PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 19:

Review of Chapters 1-10

PHY 752 Spring 2015 -- Lecture 19

1. Brief review

2/27/2015

- 2. Discussion of some HW problems
- 3. Distribute exam

9	Wed: 02/04/2015	Chap. 8	Electronic structure; LCAO and tight binding	#9	02/06/2015
10	Fri: 02/06/2015	Chap. 8	Band structure examples	<u>#10</u>	02/09/2015
11	Mon: 02/09/2015	Chap. 9	Electron-electron interactions	<u>#11</u>	02/11/2015
12	Wed: 02/11/2015	Chap. 9	Electron-electron interactions	#12	02/13/2015
13	Fri: 02/13/2015	Chap. 9	Electron-electron interactions	#13	02/16/2015
14	Mon: 02/16/2015	Chap. 10	Electronic structure calculation methods	#14	02/18/2015
15	Wed: 02/18/2015	Chap. 10	Electronic structure calculation methods	<u>#15</u>	02/20/2015
16	Fri: 02/20/2015	Chap. 10	Electronic structure calculation methods	<u>#16</u>	02/23/2015
17	Mon: 02/23/2015	Chap. 10	Electronic structure calculation methods	#17	02/25/2015
18	Wed: 02/25/2015	Chap. 10	Electronic structure calculation methods	<u>#18</u>	02/27/2015
19	Fri: 02/27/2015	Chap. 1-3,7-10	Review; Take-home exam distributed		
	Mon: 03/02/2015	APS Meeting	Take-home exam (no class meeting)		
	Wed: 03/04/2015	APS Meeting	Take-home exam (no class meeting)		
	Fri: 03/06/2015	APS Meeting	Take-home exam (no class meeting)		
	Mon: 03/09/2015	Spring break			
	Wed: 03/11/2015	Spring break			
	Fri: 03/13/2015	Spring break			
20	Mon: 03/16/2015				

Short digression on abstract group theory What is group theory ?

A group is a collection of "elements" $-A, B, C, \ldots$ and a "multiplication" process. The abstract multiplication (\cdot) pairs two group elements, and associates the "result" with a third element. (For example $(A \cdot B = C)$.) The elements and the multiplication process must have the following properties.

- 1. The collection of elements is closed under multiplication. That is, if elements A and B are in the group and $A \cdot B = C$, element C must be in the group.
- 2. One of the members of the group is a "unit element" (E). That is, for any element A of the group, $A\cdot E=E\cdot A=A.$
- 3. For each element A of the group, there is another element A^{-1} which is its "inverse". That is $A\cdot A^{-1}=A^{-1}\cdot A=E.$

 The multiplication process is "associative". That is for sequential mulplication of group elements A, B, and C, (A · B) · C = A · (B · C).
 2227/2015 PHY 752 Soring 2015 − Lecture 19

	Е	Α	В	С	D	F	Check on group properties:									
E	Е	Α	В	С	D	F	1. Closed; multiplication table									
Α	Α	Е	D	F	В	С	members.									
В	В	F	Е	D	С	Α	2. Unit element included.									
С	С	D	F	Е	A	в	3. Each element has inverse.									
D	D	С	A	в	F	Е	4. Multiplication process is									
F	F	В	С	Α	Е	D	associative.									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
2/27	/2015					PHY 7	52 Spring 2015 Lecture 19 7									

Group theory – some comments
The elements of the group may be abstract; in general, we will use them to describe symmetry properties of our system

Representations of a group

2/27/2015

2/27/2015

A representation of a group is a set of matrices (one for each group element) -- $\Gamma(A)$, $\Gamma(B)$... that satisfies the multiplication table of the group. The dimension of the matrices is called the dimension of the representation.

PHY 752 Spring 2015 -- Lecture 19

8

	Exa	amp	le:								
		Е	Α	В	C	D	F				
	Е	Е	Α	В	C	D	F				
	A	Α	Е	D	F	В	С				
	в	в	F	Е	D	С	Α				
	С	С	D	F	Е	Α	в				
	D	D	С	A	в	F	Е				
	F	F	В	С	Α	Е	D				
No Γ¹(Note that the one-dimensional "identical representation" $\Gamma^{1}(A) = \Gamma^{1}(B) = \Gamma^{1}(C) = \Gamma^{1}(D) = \Gamma^{1}(E) = \Gamma^{1}(F) = 1$ is always possible										
	Another one-dimensional representation is										
	$\Gamma^2(A) = \Gamma^2(B) = \Gamma^2(C) = -1$										
	$\Gamma^2(E) = \Gamma^2(D) = \Gamma^2(F) = 1$										

PHY 752 Spring 2015 -- Lecture 19

The great orthogonality theorem Notation: $h \equiv$ order of the group $R \equiv$ element of the group $\Gamma^{i}(R)_{\alpha\beta} \equiv i$ th representation of R $_{\alpha\beta}$ denote matrix indices $l_{i} \equiv$ dimension of the representation $\sum_{R} \left(\Gamma^{i}(R)_{\mu\nu} \right)^{*} \Gamma^{j}(R)_{\alpha\beta} = \frac{h}{l_{i}} \delta_{ij} \delta_{\mu\alpha} \delta_{\nu\beta}$

Analysis shows that

$$\sum_{i} l_i^2 = h$$

Simplified analysis in terms of the "characters" of the representations

$$\chi^{j}(R) \equiv \sum_{\mu=1}^{i_{j}} \Gamma^{j}(R)_{\mu\mu}$$

Character orthogonality theorem

$$\sum_{P} \left(\chi^{i}(R) \right)^{*} \chi^{j}(R) = h \delta_{ij}$$

Note that all members of a class have the same character for any given representation *i*.

12

Use of character table analysis in crystal field splitting Question: What happens to a spherical atom when placed in a crystal? In a spherical environment, an atomic wave function has the form: $\Psi_{nlm}(\mathbf{r}) = R_{nl}(r)Y_{lm}(\hat{\mathbf{r}})$ with m = -l, -l + 1, ..., 0, 1, ..., l - 1, l = 2l + 1 values The group which describes the general rotations in 3-dimensions has an infinite number of members, but an important representation of this group is the matrix which rotates to coordinate system about the origin \mathcal{R} , transforming $Y_{lm}(\hat{\mathbf{r}}) \rightarrow Y_{lm}(\hat{\mathbf{r}})$.

It can be shown that: $\Re Y_{lm}(\hat{\mathbf{r}}) = \Gamma^l_{mm'}(\Re) Y_{lm'}(\hat{\mathbf{r}})$ 2/27/2015 PHY 752 Spring 2015 - Lecture 19

16

Analysis of the 3-dimensional rotation group -- continued $\mathcal{R}Y_{lm}(\hat{\mathbf{r}}) = \Gamma_{mm'}^{l}(\mathcal{R})Y_{lm'}(\hat{\mathbf{r}})$ $\chi^{l}(\mathcal{R}) = \sum_{m=-l}^{l} \Gamma_{mm}^{l}(\mathcal{R})$ Note that for \mathcal{R} corresponding to a rotation of ϕ about the \mathbf{z} - axis, $\Gamma_{mm'}^{l}(\mathcal{R}) = e^{lm\phi} \delta_{mm'}$ $\Rightarrow \chi^{l}(\mathcal{R}) = \sum_{m=-l}^{l} e^{lm\phi} = \frac{\sin\left(\left(l + \frac{1}{2}\right)\phi\right)}{\sin\left(\frac{\theta}{2}\right)}$ Note that the character for inversion is $\chi^{l}(\mathcal{J}) = (2l+1)(-1)^{l}$ and $\chi^{l}(\mathcal{J}\mathcal{R}) = (-1)^{l} \frac{\sin\left(\left(l + \frac{1}{2}\right)\phi\right)}{\sin\left(\frac{\theta}{2}\right)}$

г, <i>R</i> , <i>H</i>	Е	$3C_{4^{2}}$	6C4	6C2	8 <i>C</i> 3	J	3 <i>JC</i> 4 ²	6JC₄	6JC2	8 <i>JC</i> 3	
$ \begin{array}{c} \Gamma_{1} \\ \Gamma_{2} \\ \Gamma_{12} \\ \Gamma_{55}' \\ \Gamma_{55}' \\ \Gamma_{1}' \\ \Gamma_{2}' \\ \Gamma_{12}' \\ \Gamma_{15} \\ \Gamma_{25} \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ -1 \\ -1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \end{array} $	$ \begin{array}{r}1\\-1\\0\\1\\-1\\1\\-1\\0\\1\\-1\end{array}$	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 0 \\ -1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ -1 \\ -1 \\ -2 \\ -3 \\ -3 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -2 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ -1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \end{array} $	$ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{array} $	
=0 =1 =2	1 3 5	1 -1 1	1 1 -1	1 -1 1	1 0 -1	1 -3 5	1 1 1	1 -1 -1	1 1 1	1 0 -1 <u>Г₁₂+і</u>	Γ ₁ Γ ₁₅
2/27/2015	5			PHY 7	52 Spring	2015 Le	cture 19				18

LCAO methods -- continued – Slater-Koster analysis LCAO basis functions with Bloch symmetry: $\Phi_{k}^{a \ m}(\mathbf{r}) = \sum_{\mathbf{r}} e^{i k \left(\tau^{a} + \mathbf{r}\right)} \Phi_{a \ m}^{a} \left(\mathbf{r} - \tau^{a} - \mathbf{T}\right)$ Approximate Bloch wavefunction: $\Psi_{ck}(\mathbf{r}) = \sum_{a \ m} X_{ck}^{a \ mm} \Phi_{k}^{a \ mm}(\mathbf{r})$ In this basis, we can estimate the electron energy by variationally compute the expectation value of the Hamiltonian: $E_{ck} = \frac{\langle \Psi_{ck} | H | \Psi_{ck} \rangle}{\langle \Psi_{ck} | \Psi_{ck} \rangle}$ Terms in this expansion have the form: $\sum_{\mathbf{r}} e^{i k \left(t^{c} - t^{*} + \mathbf{r}\right)} \left\langle \phi_{n' \ m}^{a} \left(\mathbf{r} - \tau^{*}\right) \right| H | \phi_{alm}^{a} \left(\mathbf{r} - \mathbf{r}^{a} - \mathbf{T}\right) \right\rangle$ 22701

