Electrodynamics - PHY712 - Lecture 19
Reflectivity for anisotropic media - Extension of Section 7.3 in Jackson's text

Reflectivity for anisotropic media - continued

Consider the problem of determining the reflectance from an anisotropic medium as shown above. We will assume that the permeability is μ_{0} and that the permittivity ϵ is a tensor which can be expressed in terms of a unit-less dielectric tensor $\kappa=\epsilon / \epsilon_{0}$. For simplicity, we will assume that the dielectric tensor for the medium is diagonal and is given by:

$$
\kappa \equiv\left(\begin{array}{ccc}
\kappa_{x x} & 0 & 0 \tag{1}\\
0 & \kappa_{y y} & 0 \\
0 & 0 & \kappa_{z z}
\end{array}\right)
$$

We will assume also that the wave vector in the medium is confined to the $x-y$ plane and will be denoted by

$$
\begin{equation*}
\mathbf{k}_{t} \equiv \frac{\omega}{c}\left(n_{x} \hat{\mathbf{x}}+n_{y} \hat{\mathbf{y}}\right), \tag{2}
\end{equation*}
$$

where n_{x} and n_{y} are to be determined. We will assume that the complex representation of electric field inside the medium is given by

$$
\begin{equation*}
\mathbf{E}=\left(E_{x} \hat{\mathbf{x}}+E_{y} \hat{\mathbf{y}}+E_{z} \hat{\mathbf{z}}\right) \mathrm{e}^{i \frac{\omega}{c}\left(n_{x} x+n_{y} y\right)-i \omega t} \tag{3}
\end{equation*}
$$

Reflectivity for anisotropic media - continued

In terms of this electric field and the magnetic field $\mathbf{H}=\mathbf{B} / \mu_{0}$, where \mathbf{H} is assumed to have the same complex spatial and temporal form as (3), the four Maxwell's equations are given by:

$$
\begin{array}{cc}
\nabla \cdot \mathbf{H}=0 & \nabla \cdot \kappa \cdot \mathbf{E}=0 \tag{4}\\
\nabla \times \mathbf{E}-i \omega \mu_{0} \mathbf{H}=0 & \nabla \times \mathbf{H}+i \omega \epsilon_{0} \kappa \cdot \mathbf{E}=0
\end{array}
$$

Using these equations, we obtain the following equations for electric field amplitudes within the medium:

$$
\left(\begin{array}{lll}
\kappa_{x x}-n_{y}^{2} & n_{x} n_{y} & 0 \tag{5}\\
n_{x} n_{y} & \kappa_{y y}-n_{x}^{2} & 0 \\
0 & 0 & \kappa_{z z}-\left(n_{x}^{2}+n_{y}^{2}\right)
\end{array}\right)\left(\begin{array}{c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right)=0
$$

Once the electric field amplitudes are determined, the magnetic field can be determined according to:

$$
\begin{equation*}
\mathbf{H}=\frac{1}{\mu_{0} c}\left\{E_{z}\left(n_{y} \hat{\mathbf{x}}-n_{x} \hat{\mathbf{y}}\right)+\left(E_{y} n_{x}-E_{x} n_{y}\right) \hat{\mathbf{z}}\right\} \mathrm{e}^{i \frac{\omega}{c}\left(n_{x} x+n_{y} y\right)-i \omega t} \tag{6}
\end{equation*}
$$

Reflectivity for anisotropic media - continued

The incident and reflected electromagnetic fields are given in your textbook. In the notation of the figure the wavevector for the incident wave is given by:

$$
\begin{equation*}
\mathbf{k}_{i}=\frac{\omega}{c}(\sin i \hat{\mathbf{x}}+\cos i \hat{\mathbf{y}}) \tag{7}
\end{equation*}
$$

and the wavevector for reflected wave is given by:

$$
\begin{equation*}
\mathbf{k}_{R}=\frac{\omega}{c}(\sin i \hat{\mathbf{x}}-\cos i \hat{\mathbf{y}}) \tag{8}
\end{equation*}
$$

In this notation, Snell's law requires that $n_{x}=\sin i$. The continuity conditions at the $y=0$ plane involve continuity requirements on the following fields:

$$
\begin{equation*}
\mathbf{H}(x, 0, z, t), \quad E_{x}(x, 0, z, t), \quad E_{z}(x, 0, z, t), \text { and } D_{y}(x, 0, z, t) \tag{9}
\end{equation*}
$$

at all times t.
We will consider two different polarizations for the electric field.

Reflectivity for anisotropic media - continued

Solution for s-polarization

In this case, $E_{x}=E_{y}=0$, and $n_{y}^{2}=\kappa_{z z}-n_{x}^{2}$. The fields in the medium are given by:

$$
\begin{equation*}
\mathbf{E}=E_{z} \hat{\mathbf{z}} \mathrm{e}^{i \frac{\omega}{c}\left(n_{x} x+n_{y} y\right)-i \omega t} \quad \mathbf{H}=\frac{1}{\mu_{0} c}\left\{E_{z}\left(n_{y} \hat{\mathbf{x}}-n_{x} \hat{\mathbf{y}}\right)\right\} \mathrm{e}^{i \frac{\omega}{c}\left(n_{x} x+n_{y} y\right)-i \omega t} \tag{10}
\end{equation*}
$$

The amplitude E_{z} can be determined from the matching conditions:

$$
\begin{gather*}
E_{0}+E_{0}^{\prime \prime}=E_{z} \tag{11}\\
\left(E_{0}-E_{0}^{\prime \prime}\right) \cos i=E_{z} n_{y} \\
\left(E_{0}+E_{0}^{\prime \prime}\right) \sin i=E_{z} n_{x} .
\end{gather*}
$$

In this case, the last equation is redundant. The other two equations can be solved for the reflected amplitude:

$$
\begin{equation*}
\frac{E_{0}^{\prime \prime}}{E_{0}}=\frac{\cos i-n_{y}}{\cos i+n_{y}} \tag{12}
\end{equation*}
$$

This is very similar to the result given in Eq. 7.39 of Jackson for the isotropic media.

Reflectivity for anisotropic media - continued

Solution for p-polarization

In this case, $E_{z}=0$ and

$$
\begin{equation*}
n_{y}^{2}=\frac{\kappa_{x x}}{\kappa_{y y}}\left(\kappa_{y y}-n_{x}^{2}\right) \tag{13}
\end{equation*}
$$

In terms of the unknown amplitude E_{x}, the electric field in the medium is given by:

$$
\begin{equation*}
\mathbf{E}=E_{x}\left(\hat{\mathbf{x}}-\frac{\kappa_{x x} n_{x}}{\kappa_{y y} n_{y}} \hat{\mathbf{y}}\right) \mathrm{e}^{i \frac{\omega}{c}\left(n_{x} x+n_{y} y\right)-i \omega t} . \tag{14}
\end{equation*}
$$

The corresponding magnetic field is given by:

$$
\begin{equation*}
\mathbf{H}=-\frac{E_{x}}{\mu_{0} c} \frac{\kappa_{x x}}{n_{y}} \hat{\mathbf{z}} \mathrm{e}^{i \frac{\omega}{c}\left(n_{x} x+n_{y} y\right)-i \omega t} \tag{15}
\end{equation*}
$$

Reflectivity for anisotropic media (p-polarization) - continued

The amplitude E_{x} can be determined from the matching conditions:

$$
\begin{gather*}
\left(E_{0}-E_{0}^{\prime \prime}\right) \cos i=E_{x} \tag{16}\\
\left(E_{0}+E_{0}^{\prime \prime}\right)=\frac{\kappa_{x x}}{n_{y}} E_{x} \\
\left(E_{0}+E_{0}^{\prime \prime}\right) \sin i=\frac{\kappa_{x x} n_{x}}{n_{y}} E_{x} .
\end{gather*}
$$

Again, the last equation is redundant, and the solution for the reflected amplitude is given by:

$$
\begin{equation*}
\frac{E_{0}^{\prime \prime}}{E_{0}}=\frac{\kappa_{x x} \cos i-n_{y}}{\kappa_{x x} \cos i+n_{y}} \tag{17}
\end{equation*}
$$

This result reduces to Eq. 7.41 in Jackson for the isotropic case.

