PHY 752 Solid State Physics
 11-11:50 AM MWF Olin 107

Plan for Lecture 19:
Review of Chapters 1-10

1. Brief review
2. Discussion of some HW problems
3. Distribute exam

9	Wed: 02/04/2015	Chap. 8	Electronic structure; LCAO and tight binding		02/06/2015
10	Fri: 02/06/2015	Chap. 8	Band structure examples	\#10	02/09/2015
11	Mon: 02/09/2015	Chap. 9	Electron-electron interactions	\#11	02/11/2015
12	Wed: 02/11/2015	Chap. 9	Electron-electron interactions	\#12	02/13/2015
13	Fri: 02/13/2015	Chap. 9	Electron-electron interactions	\#13	02/16/2015
14	Mon: 02/16/2015	Chap. 10	Electronic structure calculation methods	\#14	02/18/2015
15	Wed: 02/18/2015	Chap. 10	Electronic structure calculation methods	\#15	02/20/2015
16	Fri: 02/20/2015	Chap. 10	Electronic structure calculation methods	\#16	02/23/2015
17	Mon: 02/23/2015	Chap. 10	Electronic structure calculation methods	\#17	02/25/2015
18	Wed: 02/25/2015	Chap. 10	Electronic structure calculation methods	\#18	02/27/2015
19	Fri: 02/27/2015	Chap. 1-3,7-10	Review, Take-home exam distributed		
	Mon: 03/02/2015	APS Meeting	Take-home exam (no class meeting)		
	Wed: 03/04/2015	APS Meeting	Take-home exam (no class meeting)		
	Fri: 03/06/2015	APS Meeting	Take-home exam (no class meeting)		
	Mon: 03/09/2015	Spring break			
	Wed: 03/11/2015	Spring break			
	Fri: 03/13/2015	Spring break			
20 Mon: 03/16/2015					
	2/27/2015		PHY 752 Spring 2015 - Lecture 19		

Review Introduction to crystalline solids - An ideal crystal fills all space - Limited possibilities for crystalline forms - O Only 14 Bravais lattices Only 32 crystallographic point groups Only 230 distinct crystallographic structures		
Bravais lattice translation vectors		
$\mathbf{T}=n_{1} \mathbf{T}_{1}+n_{2} \mathbf{T}_{2}+n_{3} \mathbf{T}_{3}$		
Reciprocal lattice vectors		
$\mathbf{G}=n_{1} \mathbf{G}_{1}+n_{2} \mathbf{G}_{2}+n_{3} \mathbf{G}_{3}$		
$\mathbf{G}_{1}=2 \pi \frac{\mathbf{T}_{2} \times \mathbf{T}_{3}}{\mathbf{T}_{1} \cdot\left(\mathbf{T}_{2} \times \mathbf{T}_{3}\right)}$		
Note that: $\mathbf{T}_{i} \cdot \mathbf{G}_{j}=2 \pi \delta_{i j}$		
212712015	PHY 752 Spring 2015 - Leeture 19	3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Specification of an atom within the lattice

$$
\underbrace{\mathbf{r}_{i}=\boldsymbol{\tau}_{\text {type }}+n_{1 i} \mathbf{a}_{1}+n_{2 i} \mathbf{a}_{2}+n_{3 i} \mathbf{a}_{3}}
$$

\qquad

basis Bravais lattice

 vector```
 Bavis
```

        vector
    $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Short digression on abstract group theory What is group theory?

A group is a collection of "elements" $-A, B, C, \ldots$ and a "multiplication" process. The abstract multiplication (.) pairs two group elements, and associates the "result" with a third element. (For example $(A \cdot B=C)$.) The elements and the multiplication process must have the following properties.

1. The collection of elements is closed under multiplication. That is, if elements $A$ and $B$ are in the group and $A \cdot B=C$, element $C$ must be in the group.
$\qquad$
2. One of the members of the group is a "unit element" $(E)$. That is, for any element $A$ of the group, $A \cdot E=E \cdot A=A$.
3. For each element $A$ of the group, there is another element $A^{-1}$ which is its "inverse". That is $A \cdot A^{-1}=A^{-1} \cdot A=E$.
4. The multiplication process is "associative". That is for sequential mulplication of group elements $A, B$, and $C,(A \cdot B) \cdot C=A \cdot(B \cdot C)$. 2/27/2015 PHY 752 Spring 2015 - Lecture 19


|  | E | A | B | C | D | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | E | A | B | C | D | F |
| A | A | E | D | F | B | C |
| B | B | F | E | D | C | A |
| C | C | D | F | E | A | B |
| D | D | C | A | B | F | E |
| F | F | B | C | A | E | D |

Check on group properties:

1. Closed; multiplication table uniquely generates group members
2. Unit element included.
3. Each element has inverse.
4. Multiplication process is associative.

## Definitions

Subgroup: members of larger group which have the property of a group
Class: members of a group which are generated by the construction
$\mathcal{e}=X_{i}^{-1} Y X_{i}$ where $X_{i}$ and $Y$ are group elements

2/27/2015
PHY 752 Spring 2015 - Lecture 19

## Group theory - some comments

- The elements of the group may be abstract; in general, we will use them to describe symmetry properties of our system


## Representations of a group

A representation of a group is a set of matrices (one for each group element) -- $\Gamma(A), \Gamma(B) \ldots$ that satisfies the multiplication table of the group. The dimension of the matrices is called the dimension of the representation.

2/27/2015
PHY 752 Spring 2015 - Lecture 19

## Example:

|  | E | A | B | C | D | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | E | A | B | C | D | F |
| A | A | E | D | F | B | C |
| B | B | F | E | D | C | A |
| C | C | D | F | E | A | B |
| D | D | C | A | B | F | E |
| F | F | B | C | A | E | D |

Note that the one-dimensional "identical representation"
$\Gamma^{1}(A)=\Gamma^{1}(B)=\Gamma^{1}(C)=\Gamma^{1}(D)=\Gamma^{1}(E)=\Gamma^{1}(F)=1$ is always possible $\qquad$
Another one-dimensional representation is
$\Gamma^{2}(A)=\Gamma^{2}(B)=\Gamma^{2}(C)=-1$
$\Gamma^{2}(E)=\Gamma^{2}(D)=\Gamma^{2}(F)=1$
$221272015 \quad$ PHY 752 Spring 2015-Lecture 19
Example:


The great orthogonality theorem
Notation: $\quad h \equiv$ order of the group
$R \equiv$ element of the group
$\Gamma^{i}(R)_{\alpha \beta} \equiv i$ th representation of $R$
${ }_{\alpha \beta}$ denote matrix indices
$l_{i} \equiv$ dimension of the representation

$$
\sum_{R}\left(\Gamma^{i}(R)_{\mu \nu}\right)^{*} \Gamma^{j}(R)_{\alpha \beta}=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha} \delta_{\nu \beta}
$$

2/27/2015
PHY 752 Spring 2015 - Lecture 19

## Analysis shows that

$\sum_{i} l_{i}^{2}=h$
Simplified analysis in terms of the "characters" of the representations

$$
\chi^{j}(R) \equiv \sum_{\mu=1}^{l_{j}} \Gamma^{j}(R)_{\mu \mu}
$$

## Character orthogonality theorem

$$
\sum_{R}\left(\chi^{i}(R)\right)^{*} \chi^{j}(R)=h \delta_{i j}
$$

Note that all members of a class have the same character for any given representation $i$.
2/27/2015
PHY 752 Spring 2015-Lecture 19
$\qquad$

Summary of relationships between the characters and classes of a group which follow from the great orthogonality theorem

$$
\begin{aligned}
& \sum_{\boldsymbol{e}} N_{\boldsymbol{e}}\left(\chi^{i}(\boldsymbol{\mathcal { C }})\right)^{*} \chi^{j}(\boldsymbol{\mathcal { C }})=h \delta_{i j} \\
& \sum_{i}\left(\chi^{i}\left(\boldsymbol{\mathcal { C }}_{a}\right)\right)^{*} \chi^{i}\left(\mathcal{C}_{b}\right)=\frac{h}{N_{\mathcal{C}_{a}}} \delta_{a b}
\end{aligned}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
These results also imply that the number of classes is the same as the number of characters in a group.
Use of character table for analyzing matrix elements:
Suppose that it is necessary to evaluate a matrix element

$$
\begin{aligned}
\left\langle\Psi_{1}\right| O\left|\Psi_{2}\right\rangle & =\int d^{3} r \Psi_{\Psi^{*}}^{*}(\mathbf{r}) Q \Psi_{2}(\mathbf{r}\rangle \\
& =0 \text { if } \sum_{R}\left(\Gamma^{i}(R)\right)^{*} \Gamma^{j}(R) \Gamma^{k}(R)=0
\end{aligned}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Use of character table analysis in crystal field splitting Question: What happens to a spherical atom when placed in a crystal?
In a spherical environment, an atomic wave function has the form:
$\Psi_{n l m}(\mathbf{r})=R_{n l}(r) Y_{l m}(\hat{\mathbf{r}})$
with $m=-l,-l+1, \ldots 0,1, \ldots, l-1, l \quad 2 l+1$ values

The group which describes the general rotations in 3-dimensions has an infinite number of members, but an important representation of this group is the matrix which rotates to coordinate system about the origin $\mathscr{R}$, transforming $Y_{l m}(\hat{\mathbf{r}}) \rightarrow Y_{l m}\left(\hat{\mathbf{r}}^{\prime}\right)$.

It can be shown that: $\quad \mathscr{R} Y_{l m}(\hat{\mathbf{r}})=\Gamma_{m m^{\prime}}^{l}(\boldsymbol{R}) Y_{l m^{\prime}}(\hat{\mathbf{r}})$ 21272015

PHY 752 Spring 2015 - Lecture 19

## Analysis of the 3-dimensional rotation group -- continued

$\mathfrak{R} Y_{l m}(\hat{\mathbf{r}})=\Gamma_{m m^{\prime}}^{l}(\boldsymbol{R}) Y_{l m}(\hat{\mathbf{r}})$
$\chi^{l}(\boldsymbol{R})=\sum_{m=-l}^{l} \Gamma_{m m}^{l}(\boldsymbol{R})$
Note that for $\mathfrak{R}$ corresponding to a
rotation of $\phi$ about the $\mathbf{z}$ - axis,
$\Gamma_{m m^{\prime}}^{l}(\boldsymbol{R})=e^{i m \phi} \delta_{m m^{\prime}}$
$\Rightarrow \chi^{\prime}(\boldsymbol{R})=\sum_{m=-l}^{l} e^{i m \phi}=\frac{\sin \left(\left(l+\frac{1}{2}\right) \phi\right)}{\sin \left(\frac{\phi}{2}\right)}$
Note that the character for inversion is $\chi^{\prime}(\mathcal{J})=(2 l+1)(-1)^{l}$
and $\quad \chi^{l}(\mathcal{Z R})=(-1)^{l} \frac{\sin \left(\left(l+\frac{1}{2}\right) \phi\right)}{\sin \left(\frac{\phi}{2}\right)}$
2/27/2015
PHY 752 Spring 2015 - Lecture 19

| 「, ${ }_{H}{ }^{\text {r }}$, |  | $3 C_{4}{ }^{2}$ | $6 C_{4}$ | ${ }_{6}{ }_{2}$ | $8 C_{3}$ | $J$ | $3{ }^{3} C_{4}{ }^{2}$ | ${ }_{6} .{ }^{\text {c }} 4$ | ${ }_{6} . C_{2}$ | $8 . J C_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\Gamma_{2}$ | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 |
| $\Gamma_{12}$ | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 |
| $\mathrm{F}_{15^{\prime}}$ | 3 | -1 | 1 | -1 | 0 | 3 | -1 | 1 | -1 | 0 |
| $\Gamma_{255}{ }^{\prime}$ | 3 | -1 | -1 | 1 | 0 | 3 | -1 | -1 | 1 | 0 |
| $\mathrm{r}_{1}{ }^{\prime}$ | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 |
| $\mathrm{F}_{2}{ }^{\prime}$, | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 |
| $\mathrm{I}_{12}{ }^{\prime}$ | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 1 |
| $\mathrm{I}_{15}$ | 3 | -1 | 1 | -1 | 0 | -3 | 1 | -1 | 1 | 0 |
| $\Gamma_{25}$ | 3 | -1 | -1 | 1 | 0 | -3 | 1 | 1 | -1 | 0 |
| $1=0$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| $1=1$ | 3 | -1 | 1 | -1 | 0 | -3 | 1 | -1 | 1 | 10 |
| $1=2$ | 5 | 1 | -1 | 1 | -1 | 5 | 1 | -1 | 1 | -1 |
|  |  |  |  |  |  |  |  |  |  | $\Gamma_{12}+\Gamma$ |
| 212712015 |  |  |  | PHY 752 Sping 2015 - Leture 19 |  |  |  |  |  |  |


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$



