PHY 770 -- Statistical Mechanics
12:00" - 1:45 PM TR Olin 107

Instructor: Natalie Holzwarth (Olin 300)
Course Webpage: http://www.wfu.edu/~natalie/s14phy770

Lecture 23
Review and perspective

O Comments about some homework problems
O Treatment of multicomponent systems

“Partial make-up lecture -- early start time
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5/9/2014

[Take-home exam (no class meeling)
|Spring break (no class meeting)
[ [Thur 031372014 [Spring break {no class meeting)
;14 Tue: 0311812014  |Chap. & :‘:::: :::JBD” parliclos (elass 12:1:45 PM: o 03/25/2014
[15 [Thur- 03/20/2014 [Chap. 6 [interacting particies (class 12-1:45 PM) [e1a 031252014
[16 [Tue: 031252014 [Chap. 7 [Langevin equation (class 12-1:45 PM) fe15 [0a/01:2014
[17 [Thur: 03/27/2014 [Chap. 7 [Fokker-Planck equation (class 12-1:45 PM) (16 [04/0372014
s Tue: 04/01/2014 ‘CI‘!SD. 7 Linear Response (class 12-1:45 Pv) 04/10/2014
[19 [Thur 04/03/2014 [Chap 9 " [Transport theory (class 12-1 45 PM) 18 [04/10/2074
20 [Tue: 04/08/2014 [Chap. 9 [The Baitzmann Equation (class 12-1:45 PM) 19 047102014
21 [Thur. 04/10/2014 [Chap. 9 [The Boltzmann Equation {class 12-1:45 PM) [£20 04/17/2014
ue: 04/15/2014 [Chap. 9 [The Bolzmann Equation (class 12-145 Ph) #21 [oant7201a
RS [Thur 04122014 [Review and nighiights (ciass 12-1:45 PM)
Tue: 04/22/2014 Review and highlights (class 12-1.45 PM)
[ [Thur- 0472472012 [Presentations Part | (class 11-1:45 PM)
[ [Tuo: 0472872014 Presentations Part Il (class 11-1.45 PM)

Signup schedule for presentations available. Please list the title of
your presentation when you sign up.
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Comments about homework problems:
PHY 770 -- Assignment #16
March 27, 2014
Continue reading Chapter 7 in Reichl.
1. Solve problem 7.2 in the 3rd edition text

Note: This is the similar to problem is $5.6 in the 2nd edition text.
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HW #16 -- continued
7.2 A Brownian particle of mass m is attached to a harmonic spring
with force constant k, and is driven by an external force F(t). The
particle is constrained to move in one dimension. The Langevin
equation is &Pty dx()

—+
T ar

+ mw;x(t) =5+ F(1)

(a) Find the equilibrium correlation function <X(1)x(0)>,5 directly
from the solution of the Langevin equation assuming that <§(’)>€ =0)
and (x(0)x(0)), =T/ (me), (x(ON0)), =0, etc.

(b) Find the equilibrium correlation function (x(£)x(0)),, from the
fluctuation-dissipation theorem relation

(x(Ox(), =kT [ a2
17/ 1)

where for this case: y(w)= _1}// m

a)2+i7a)—a)g
m

HW #16 -- continued

First consider solutions to homogeneous equation:
d’x(t dx(t
©) , , dx(t)

pE 77+mw§x(t):o

(=4 et (ﬁ} -t B ety 1:2%}«%/ Note: we are assuming
xi)=de ¢ the over-damped case

Imposing boundary conditions:
dx(0) v
dt

. > vo+ L x, >
x(t)=e ' | x,cosh| | L | —et [+ ——21—ginh 7 ) -t
2m 2 2m
(Lj o

2m ?
We can argue that since the random force averages to 0, the
correlation function depends only on the homogeneous solution.
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x(0)=x, and

HW #16 -- continued

o),
, 2 (voJrz—xnje 2m )
x(t) =e > | x, cosh (L] -t PN (}/] —wjt
2m y 2 2m
(&) -«
2m

[The initial values x, and v, can be treated as random variables with

2

kT
X >T = m—wgand (xov), =0.

(x()x(0)), =

7, 2 - 2
<xz> e > | cosh A N ) U R— A
O 2m ? y 2 2m ?
2




HW #16 -- continued
Now consider that dissipation-fluctuation formulation:

(s0x(0), =47 -] do XA
PPN O C) R P 4 G e
iz 2] i7Aded @
—1/m

o +ilo-w?

with: y(w)=

m
We will need to contour integration methods to evaluate the integrals:
1 =

1

= "do @) o I, ;# r da @) o
2igd = w 2im > 0]

Note that the denominator of the integrals @(w’ +i r_ @)
m

has poles at the values @, =0,ir,,ir.

wheregz—ii a -}
e 2m \om
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HW #16 -- continued

Im(z)

he [ 0@ g
2ig = 2]

Re(z)

& _Tr da)me”””=(Res(a):ir,)+Res(a):ir+))
i ®

(x(x(0), =

Comments about homework problems:
PHY 770 -- Assignment #18

April 3, 2014
Start reading Chapter 9 in Reichl.
1. Work problem #9.1 in the 3rd edition of Reichl

Note: This is equivalent to problem #11.1 in the in the 2nd edition text.

A dilute gas of density n is contained in a cubic box and is in
equilibrium with the walls at temperatureT. Find the number of
particles per unit area per unit time which collide with the walls and
have magnitude of velocity greater than v,.
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HW #18 -- continued

Maxwell Boltzmann distribution:

3/2
el L) emen

Probability per unit time that particle

will hit top face with velocity magnitude

greater than v :

pe .[ d3 p®(p)f(p)
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Treatment of multicomponent systems including chemical
reactions (Sect. 3.10 of 3 Ed. Reichl)

Summary of thermodynamic potentials (note X2V, Y 2>-P)

dU = TdS+YdX+Z;:dN U= TS+YX+Z;:, i

H SYN: = 1as - xay + 3 uan, =T
A TXN; dA=-SdT+YdX +y pdN, A=U-TS
G TYN;

dG ==SdT = XdY + Y udN, & _ 17 s _yx
2 TX W do=-sir+vax -3 waN, Q=U~-TS -3 uN,
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Derivative relationships of thermodynamic potentials
Internal energy U(S, X, {N f }) :

(LU] :(ny u :[LUJ
as XAV} ox SN ©oN, sxfv, )

Enthalpy H(S,Y»{N, })1

(8HJ (8HJ (8HJ
= 3c X=|— =
8 Jriny oY sy oN, AR

Helmholz free energy A(T, X, {N f }) :
aN, iJrx v}

or XAN,} a)( N}
( jT
(9Ni .Y,{N,}

Gibb's free energy G(7, Y })

2., %),
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Properties of the Gibb's free energy
U=TS—PV+) uN,
G=U-TS+PV =Y uN,

Further analysis from Gibb's free energy G(T,P,{N,}):

(g, E,.
T Jp; Py N

ou, 0,
:>S:_z(d7/;jp{wjvi V:Z(T/;]T{V}Nl

N
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Properties of the Gibb’s free energy -- Gibbs phase rule and
phase equilibria

Consider a system at uniform temperature T and pressure P
with n chemical constituents. How many distinct phases r of
this system can exist in equilibrium?

Enumeration of all of possible components and phases:

N, = z NM where ]Vw = number of component i in phase j

Genéralization of Gibbs free energy:
G=2F,N,
i

liquid Atequilibrium:  [1,,= 71 ...,
Accounting -- # independent variables: 2+ r(n—1)
# independent constraints: n(r —1)
# degrees of freedom: f =2 +r(n—1)—n(r-1)
f=2+n-r
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Properties of the Gibb’s free energy -- Gibbs phase rule and
phase equilibria -- continued
# degrees of freedom: f =2+n—r
Examples
=n=1:
forr=1,f=2 T,P free to vary
forr=2,f=1 P=P(T) on phase boundary curve
forr=3, f=0 can occur at special (P,T) 'triple point'

= n=2: such as water and amonium cloride at concentration ¢

From Schwabl, Statistical Mechanics

liquid

Fig. 3.38. The pl
of a mixture ¢ Ao
ium chloride) and wa-
horizontally shaded
region: and liquid, liquid
and solid salt, and finally ice
and solid salt coexist with each
[ other.




Properties of the Gibb's free energy -- multicomponent ideal gas
G=Y N,
For example, consider a reaction at fixed 7 and P:
2H, +0, < 2H,0
—2H,0+2H,+0, =0 General notation: Zn:lei =0

i=1

Change in Gibbs free energy with fixed 7' and P:

dG =Y wdN,=0 atequilibrium

i=1

Because of the relationships between the components

it follows that z v, =0
20 i=l HY
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Multicomponent ideal gas and possible chemical reactions -- continued
Change in Gibbs free energy with fixed 7 and P:
iy, (T,P)v,=0
i=1
Estimation of the chemical potentials:
eFor each i, assume independent ideal gas particles with internal

energies determined by electronic, internal and kinetic energies
eKinetic energy contributions expressed in terms of thermal wavelength

hz 172
,l, =
27zmkT

eCanonical partition function: Z = HZ,

eFor each species i:  —kTIn(Z)~ N, [5,” +&" —kT{l +In 7NV13 J]

it

201 PHY 770 Spring 2014 -- Lecture 23

Multicomponent ideal gas and possible chemical reactions -- continued

Helmholz free energy for this system

A=-kTInZ=~Y N, {g;" +e —kT[l +In NV/13 D

i=1 i

04 Vv
o= [ ~ ] =¢'+&" —kTlh—
ON; TN} N4

For an ideal gas: PV = NkT where ZN‘ =N

i=l

3
Gk

"N
= 4,(T,P,c;)=pu° (T)+kT In(c,P)

Let ¢ EN, y,(T,P,L’,)ZE,”/+8,’"‘—len(kT/P]




Recall: Z!’.V, =0
i=l

w(T,P.c;)=p (T)+kTIn(c,P)

n

(4 (T)+kTIn(c,P))v, =0

i=1

n

Z[%T(T)Jr v, 1n(c,P)] =0

i=1
n T

Define:  In(K(T,P))=— [V’ﬂ]'(iT()-ﬁ—v,ln(P)J
i=1

= gln(c;'r )= m[ﬁ((;;’r )] =In(K(T,P))

i=1

:»H(c ):K(T,P)
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Multicomponent ideal gas and possible chemical reactions -- continued
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]L[(c;f)z K(T,P)

i=1

Example:

—2H,0+2H,+0, =0 General notation: ZV’A‘ =0

i=1

oy [H][0,]
1;[(0" )= [H,0]

=K(T,P)

Multicomponent ideal gas and possible chemical reactions -- continued

Multicomponent ideal gas and possible chemical reactions -- continued

m 2 [HI]0]
¢ )J=——5—==K(T,P)
H( ) [H,0]
2H, +0, & 2H,0
Suppose [HZO] =1-x
[H,]=x
[0,]=x/2
3

X
-y P




