

- 1. Radiation from electron synchrotron devices
- 2. Radiation from astronomical objects in circular orbits

PHY 712 Spring 2015 -- Lecture 29

04/08/2014

20	Mon: 03/16/2015	Chap. 8	Review Exam; Wave guides	#19	03/18/201
21	Wed: 03/18/2015	Chap. 8	Wave guides	#20	03/20/201
22	Fri: 03/20/2015	Chap. 9	Radiation sources	<u>#21</u>	03/23/201
23	Mon: 03/23/2015	Chap. 9 & 10	Radiation and scattering	#22	03/25/201
24	Wed: 03/25/2015	Chap. 9 & 10	Radiation and scattering		
25	Fri: 03/27/2015	Chap. 11	Special relativity	#23	03/30/201
26	Mon: 03/30/2015	Chap. 11	Special relativity	#24	04/01/201
27	Wed: 04/01/2015	Chap. 11	Special relativity	#25	04/06/201
	Fri: 04/03/2015	Good Friday	No class		
28	Mon: 04/06/2015	Chap. 14	Radiation from moving charges	#26	04/08/201
29	Wed: 04/08/2015	Chap. 14	Radiation from moving charges	#27	04/10/201
30	Fri: 04/10/2015				04/13/201
31	Mon: 04/13/2015				04/15/201
32	Wed: 04/15/2015				04/17/201
33	Fri: 04/17/2015				04/20/201
34	Mon: 04/20/2015				
35	Wed: 04/22/2015				
36	Fri: 04/24/2015				
	Mon: 04/27/2015		Presentations I		
	Wed: 04/29/2015		Presentations II		
	Fri: 05/01/2015		Presentations III & Take home exam		

We will analyze this expression for two different cases. The first case, is appropriate for man-made synchrotrons used as light sources. In this case, the light is produced by short bursts of electrons moving close to the speed of light ($v \approx c(1-1/(2\gamma^2))$) passing a beam line port. In addition, because of the design of the radiation ports, $\theta \approx 0$, and the relevant integration times t are close to $t \approx 0$. This results in the form shown in Eq. 14.79 of your text. It is convenient to rewrite this form in terms of a critical

frequency
$$\omega_c = \frac{3c\gamma^2}{2\rho}$$
.

$$\frac{d^2I}{d\omega d\Omega} = \frac{3q^2\gamma^2}{4\pi^2c} \left(\frac{\omega}{\omega_c}\right)^2 (1+\gamma^2\theta^2)^2 \left\{ \left[K_{2/3} \left(\frac{\omega}{2\omega_c} (1+\gamma^2\theta^2)^{\frac{3}{2}}\right) \right]^2 + \frac{\gamma^2\theta^2}{1+\gamma^2\theta^2} \left[K_{1/3} \left(\frac{\omega}{2\omega_c} (1+\gamma^2\theta^2)^{\frac{3}{2}}\right) \right]^2 \right\}$$
04/08/2014 PHY/712 Spring 2015 – Lecture 29

13

Astronomical synchrotron radiation -- continued:
Note that:

$$\int_{-\infty}^{\infty} dt e^{i(\omega - m\frac{v}{\rho})t} = 2\pi\delta(\omega - m\frac{v}{\rho}).$$

$$\Rightarrow C_{\parallel}(\omega) = 2\pi i \sum_{m=-\infty}^{\infty} J'_{m} \left(\frac{\omega\rho}{c}\cos\theta\right) \delta(\omega - m\frac{v}{\rho}),$$
where $J'_{m}(a) \equiv \frac{dJ_{m}(a)}{da}$
Similarly:
 $C_{\perp}(\omega) = \int_{-\infty}^{\infty} dt \sin\theta\cos(vt/\rho) e^{i\omega(t-\frac{\rho}{c}\cos\theta\sin(vt/\rho))}$
 $= 2\pi \frac{\tan\theta}{v/c} \sum_{m=-\infty}^{\infty} J_{m} \left(\frac{\omega\rho}{c}\cos\theta\right) \delta(\omega - m\frac{v}{\rho}).$
200201

Astronomical synchrotron radiation -- continued: In both of the expressions, the sum over *m* includes both negative and positive values. However, only the positive values of ω and therefore positive values of *m* are of interest. Using the identity: $J_{-m}(a) = (-1)^m J_m(a)$, the result becomes:

$$\frac{d^2 I}{d \omega d \Omega} =$$

$$\frac{q^2\omega^2\beta^2}{c}\sum_{m=0}^{\infty}\delta(\omega-m\frac{\nu}{\rho})\left\{\left[J_m\left(\frac{\omega\rho}{c}\cos\theta\right)\right]^2+\frac{\tan^2\theta}{\nu^2/c^2}\left[J_m\left(\frac{\omega\rho}{c}\cos\theta\right)\right]^2\right\}.$$

These results were derived by Julian Schwinger (Phys. Rev. **75**, 1912-1925 (1949)). The discrete case is similar to the result quoted in Problem 14.15 in Jackson's text. For information on man-made synchrotron sources, the following web page is useful:

18

http://www.als.lbl.gov/als/synchrotron_sources.html.