Electrodynamics - PHY712

Lecture 2 - Ewald summation methods

Reference: Chap. 1.11 in J. D. Jackson's textbook.

1. Motivation
2. Expression to calculate electrostatic energy of an extended periodic system and its derivation
3. Examples

Electrodynamics - PHY712

Lecture 2 - Ewald summation methods - Motivation

Consider a collection of point charges $\left\{q_{i}\right\}$ located at points $\left\{\mathbf{r}_{i}\right\}$. The energy to separate these charges to infinity $\left(\left\{\mathbf{r}_{i} \rightarrow \infty\right\}\right.$ is

$$
\begin{equation*}
W=\frac{1}{4 \pi \epsilon_{0}} \sum_{(i, j ; i>j)} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \tag{1}
\end{equation*}
$$

Here the summation is over all pairs of (i, j), excluding $i=j$. It is convenient to sum over all particles and divide by 2 to compensate for the double counting:

$$
\begin{equation*}
W=\frac{1}{8 \pi \epsilon_{0}} \sum_{i, j ; i \neq j} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \tag{2}
\end{equation*}
$$

Here the summation is over all pairs of i, j, excluding $i=j$. The energy W scales as the number of particles N. As $N \rightarrow \infty$, the ratio W / N remains well-defined in principle, but difficult to calculate in practice.

Electrodynamics - PHY712

Lecture 2 - Ewald summation methods - slight digression

When the discrete charge distribution becomes a continuous charge density: $q_{i} \rightarrow \rho(\mathbf{r})$, the electrostatic energy becomes

$$
\begin{equation*}
W=\frac{1}{8 \pi \epsilon_{0}} \int d^{3} r d^{3} r^{\prime} \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{3}
\end{equation*}
$$

Notice, in this case, it is not possible to exclude the "self-interaction". This expression can be written in terms of the electrostatic potential $\Phi(\mathbf{r})$ and field $\mathbf{E}(\mathbf{r})$:

$$
\begin{gather*}
W=\frac{1}{2} \int d^{3} r \rho(\mathbf{r}) \Phi(\mathbf{r})=-\frac{\epsilon_{0}}{2} \int d^{3} r\left(\nabla^{2} \Phi(\mathbf{r})\right) \Phi(\mathbf{r}) \tag{4}\\
W=\frac{\epsilon_{0}}{2} \int d^{3} r|\nabla \Phi(\mathbf{r})|^{2}=\frac{\epsilon_{0}}{2} \int d^{3} r|\mathbf{E}(\mathbf{r})|^{2} \tag{5}
\end{gather*}
$$

Electrodynamics - PHY712

Lecture 2 - Ewald summation methods - exact result for periodic system

$$
\begin{equation*}
\frac{W}{N}=\sum_{\alpha \beta} \frac{q_{\alpha} q_{\beta}}{8 \pi \varepsilon_{0}}\left(\frac{4 \pi}{\Omega} \sum_{\mathbf{G} \neq \mathbf{0}} \frac{e^{-i \mathbf{G} \cdot \tau_{\alpha \beta}} e^{-G^{2} / \eta}}{G^{2}}-\sqrt{\frac{\eta}{\pi}} \delta_{\alpha \beta}+\sum_{\mathbf{T}}^{\prime} \frac{\operatorname{erfc}\left(\frac{1}{2} \sqrt{\eta}\left|\tau_{\alpha \beta}+\mathbf{T}\right|\right)}{\left|\tau_{\alpha \beta}+\mathbf{T}\right|}\right)-\frac{4 \pi Q^{2}}{8 \pi \varepsilon_{0} \Omega \eta} \tag{6}
\end{equation*}
$$

