{2 d\mathbf{k}}{(2\pi)^3} |\mathbf{e} \cdot \mathbf{M}_{cv}(\mathbf{k})|^2 \delta(E_c(\mathbf{k}) - E_v(\mathbf{k}) - \hbar\omega).$$

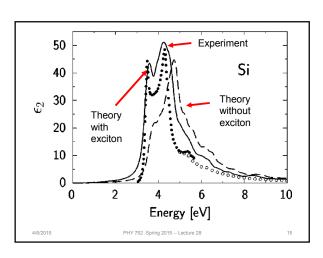
Sometimes can use group theory to determine "forbidden" transitions

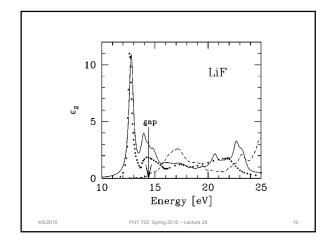
When matrix elements are constant; structure depends sensitively on joint density of states

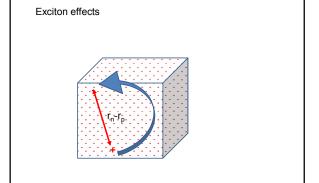

$$J_{cv}(\hbar\omega) = \int\limits_{BZ} \frac{2d\mathbf{k}}{(2\pi)^3} \, \delta[E_c(\mathbf{k}) \, - \, E_v(\mathbf{k}) \, - \, \hbar\omega],$$


4/6/2015

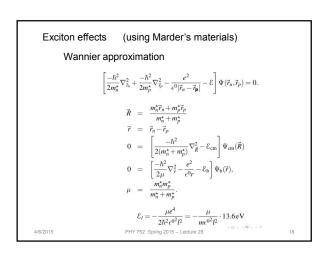
PHY 752 Spring 2015 -- Lecture 2


PHYSICAL REVIEW VOLUME 134, NUMBER 5A 1 JUNE 1964 Electronic Spectra of Crystalline Germanium and Silicon* \dagger DAVID BRUST‡


Argonne National Laboratory, Argonne, Illinois
(Received 9 December 1963) PHY 752 Spring 2015 -- Lecture 28 4/6/2015 Band structure of Si (as calculated by Brust) (b) Fig. 6. Pseudopotential energy bands along $\Delta,\Lambda,$ and Σ symmetry directions. Some of the principal transitions have been marked. PHY 752 Spring 2015 -- Lecture 28 4/6/2015



First principles calculation PHYSICAL REVIEW B VOLUME 62, NUMBER 8 15 AUGUST 2000-II Electron-hole excitations and optical spectra from first principles Mishale Rolling Institute für Theoretische Physik II – Festingrephysik Literasität Minister, Wilhelm-Kinner-Strafe 10, 48149 Minister, Germany Separation of Physics, Universität Geofficier, Wilhelm-Kinner-Strafe 10, 48149 Minister, Germany Separation of Physics, Universität Geofficier, Wilhelm-Kinner-Strafe 10, 48149 Minister, Germany Separation of Aufformia 84720-7200 and Malaritat Sieveen Divinion. Laurevene Bestelop, National Labratury, Bestelop, Culfornia 84720 (Received 11 April 2000) We present a recently developed question of London Labratury, Bestelop, Culfornia 84720 (Received 11 April 2000) We present a recently developed question to describe the excitations and the optical spectra of condensed matter from first principles. The key concept is to describe the excitations three companional principles and the second principles of the describe side of t



PHY 752 Spring 2015 -- Lecture 28

4/6/2015

4/6/2015 PHY 752 Spring 2015 – Lecture 28 19	Self-trapped	d excitons (RT Williams)	NaCl			
	4/6/2015	PHY 752 Spring 2015 Lecture 28	19] .		