PHY 712 - Problem Set \# 19

Review the mid-term exam; particularly rework problem 4 as follows.

The figure above shows the cross section of a magnetostatic solenoid which is uniform in the $\hat{\mathbf{z}}$ direction (perpendicular to the page). The current flows in the azimuthal $\hat{\phi}$ direction; specifically the current density is given in cylindrical coordinates by:

$$
\mathbf{J}= \begin{cases}J_{0} \hat{\phi} & a \leq \rho \leq b \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Here J_{0} is a constant, a and b denote the inner and outer diameters of the cylinder, respectively, and $\hat{\phi}=-\sin (\phi) \hat{\mathbf{x}}+\cos (\phi) \hat{\mathbf{y}}$.
(a) Show that the vector potential \mathbf{A} for this system can be written as

$$
\begin{equation*}
\mathbf{A}=f(\rho) \hat{\phi} \tag{2}
\end{equation*}
$$

where the scalar function $f(\rho)$ satisfies the equation

$$
\left[\frac{d^{2}}{d \rho^{2}}+\frac{1}{\rho} \frac{d}{d \rho}-\frac{1}{\rho^{2}}\right] f(\rho)= \begin{cases}-\mu_{0} J_{0} & a \leq \rho \leq b \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

(b) Find the function $f(\rho)$ in the three regions: $0 \leq \rho \leq a, a \leq \rho \leq b$, and $\rho \geq b$.
(c) Find the \mathbf{B} field in the three regions. Check to make sure that your answer is consistent with what you know about solenoids. (Hint: $\mathbf{B} \equiv \mathbf{0}$ outside the solenoid.)

