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LETTER TO THE EDITOR 

Non-singular atomic pseudopotentials for solid state 
applications 

G P Kerker 
Max-Planck-Institut fur Festkorperforschung, 7000 Stuttgart 80, Heisenbergstrasse 1, 
West Germany 

Received 11 January 1980 

Abstract. A method for obtaining non-singular pseudopotentials from self-consistent atomic 
calculations is presented. Outside the core region the nodeless radial pseudo-valence wave- 
function is taken to be identical to the real wavefunction and inside it is represented by a 
smooth analytical function. Both the first and the second derivatives of the radial pseudo- 
wavefunction are matched to the ab initio result at a core radius which depends on angular 
momentum. The resulting non-local self-consistent core pseudopotential is energy independ- 
ent over a wide energy range. It is smooth and non-singular and is suitable for solid state 
bandstructure methods which make use of plane wave basis set expansions. This approach 
is so simple that it can be mostly carried out analytically, in contrast to a recently proposed 
method in which a pseudopotential is obtained by modifying the atomic potential instead of 
the wavefunction. 

Recently Hamann et a1 (1979) have proposed a method to extract pseudopotentials from 
ab initio atomic calculations. The atomic potential is multiplied by a smooth short- 
range cut-off function which removes the strongly attractive and singular part of the 
potential. The parametrised cut-off function is adjusted numerically to yield eigenvalues 
equal to the atomic valence levels and nodeless eigenfunctions which converge identi- 
cally to the atomic valence wavefunctions beyond a chosen core radius r,. Furthermore, 
to reproduce the electrostatic and scattering properties of the real ion core with a mini- 
mum error, the ‘pseudo’ charge contained in the core region is forced to converge identi- 
cally to the real charge in that region. The latter condition, which has not been discussed 
before, is shown to be essential to obtain a high-quality pseudopotential. 

In this Letter we present an alternative approach which can be mostly carried out 
analytically. It is even simpler than the one proposed by Hamann et a1 (1979) and leads 
to pseudopotentials of at least the same quality. Because the construction of the pseudo- 
potential is achieved by imposing certain conditions on the pseudo-wavefunction, it is 
reasonable to satisfy these conditions not via the potential but by directly modifying the 
atomic valence wavefunction. We therefore replace the actual shape of the atomic 
valence wavefunction inside the core region by a convenient analytical form 

F(r) = rR(r) = rl+ If@) (1) 
where R(r) is the radial pseudo-wavefunction and 1 denotes the angular momentum 
quantum number. The function f ( r )  is chosen to give a smooth non-singular potential. 
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It may be a polynomial p ( r ) :  

f(r) = tlr4 + j r 3  + yr’ i- 6 = p ( r )  (2) 

f ( r )  = exp(p(r)). (3) 

or an exponential 

The term linear in r is absent in p(r )  to avoid a singularity in the pseudopotential at 
r = 0. To determine the coefficients in p(r)  we apply the following conditions. 

The real and ‘pseudo’ atom have the same valence eigenvalues for some chosen 
electronic configuration (usually the atomic ground state). 
The pseudo-wavefunction R(r) is nodeless and is identical to the real valence wave- 
function at and beyond a chosen core radius rc. 
Both the first and the second derivatives of the wavefunction F are matched to the 
real values at rc. 
The pseudo-charge contained in the sphere with the radius rc is identical to the real 
charge in that sphere. 

Condition (i) and in some less rigorous formulation, condition (ii) have been used in 
earlier attempts to obtain a reliable pseudopotential (Kerker et al 1978, Zunger and 
Cohen 1978). Condition (iii) ensures that the pseudo-wavefunction matches the atomic 
wavefunction continuously and differentiably at rc. The screened pseudopotential 
I$@), which is obtained analytically for r < rc from the Schrodinger equation? 

[ -d2/dr2 + l(1 + l)/r2 + TS(r) - E ]  P(r)  = 0 (4) 
is automatically matched continuously to the self-consistent atomic potential at rc. 
Condition (iv), which was first introduced by Hamann et a1 (1979), guarantees that the 
pseudo-wavefunction is properly normalised. The total charge in the sphere with radius 
rc is related to the first energy derivative of the logarithmic derivative of R at the sphere 
boundary (see Callaway 1964) by 

- F2--lnRlr=rc d d  = [F’dr. 
dE dr ( 5 )  

Because of condition (iv) the first energy derivative of the pseudo-logarithmic derivative 
is identical to the exact result. As a consequence the scattering properties of the real ion 
core are transferred to the pseudo-core with minimum error. 

Having set up the conditions which the pseudo-wavefunction must satisfy it is now 
straightforward to determine the analytical form f(r) as given in equations (2) or (3). 
Although a polynomial is easier to handle there is no guarantee that it would yield a 
nodeless wavefunction. We have therefore used equation (3) in the following examples. 
Conditions (i) to (iii) then read 

ln(Pc/r:+l) = d r , )  (6) 
rcD = 1 + 1 + rg’(rc) (7) 

r:Vc + ( I  + 1)’ - r:(E + 0’) = r:p”(rc). (8) 
The prime denotes differentiation with respect to r. If we denote the amplitude of the 
atomic radial wavefunction times r by P(r), we have Pc P(rc) and D ss P’(rc)/P(rc). The 

t Atomic units are used throughout the paper. 
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value of the atomic potential at rc is given by y ;  E is the atomic valence eigenvalue for 
angular momentum quantum number 1. Equations (6) to (8) are three linear equations 
for a, p and y in terms of 6 which are easily solved analytically. From condition (iv) we 
obtain the equation 

26 + 1nI - 1nA = 0 (9) 
where 

I = ~ ~ r z ( ' ' ' ) e x p ( 2 r r 4  + 2pr3 + 2yr')dr (10) 

and A is the amount of real charge contained in the core region up to r = rc .  Equation 
(9) which determines the parameter 6 is the only equation to be solved numerically be- 
cause there is no closed expression for the integral. It usually has one solution which 
can be found after a few iterations using, for example, the regulafalsi method. From the 

0 2 L 6 a 10 
r (au)  

Figure 1. Real (broken curves) and pseudo- (full curves) radial wavefunctions for Si in the 
configuration 3s23p13d'. The angular components of the corresponding core pseudo- 
potential are also plotted. Note that the repulsive centrifugal potential is not included. 
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Schrodinger equation we find the screened pseudopotential in terms of the coefficients 
a, p, y by simple differentiation: 

y s ( r )  = E + 421  + 2 + A?) + 12arz + 6pr + 2y ( 1 1 )  
where A = 4arz + 3pr + 2y. As we have seen, Ts(r) is completely determined by the 
atomic valence eigenlevel, by the value of the atomic potential at rc, by the value of the 
amplitude and the logarithmic derivative of the atomic wavefunction at rc, and by the 
real charge in the sphere with radius rc. 

So far nothing has been said about the choice of the core radius rc. Since we are 
interested in transferring as much essential information as possible from the real atom 
to the pseudo-atom without sacrificing the conditions (i)-(iv), it is quite natural to 
choose rc between the position of the outermost node and the position of the outermost 
extremum of the atomic radial wavefunction. It is also clear that condition (iv) cannot be 
satisfied if an exponential form is kept for f ( r )  in equation ( 1 )  and rc is chosen too close 
to the outermost node position. It is therefore reasonable to use a value for rc near the 
position of the outermost maximum of the radial charge. It turns out that the screened 
pseudopotential ys becomes ‘softer’ the closer rc is taken at this position. Through the 

r iau) 

Figure 2. Real and pseudo-radial wavefunctions for MO 5s14d55p0 and the core pseudo- 
potential. Conventions are as in figure 1. 
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matching procedure required in condition (iii) and the choice of rc the potential ys 
becomes dependent on the angular momentum quantum number. 

From the pseudo-charge density we calculate a screening potential which is given 
as the sum of a Coulomb and an exchange and correlation part. The bare ion core 
pseudopotential is obtained by subtracting the screening potential from Ts. We must of 
course assume the same electronic configuration for the pseudo-atom as for the real 
atom. 

The efficiency of our method is illustrated in figures 1 and 2. Figure 1 shows the core 
pseudopotential for Si together with the radial valence wavefunctions for both the real 
and the pseudo-atom. We used the exchange-correlation potential of Hedin and Lund- 
qvist (1971). In the Si atomic ground state the 3d orbital is not occupied. To obtain a 
d-like pseudopotential we have used the excited configuration 3s23p13d', in which the 
3d state is bound. The 3d wavefunction is already nodeless because there are no d states 
in the core. An electron in this state 'feels' the full atomic potential which has a singularity 
at r = 0. However, one can obtain a 3d soft-core pseudopotential by slightly changing 
the shape of the 3d wavefunction as indicated in the plot. Figure 2 is a similar plot and 
displays the wavefunctions and core pseudopotential for MO in the configuration 
4d55s'5p0. While the s and p components of the core potentials are fairly weak, the d 

Energy (au) 

Figure 3. Energy dependence of the radial logarithmic derivative of the valence wavefunctions 
for MO 5s14d55p0 at r = 2.93 au. The full curve refers to the pseudo-atom, the broken curve 
is the ab initio result. The arrows indicate the positions of the atomic levels. 
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component is strongly attractive and has its minimum at r = 0, in contrast to the 
potential given by Hamann et a1 (1979) and earlier published MO pseudopotentials 
(Kerker et a1 1978, Zunger and Cohen 1978). Although in all cases the chosen core radius 
rc is practically equal to the position of the outermost maximum of the radial charge, 
condition (iii) guarantees that the pseudo-wavefunction is still very close to the real wave- 
functions at positions at least 0.5 au inside rc before it starts deviating from the exact 
result. This is also the reason why the pseudopotential does not show a noticeable kink 
at rc even though we do not match the first derivative of the potential at rc.  

To demonstrate the transferability of the core pseudopotentials we compare in 
figure 3, in close analogy to Hamann et a1 (1979), the logarithmic derivative of the pseudo- 
and exact wavefunction for MO at a radius close to the Wigner-Seitz radius. No notice- 
able deviation is found for 1 = 2 in the energy range shown. For 1 = 0 and 1 = 1 we find 
a negligible deviation in an energy interval around the atomic level, which is of interest 
in most applications. 

Comparison of the pseudo-eigenvalues of Ca, Si and MO calculated for various 
excited atomic configurations different from the reference configuration with those of 
ab initio calculations shows that the differences are less than 0005 au for all levels. Even 
the levels of singly and doubly ionised configurations are reproduced within this accuracy. 
Preliminary band structure calculations on bulk Ca, Si and MO are in very good agree- 
ment with results obtained by different methods and confirm the transferability of our 
pseudo potentials. 

We conclude that by using a suitably chosen parametrisation of the core part of the 
pseudo-valence wavefunction one can set up a procedure to construct pseudopotentials 
which is so simple that it can mostly be carried out analytically. The resulting pseudo- 
potentials are of at least the same quality as the potentials obtained by a recent approach 
suggested by Hamann et a1 (1979). They are ‘soft’ enough to be useful in band structure 
calculations employing momentum space techniques which rely on a fast convergence. 

I am grateful for comments received from Professor M L Cohen and Professor B Segall. 
I would also like to thank Drs 0 K Andersen and M Schluter for stimulating discussions. 
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