
Electrodynamics – PHY712

Lecture 5 – Introduction to numerical methods for solving Poisson and Laplace
equations

Reference: Chap. 1 & 2 in J. D. Jackson’s textbook.

1. Finite difference methods with 2-dimensional example (Section 1.13
of your textbook)

2. Finite element methods with 2-dimensional example (Section 2.12
of your textbook)

Future topics

1. Method of images for planar and spherical geometries

2. Special functions associated with the electrostatic potential in vari-
ous geometries
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Numerical methods to solve Poisson and Laplace equations; Finite difference
methods

The basis for grid-based finite difference methods is a Taylor’s series expansion:

Φ(r+ u) = Φ(r)+u·∇Φ(r)+
1

2!
(u·∇)2Φ(r)+

1

3!
(u·∇)3Φ(r)+

1

4!
(u·∇)4Φ(r)+· · · .

(1)
For the 2-dimensional Poisson equation we have(

∂2

∂x2
+

∂2

∂y2

)
Φ(x, y) = −ρ(x, y)

ε0
. (2)
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Examples of 2-dimensional regular grids on a square with h denoting the spacing
between grid points

Φ
(2

h,
y)

 =
 0

Φ
(0

,y
) 

=
 0

0,0 h,0 2h,0

2h,hh,h0,h

0,2h h,2h 2h,2h

Φ(x,0) = 0

Φ(x,2h) = 0

3 × 3 grid for solution of the Poisson
equation within a 2-dimensional
square.

Φ
(4

h,
y)

 =
 0

Φ
(0

,y
) 

=
 0

0,0 h,0 2h,0 3h,0 4h,0

4h,h

4h,2h

4h,3h

4h,4h3h,4h

3h,3h

3h,2h

3h,h2h,h

2h,2h

2h,3h

2h,4hh,4h0,4h

0,3h h,3h

h,2h

h,h0,h

0,2h

Φ(x,0) = 0

Φ(x,4h) = 0

5 × 5 grid for solution of the Pois-
son equation within a 2-dimensional
square.
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Finite difference example for a 2-dimensional square

We will work out some explicit formulae for a 2-dimensional regular grid with h
denoting the step length. We note that a sum of 4 surrounding edge values gives:

SA ≡ Φ(x+ h, y) + Φ(x− h, y) + Φ(x, y + h) + Φ(x, y − h) (3)

= 4Φ(x, y) + h2
(
∂2

∂x2
+

∂2

∂y2

)
Φ(x, y) +

h4

12

(
∂4

∂x4
+

∂4

∂y4

)
Φ(x, y) + (h6 . . .).

Similarly, a sum of 4 surrounding corner values gives:

SB ≡ Φ(x+ h, y + h) + Φ(x− h, y + h) + Φ(x+ h, y − h) + Φ(x− h, y − h) (4)

= 4Φ(x, y) + 2h2

(
∂2

∂x2
+

∂2

∂y2

)
Φ(x, y) +

h4

6

(
∂4

∂x4
+

∂4

∂y4
+ 6

∂2

∂x2

∂2

∂y2

)
Φ(x, y) + (h6 . . .).

We note that we can combine these two results into the relation

SA +
1

4
SB = 5Φ(x, y) +

3h2

2
∇2Φ(x, y) +

h4

8
∇2∇2Φ(x, y) + (h6 . . .). (5)

This result can be written in the form;

Φ(x, y)− 1

5
SA − 1

20
SB =

3h2

10ε0
ρ(x, y) +

h4

40ε0
∇2ρ(x, y). (6)
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Finite difference example for a 2-dimensional square – continued

Equation derived above:

Φ(x, y)− 1

5
SA − 1

20
SB =

3h2

10ε0
ρ(x, y) +

h4

40ε0
∇2ρ(x, y). (7)

In general, the right hand side of this equation is known, and most of the left hand side of
the equation, except for the boundary values are unknown. It can be used to develop a set
of linear equations for the values of Φ(x, y) on the grid points.

For example, consider a solution to the Poisson equation in the square region 0 ≤ x ≤ a,
0 ≤ y ≤ a with boundary values Φ(x, 0) = Φ(0, y) = Φ(a, y) = 0 and Φ(x, a) = 0 and
with the charge distribution

ρ(x, y) = ρ0 sin
(πx
a

)
sin

(πy
a

)
for 0 ≤ x ≤ a and 0 ≤ y ≤ a. (8)

It can be shown that the exact potential for this case is given by

Φ(x, y) =
ρ0a

2

ε0

1

2π2
sin

(πx
a

)
sin

(πy
a

)
. (9)
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Finite difference example for a 2-dimensional square – continued

We will first analyze this system with a mesh of 9 points generated with a grid spacing of
h = a

2 . In this case, Φ(h, h) ≡ Φ(a2 ,
a
2 ) is unknown, while the 8 boundary points are

zero: Φ(0, 2h), Φ(h, 2h), Φ(2h, 2h), Φ(0, 0), Φ(h, 0), Φ(2h, 0), Φ(0, h), Φ(h, 2h).

Φ
(2

h,
y)

 =
 0

Φ
(0

,y
) 

=
 0

0,0 h,0 2h,0

2h,hh,h0,h

0,2h h,2h 2h,2h

Φ(x,0) = 0

Φ(x,2h) = 0

3× 3 grid for solution of the Poisson equation within a 2-dimensional square.
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Finite difference example for a 2-dimensional square – continued

For this example, Eq. 7 states

Φ(h, h) =
3h2

10ε0
ρ(h, h) +

h4

40ε0
∇2ρ(h, h). (10)

Evaluating this result for our example, we find

Φ(h, h) ≡ Φ(
a

2
,
a

2
) =

ρ0a
2

ε0

(
2

40
− π2

320

)
. (11)

In this case, the constant in the parenthesis is 0.044 compared with 0.051 for the exact
results.

PHY 712 Lecture 5 – 1/28/2013
7



Finite difference example for a 2-dimensional square – continued

If analyze this same system with the next more accurate grid, h = a
4 , using the symmetry

of the system Φ(x, y) = Φ(a− x, y), we have now 6 unknown values {Φ(h, h),
Φ(2h, h), Φ(h, 2h), Φ(2h, 2h), Φ(h, 3h), Φ(2h, 3h)}.

Φ
(4

h,
y)

 =
 0

Φ
(0

,y
) 

=
 0

0,0 h,0 2h,0 3h,0 4h,0

4h,h

4h,2h

4h,3h

4h,4h3h,4h

3h,3h

3h,2h

3h,h2h,h

2h,2h

2h,3h

2h,4hh,4h0,4h

0,3h h,3h

h,2h

h,h0,h

0,2h

Φ(x,0) = 0

Φ(x,4h) = 0

5× 5 grid for solution of the Poisson equation within a 2-dimensional square.
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Finite difference example for a 2-dimensional square – continued
This results in the following relations between the grid points:

Φ(h, 3h)−
1

5
(Φ(h, 4h) + Φ(0, 3h) + Φ(2h, 3h) + Φ(h, 2h))

−
1

20
(Φ(0, 4h) + Φ(2h, 4h) + Φ(2h, 2h) + Φ(0, 2h)) =

3h2

10ε0
ρ(h, 3h) +

h4

40ε0
∇2ρ(h, 3h).

(12)

Φ(2h, 3h)−
1

5
(Φ(2h, 4h) + Φ(3h, 3h) + Φ(h, 3h) + Φ(2h, 2h))

−
1

20
(Φ(h, 4h) + Φ(3h, 4h) + Φ(3h, 2h) + Φ(h, 2h)) =

3h2

10ε0
ρ(2h, 3h) +

h4

40ε0
∇2ρ(2h, 3h).

(13)

Φ((h, 2h)−
1

5
(Φ(h, 3h) + Φ(0, 2h) + Φ(2h, 2h) + Φ(h, h))

−
1

20
(Φ(0, 3h) + Φ(2h, 3h) + Φ(0, h) + Φ(2h, h)) =

3h2

10ε0
ρ(h, 2h) +

h4

40ε0
∇2ρ(h, 2h).

(14)

Φ(2h, 2h)−
1

5
(Φ(2h, 3h) + Φ(h, 2h) + Φ(3h, 2h) + Φ(2h, h))

−
1

20
(Φ(3h, 3h) + Φ(h, 3h) + Φ(3h, h) + Φ(h, h)) =

3h2

10ε0
ρ(2h, 2h) +

h4

40ε0
∇2ρ(2h, 2h).

(15)
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Finite difference example for a 2-dimensional square – continued

Φ(h, h)−
1

5
(Φ(h, 2h) + Φ(0, h) + Φ(2h, h) + Φ(h, 0))

−
1

20
(Φ(0, 2h) + Φ(2h, 2h) + Φ(0, 0) + Φ(2h, 0)) =

3h2

10ε0
ρ(h, h) +

h4

40ε0
∇2ρ(h, h).

(16)

Φ(2h, h)−
1

5
(Φ(2h, 2h) + Φ(3h, h) + Φ(h, h) + Φ(2h, 0))

−
1

20
(Φ(h, 2h) + Φ(3h, 2h) + Φ(h, 0) + Φ(3h, 0)) =

3h2

10ε0
ρ(2h, h) +

h4

40ε0
∇2ρ(2h, h).

(17)
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Finite difference example for a 2-dimensional square – continued
These equations can be cast into the form of a matrix problem which can be easily solved using Maple:

1 −1/5 −1/5 −1/20 0 0

−2/5 1 −1/10 −1/5 0 0

−1/5 −1/20 1 −1/5 −1/5 −1/20

−1/10 −1/5 −2/5 1 −1/10 −1/5

0 0 −1/5 −1/20 1 −1/5

0 0 −1/10 −1/5 −2/5 1





Φ(h, 3h)

Φ(2h, 3h)

Φ(h, 2h)

Φ(2h, 2h)

Φ(h, h)

Φ(2h, h)



=



0.008893085722

0.01257672244

0.01257672244

0.01778617144

0.008893085722

0.008893085722



ρ0a2

ε0
.

(18)
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Finite difference example for a 2-dimensional square – continued
The solution to these equations and the exact results are found to be:

Φ(h, 3h)

Φ(2h, 3h)

Φ(h, 2h)

Φ(2h, 2h)

Φ(h, h)

Φ(2h, h)



=



0.026600951

0.037619426

0.037619426

0.053201903

0.026600951

0.037619426



ρ0a2

ε0
; (exact) =



0.025330296

0.035822448

0.035822448

0.050660592

0.025330296

0.035822448



ρ0a2

ε0
. (19)

We see that the results obtained with a smaller mesh has is much closer to the exact results than those for the
larger mesh.
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Introduction to Finite element method

The finite element approach is based on an expansion of the unknown electrostatic
potential in terms of known grid-based functions of fixed shape. In two dimensions,
using the indices {i, j} to reference the grid, we can denote the shape functions as
{φij(x, y)}. The finite element expansion of the potential in two dimensions can take the
form:

Φ(x, y) =
∑
ij

ψijφij(x, y), (20)

where ψij represents the amplitude associated with the shape function φij(x, y). The
amplitude values can be determined for a given solution of the Poisson equation:

−∇2 (Φ(x, y)) =
ρ(x, y)

ε0
, (21)

by solving a linear algebra problem of the form∑
ij

Mkl,ijψij = Gkl, (22)

where

Mkl,ij ≡
∫
dx

∫
dy∇φkl(x, y)·∇φij(x, y) and Gkl ≡

∫
dx

∫
dyφkl(x, y) 4πρ(x, y).

(23)PHY 712 Lecture 5 – 1/28/2013
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Introduction to Finite element method – continued

In obtaining this result, we have assumed that the boundary values vanish. This will be
ensured by our choice of the functional form of the shape functions φij(x, y). In order
for this result to be useful, we need to be able evaluate the integrals for Mkl,ij and for
Gkl. In the latter case, we need to know the form of the charge density. The form of
Mkl,ij only depends upon the form of the shape functions. If we take these functions to
be:

φij(x, y) ≡ Xi(x)Yj(y), (24)

where

Xi(x) ≡


(
1− |x−xi|

h

)
for xi − h ≤ x ≤ xi + h

0 otherwise
, (25)

and Yj(y) has a similar expression in the variable y.
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Introduction to Finite element method – continued

Finite element basis functions in this case

Xi(x) ≡


(
1− |x−xi|

h

)
for xi − h ≤ x ≤ xi + h

0 otherwise
, (26)
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Introduction to Finite element method – continued

The matrix function takes the form:

Mkl,ij ≡
∫
dx

∫
dy

[
dXk(x)

dx

dXi(x)

dx
Yl(y)Yj(y) + Xk(x)Xi(x)

dYl(y)

dy

dYj(y)

dy

]
.

(27)
There are four types of non-trivial contributions to these values:∫ xi+h

xi−h
(Xi(x))

2 dx = h

∫ 1

−1
(1− |u|)2du =

2h

3
, (28)

∫ xi+h

xi−h
(Xi(x)Xi+1(x)) dx = h

∫ 1

0
(1− u)udu =

h

6
, (29)

∫ xi+h

xi−h

(
dXi(x)

dx

)2

dx =
1

h

∫ 1

−1
du =

2

h
, (30)

and ∫ xi+h

xi−h

(
dXi(x)

dx

dXi+1(x)

dx

)
dx = −

1

h

∫ 1

0
du =

−1

h
. (31)
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Introduction to Finite element method – continued

The basic equations lead to the following distinct values for the matrix:

Mkl,ij =


8
3 for k = i and l = j

− 1
3 for k − i = ±1 and/or l − j = ±1

0 otherwise

. (32)

For problems in which the boundary values are 0, Eq. 22 then can be used to find all of
the interior amplitudes ψij .
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Introduction to Finite element method – continued

For the same example we studied before using the 5× 5 grid, the finite element approach
for this problem thus can be put into the matrix form for analysis by Maple:

8/3 −1/3 −1/3 −1/3 0 0

−2/3 8/3 −2/3 −1/3 0 0

−1/3 −1/3 8/3 −1/3 −1/3 −1/3

−2/3 −1/3 −2/3 8/3 −2/3 −1/3

0 0 −1/3 −1/3 8/3 −1/3

0 0 −2/3 −1/3 −2/3 8/3





Φ(h, 3h)

Φ(2h, 3h)

Φ(h, 2h)

Φ(2h, 2h)

Φ(h, h)

Φ(2h, h)



=



0.028181825

0.039855120

0.039855120

0.056363651

0.056363651

0.039855120



ρ0a2

ε0
.

(33)
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Introduction to Finite element method – continued
The solution to these equations and the exact results are found to be:

Φ(h, 3h)

Φ(2h, 3h)

Φ(h, 2h)

Φ(2h, 2h)

Φ(h, h)

Φ(2h, h)



=



0.0266572706

0.0376990736

0.0376990736

0.0533145412

0.0266572706

0.0376990736



ρ0a2

ε0
; (exact) ==



0.025330296

0.035822448

0.035822448

0.050660592

0.025330296

0.035822448



ρ0a2

ε0
. (34)

We see that the results are similar to those obtained using the finite difference approach.
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