PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103

Plan for Lecture 2:

Reading: Chapter 1 (especially 1.11) in JDJ;
Ewald summation methods

1. Motivation
2. Expression to evaluate the electrostatic energy of an extended periodic system
3. Examples

1/14/2015 PHY 712 Spring 2015-Lecture 2

WFU Physics Colloquium

TITLE: Carbon Nanotube-Based Polymer Composite Thermoelectrí Generators

SPEAKER: Dr. Corey Hewitt ,
Department of Physics
Wake Forest University
TIME: Wednesday January 14, 2015 at 4:00 PM
PLACE: Room 101 Olin Physical Laboratory
Refreshments will be served at 3:30 PM in the Olin Lounge. Al interested persons are cordially invited to attend.

ABSTRACT

Carbon nanotube-based polymer composites possess several properties that make them ideal for use in low powered waste heat recovery applications not suitable to nonorganic crystalline materials, such as their light weight and flexible physical structure and ease of crystalline materials, such as their light weight and flexible physical structure and ease of
fabrication. Additionally, the favorable thermoelectric properties of the carbon nanotubes 1/14/2015 \qquad

Ewald summation methods -- motivation

Consider a collection of point charges $\left\{q_{i}\right\}$ located at points $\left\{\mathbf{r}_{i}\right\}$.
The energy to separate these charges to infinity $\left(\mathbf{r}_{i} \rightarrow \infty\right\}$ is
$W=\frac{1}{4 \pi \epsilon_{0}} \sum_{(i, j, i\rangle j)} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}$.
Here the summation is over all pairs of (i, j),
excluding $i=j$. It is convenient to sum over all particles and divide by 2 to compensate for the double counting: $W=\frac{1}{8 \pi \epsilon_{0}} \sum_{i, j ; i \neq j} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}$.
Here the summation is over all pairs of i, j, excluding
$i=j$. The energy W scales as the number of particles
N. As $\mathrm{N} \rightarrow \infty$, the ratio W / N remains well-defined
in principle, but difficult to calculate in practice.

Ewald summation methods - slight digression
When the discrete charge distribution becomes a
continuous charge density: $q_{i} \rightarrow \rho(\mathbf{r})$, the electrostatic energy
becomes

$$
W=\frac{1}{8 \pi \epsilon_{0}} \int d^{3} r d^{3} r^{\prime} \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

Notice, in this case, it is not possible to exclude the "selfinteraction". This expression can be written in terms of the electrostatic potential $\Phi(\mathbf{r})$ and field $\mathbf{E}(\mathbf{r})$:

$$
\begin{aligned}
& W=\frac{1}{2} \int d^{3} r \rho(\mathbf{r}) \Phi(\mathbf{r})=-\frac{\epsilon_{0}}{2} \int d^{3} r\left(\nabla^{2} \Phi(\mathbf{r})\right) \Phi(\mathbf{r}) . \\
& W=\frac{\epsilon_{0}}{2} \int d^{3} r|\nabla \Phi(\mathbf{r})|^{2}=\frac{\epsilon_{0}}{2} \int d^{3} r|\mathbf{E}(\mathbf{r})|^{2} .
\end{aligned}
$$

1/14/2015 PHY 712 Spring 2015 - Lecture 2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ewald summation methods - exact results for periodic systems
$\frac{W}{N}=\sum_{\alpha \beta} \frac{q_{\alpha} q_{\beta}}{8 \pi \varepsilon_{0}}\left(\frac{4 \pi}{\Omega} \sum_{\mathrm{G} \neq 0} \frac{e^{-i \cdot \mathrm{G} \cdot \tau_{\mathrm{of} \mathrm{\beta}}} e^{-G^{2} / \eta}}{G^{2}}-\sqrt{\frac{\eta}{\pi}} \delta_{\alpha \beta}+\sum_{\mathbf{T}} \frac{\operatorname{erfc}\left(\frac{1}{2} \sqrt{\eta}\left|\boldsymbol{\tau}_{\alpha \beta}+\mathbf{T}\right|\right)}{\left|\boldsymbol{\tau}_{\mathrm{a} \mathrm{\beta}}+\mathbf{T}\right|}\right)-\frac{4 \pi Q^{2}}{8 \pi \varepsilon_{0} \Omega \eta}$. \qquad
\qquad
\qquad
See lecture notes for details. \qquad
\qquad
\qquad
\qquad

