Electrodynamics - PHY712 - Lecture 22

Electromagnetic waves in waveguides - Section 8.4 in Jackson's text

For an "ideal" conductor, $\sigma \rightarrow \infty$, so that the electric and magnetic fields are confined to the surface of the conductor. Because of the field continuity conditions at the surface of the conductor, this means that, $\mathbf{H}_{\text {tangential }} \neq 0$ (because there can be a surface current), $\mathbf{D}_{\text {normal }} \neq 0$ (because there can be a surface charge), but $\mathbf{B}_{\text {normal }}=0$ and $\mathbf{E}_{\text {tangential }}=0$.

Suppose we construct a wave guide from an "ideal" conductor, designating $\hat{\mathbf{z}}$ as the propagation direction. We will express the fields in terms of \mathbf{B} and \mathbf{E} and assume that within the wave guide the permittivity ϵ and permeablity μ parameters are isotropic and real. We will assume that the fields take the form:

$$
\begin{equation*}
\mathbf{E}=\mathbf{E}(x, y) \mathrm{e}^{i k z-i \omega t} \quad \text { and } \quad \mathbf{B}=\mathbf{B}(x, y) \mathrm{e}^{i k z-i \omega t} \tag{1}
\end{equation*}
$$

inside the pipe, where now k and ε are assumed to be real.

Electromagnetic waves in waveguides - continued

Assuming that there are no sources inside the pipe, the fields there must satisfy Maxwell's equations (8.16) which expand to the following :

$$
\begin{gather*}
\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+i k B_{z}=0 . \tag{2}\\
\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+i k E_{z}=0 . \tag{3}\\
\frac{\partial E_{z}}{\partial y}-i k E_{y}=i \omega B_{x} \tag{4}\\
i k E_{x}-\frac{\partial E_{z}}{\partial x}=i \omega B_{y} \tag{5}\\
\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=i \omega B_{z} \tag{6}\\
\frac{\partial B_{z}}{\partial y}-i k B_{y}=-i \mu \varepsilon \omega E_{x} \tag{7}\\
i k B_{x}-\frac{\partial B_{z}}{\partial x}=-i \mu \varepsilon \omega E_{y} \tag{8}\\
\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}=-i \mu \varepsilon \omega E_{z} \tag{9}
\end{gather*}
$$

Electromagnetic waves in waveguides - continued

Combining Faraday's Law and Ampere's Law, we find that each field component must satisfy a two-dimensional Helmholz equation:

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}-k^{2}+\mu \varepsilon \omega^{2}\right) E_{x}(x, y)=0 \tag{10}
\end{equation*}
$$

with similar expressions for each of the other field components. For the rectangular wave guide discussed in Section 8.4 of your text a solution for a TE mode can have:

$$
\begin{equation*}
E_{z}(x, y) \equiv 0 \quad \text { and } \quad B_{z}(x, y)=B_{0} \cos \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) \tag{11}
\end{equation*}
$$

with $k^{2} \equiv k_{m n}^{2}=\mu \varepsilon \omega^{2}-\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]$. From this result and Maxwell's equations, we can determine the other field components. For example Eqs. (4-5) simplify to

$$
\begin{equation*}
B_{x}=-\frac{k}{\omega} E_{y} \quad \text { and } \quad B_{y}=\frac{k}{\omega} E_{x} \tag{12}
\end{equation*}
$$

Electromagnetic waves in waveguides - continued

These results can be used in Eqs. (7-8) to solve for the fields E_{x} and E_{y} and B_{x} and B_{y} :

$$
\begin{equation*}
E_{x}=\frac{\omega}{k} B_{y}=\frac{-i \omega}{k^{2}-\mu \varepsilon \omega^{2}} \frac{\partial B_{z}}{\partial y}=\frac{-i \omega}{\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]} \frac{n \pi}{b} B_{0} \cos \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) \tag{13}
\end{equation*}
$$

and
$E_{y}=-\frac{\omega}{k} B_{x}=\frac{i \omega}{k^{2}-\mu \varepsilon \omega^{2}} \frac{\partial B_{z}}{\partial x}=\frac{i \omega}{\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]} \frac{m \pi}{a} B_{0} \sin \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right)$.

One can check this result to show that these results satisfy the boundary conditions. For example, $\mathbf{E}_{\text {tangential }}=0$ is satisfied since $E_{x}(x, 0)=E_{x}(x, b)=0$ and $E_{y}(0, y)=E_{y}(a, y)=0$. This was made possible choosing $\left.\nabla B_{z}\right\rfloor_{\text {surface }} \cdot \hat{\mathbf{n}}=0$, where $\hat{\mathbf{n}}$ denotes a unit normal vector pointing out of the wave guide surface.

