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PHY 752 Solid State Physics
11-11:50 AM  MWF  Olin 107

Plan for Lecture 19:

Review of Chapters 1-10
1. Brief review 
2. Discussion of some HW problems
3. Distribute exam
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Review
Introduction to crystalline solids

• An ideal crystal fills all space
o Limited possibilities for crystalline forms –

 Only 14 Bravais lattices
 Only 32 crystallographic point groups
 Only 230 distinct crystallographic structures
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1 1type 2 32 3i i i in n n+ + +ar τ a a

basis 
vector

Bravais lattice

Specification of an atom within the lattice
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Short digression on abstract group theory
What is group theory ?
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Example of a 6-member group E,A,B,C,D,F,G
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Check on group properties:
1. Closed; multiplication table 

uniquely generates group 
members. 

2. Unit element included.
3. Each element has inverse.
4. Multiplication process is 

associative.

Definitions
Subgroup: members of larger group which 
have the property of a group
Class: members of a group which are 
generated by the construction 

1 and  are group eleme  wh nere t si i i YX YX XC =
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Group theory – some comments
• The elements of the group may be abstract; in 

general, we will use them to describe 
symmetry properties of our system

Representations of a group

( ), ( )... that satisfies

the multip

A representation of a group is a 

lication table of the group.  The

set of matrices (on

 dimension

of the ma

e

for each 

trices is 

group element) --

called the dimension 

 A BG G

of the 

representation.
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Example:

1 1 1 1 1 1

Note that the one-dimensional "identical representa

( ) ( ) ( ) ( ) ( ) ( ) 1 is always possible

tion"

A B C D E FG  G  G  G  G  G 

2 2 2

2 2 2

Another one-dimensional  representation is

( ) ( ) ( ) 1 

( ) ( ) ( ) 1 

A B C

E D F

G  G  G  

G  G  G 
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Example:
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A two-dimensional  representation is
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The great orthogonality theorem

order of the group

                   element of the group

                 ( )  th representation of 

                         

Notation:    
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2

Analysis shows that

i
i

l h

Simplified analysis in terms of the “characters” of the 
representations

1

( ) ( )
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Character orthogonality theorem
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Note that all members of a class have the same
character for any given representation i.
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Summary of relationships between the characters 
and classes of a group which follow from the 
great orthogonality theorem

 

 

*

*

( ) ( )

( ) ( )
a

i j
ij

i i
a b ab

h

N

h

N c c 

c c 









C
C

i C

C C

C C

These results also imply that the number of classes 
is the same as the number of characters in a group.
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E A,B,C D,F

c1 1 1 1

c2 1 -1 1

c3 2 0 -1

Character table for this group:

Use of character table for analyzing matrix elements:
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Matrix element example -- continued
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Use of character table analysis in crystal field splitting
Question:    What happens to a spherical atom when 
placed in a crystal?

In a spherical environment, an atomic wave function 

ha

ˆ( ) ( ) ( )

with , 1,...0,1,..., 1,      2 1 values

s the form:

nlm nl lmR r Y

m l l l l l

 

   +  +

r r

The group which describes the general rotations in 
3-dimensions has an infinite number of members, 
but an important representation of this group is the 
matrix which rotates to coordinate system about the 
origin R, transforming ˆ ˆ( ) ( ').lm lmY Yr r

'
ˆ ˆIt can be shown that:    (( ()) )l

lm mm lmY Y Gr rR R
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Analysis of the 3-dimensional rotation group -- continued
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l=0   1       1       1      1      1       1       1       1        1      1  
l=1   3      -1       1     -1      0      -3      1      -1        1      0
l=2   5       1      -1      1     -1       5      1      -1        1     -1  

G1
G15

G12+G25’
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Linear combinations of atomic orbitals (LCAO) methods 
for analyzing electronic structure

Ra

   

Bloch wave:
i

n ne u  k r
k kr r

periodic function

Let a a +R τ T

basis vector
lattice translation

   

Bloch wave identity:
i

n ne  +  k T
k kr T r     

LCAO basis functions with Bloch symmetry:

)(
a

a nlm i a a
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LCAO methods  -- continued – Slater-Koster analysis

In this basis, we can estimate the electron energy by variationally

computing the expectation value of the Hamiltonian:

H
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Terms in this expansion have the form:
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Example
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