Electrodynamics – PHY712

Lecture 13 – Magnetic Dipolar Fields

Reference: Chap. 5 in J. D. Jackson's textbook.

Magnetic dipolar field

The magnetic dipole moment is defined by

$$\mathbf{m} = \frac{1}{2} \int d^3 r' \mathbf{r}' \times \mathbf{J}(\mathbf{r}'), \tag{1}$$

with the corresponding potential

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2},\tag{2}$$

and magnetostatic field

$$\mathbf{B}_{\mathbf{m}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left\{ \frac{3\hat{\mathbf{r}}(\mathbf{m} \cdot \hat{\mathbf{r}}) - \mathbf{m}}{r^3} + \frac{8\pi}{3} \mathbf{m} \delta^3(\mathbf{r}) \right\}.$$
 (3)

Magnetic dipolar field – continued

Some details:

$$\nabla \times (s\mathbf{V}) = \nabla s \times \mathbf{V} + s\nabla \times \mathbf{V}.$$
(4)

$$\nabla \times (\mathbf{V}_1 \times \mathbf{V}_2) = \mathbf{V}_1 (\nabla \cdot \mathbf{V}_2) - \mathbf{V}_2 (\nabla \cdot \mathbf{V}_1) + (\mathbf{V}_2 \cdot \nabla) \mathbf{V}_1 - (\mathbf{V}_1 \cdot \nabla) \mathbf{V}_2.$$
(5)

For r > 0:

$$\nabla \times \left(\frac{\mathbf{m} \times \mathbf{r}}{r^3}\right) = \frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r}) - r^2 \mathbf{m}}{r^5}.$$
 (6)

Justification for the δ function contribution at the origin of the magnetic dipole

Note: This derivation is very similar to the analogous electrostatic case.

The evaluation of the field at the origin of the dipole is poorly defined, but we make the following approximation.

$$\mathbf{B}(\mathbf{r} \approx \mathbf{0}) \approx \left(\int_{\text{sphere}} \mathbf{B}(\mathbf{r}) \mathbf{d}^{3} \mathbf{r} \right) \delta^{3}(\mathbf{r}).$$
(7)

First we note that

$$\int_{r \le R} \mathbf{B}(\mathbf{r}) d^3 r = R^2 \int_{r=R} \mathbf{\hat{r}} \times \mathbf{A}(\mathbf{r}) \ d\Omega.$$
(8)

This result follows from the divergence theorm:

$$\int_{\text{vol}} \nabla \cdot \mathcal{V} \mathbf{d}^{3} \mathbf{r} = \int_{\text{surface}} \mathcal{V} \cdot \mathbf{d} \mathbf{A}.$$
 (9)

Singular contribution to dipolar field – continued

The divergence theorem can be used to prove Eq. (8) for each cartesian coordinate of $\nabla \times \mathbf{A}$ since $\nabla \times \mathbf{A} = \hat{\mathbf{x}} (\hat{\mathbf{x}} \cdot (\nabla \times \mathbf{A})) + \hat{\mathbf{y}} (\hat{\mathbf{y}} \cdot (\nabla \times \mathbf{A})) + \hat{\mathbf{z}} (\hat{\mathbf{z}} \cdot (\nabla \times \mathbf{A}))$. Note that $\hat{\mathbf{x}} \cdot (\nabla \times \mathbf{A}) = -\nabla \cdot (\hat{\mathbf{x}} \times \mathbf{A})$ and that we can use the Divergence theorem with $\mathcal{V} \equiv \hat{\mathbf{x}} \times \mathbf{A}(\mathbf{r})$ for the *x*- component for example:

$$\int_{\text{vol}} \nabla \cdot (\mathbf{\hat{x}} \times \mathbf{A}) d^3 r = \int_{\text{surface}} (\mathbf{\hat{x}} \times \mathbf{A}) \cdot \mathbf{\hat{r}} dA = \int_{\text{surface}} (\mathbf{A} \times \mathbf{\hat{r}}) \cdot \mathbf{\hat{x}} dA.$$
(10)

Therefore,

$$\int_{r \le R} (\nabla \times \mathbf{A}) d^3 r = -\int_{r=R} (\mathbf{A} \times \mathbf{\hat{r}}) \cdot (\mathbf{\hat{x}} \mathbf{\hat{x}} + \mathbf{\hat{y}} \mathbf{\hat{y}} + \mathbf{\hat{z}} \mathbf{\hat{z}}) dA = R^2 \int_{r=R} (\mathbf{\hat{r}} \times \mathbf{A}) d\Omega$$
(11)

which is identical to Eq. (8). We can use the identity (as in electrostatic case),

$$\int d\Omega \frac{\hat{\mathbf{r}}}{|\mathbf{r} - \mathbf{r}'|} = \frac{4\pi}{3} \frac{r_{<}}{r_{>}^{2}} \, \hat{\mathbf{r}'}.$$
(12)

Singular contribution to dipolar field – continued

Now, expressing the vector potential in terms of the current density:

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3 r \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|},\tag{13}$$

the integral over Ω in Eq. 8 becomes

$$R^2 \int_{r=R} (\mathbf{\hat{r}} \times \mathbf{A}) d\Omega = \frac{4\pi R^2}{3} \frac{\mu_0}{4\pi} \int d^3 r' \; \frac{r_{<}}{r_{>}^2} \; \mathbf{\hat{r'}} \times \mathbf{J}(\mathbf{r'}). \tag{14}$$

If the sphere R contains the entire current distribution, then $r_> = R$ and $r_< = r'$ so that (14) becomes

$$R^2 \int_{r=R} (\mathbf{\hat{r}} \times \mathbf{A}) d\Omega = \frac{4\pi}{3} \frac{\mu_0}{4\pi} \int d^3 r' \, \mathbf{r'} \times \mathbf{J}(\mathbf{r'}) \equiv \frac{8\pi}{3} \frac{\mu_0}{4\pi} \mathbf{m}, \tag{15}$$

which thus justifies the delta-function contribution in Eq. 3 and results so-called "Fermi contact" contribution in the "hyperfine" interaction.

Magnetic field due to electrons in the vicinity of a nucleus

Contribution due to "orbital" magnetism in a spherical atom

The current density associated with an electron in a bound state of an atom as described by a quantum mechanical wavefunction $\psi_{nlm_l}(\mathbf{r})$ can be written:

$$\mathbf{J}(\mathbf{r}) = \frac{-e\hbar m_l \hat{\phi}}{m_e r \sin \theta} \left| \psi_{nlm_l}(\mathbf{r}) \right|^2.$$
(16)

In the following, it will be convenient to represent the azimuthal unit vector $\hat{\phi}$ in terms of cartesian coordinates:

$$\hat{\phi} = -\sin\phi \hat{\mathbf{x}} + \cos\phi \hat{\mathbf{y}} = \frac{\hat{\mathbf{z}} \times \mathbf{r}}{r\sin\theta}.$$
(17)

The vector potential for this current density can be written

$$\mathbf{A}(\mathbf{r}) = -\frac{\mu_0}{4\pi} \frac{e\hbar}{m_e} m_l \int d^3 r' \frac{\mathbf{\hat{z}} \times \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} \frac{|\psi_{nlm_l}(\mathbf{r}')|^2}{r'^2 \sin^2 \theta'}$$
(18)

Contribution due to "orbital" magnetism in a spherical atom – continued

We want to evaluate the magnetic field $B = \nabla \times A$ in the vicinity of the nucleus $(\mathbf{r} \rightarrow 0)$. Taking the curl of the Eq. 18, we obtain

$$\mathbf{B}_{\mathbf{o}}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{e\hbar}{m_e} m_l \int d^3 r' \frac{(\mathbf{r} - \mathbf{r}') \times (\mathbf{\hat{z}} \times \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} \frac{|\psi_{nlm_l}(\mathbf{r}')|^2}{r'^2 \sin^2 \theta'}$$
(19)

Evaluating this expression with $(\mathbf{r} \rightarrow 0)$, we obtain

$$\mathbf{B}_{\mathbf{o}}(\mathbf{0}) = -\frac{\mu_0}{4\pi} \frac{e\hbar}{m_e} m_l \int d^3 r' \frac{\mathbf{r}' \times (\mathbf{\hat{z}} \times \mathbf{r}')}{{r'}^3} \frac{|\psi_{nlm_l}(\mathbf{r}')|^2}{{r'}^2 \sin^2 \theta'}$$
(20)

Contribution due to "orbital" magnetism in a spherical atom – continued

$$\mathbf{B}_{\mathbf{o}}(\mathbf{0}) = -\frac{\mu_0}{4\pi} \frac{e\hbar}{m_e} m_l \int d^3 r' \frac{\mathbf{r}' \times (\mathbf{\hat{z}} \times \mathbf{r}')}{r'^3} \frac{|\psi_{nlm_l}(\mathbf{r}')|^2}{r'^2 \sin^2 \theta'}$$
(21)

Expanding the cross product and expressing the result in spherical polar coordinates, we obtain in the numerator

$$\mathbf{\hat{r}}' \times (\mathbf{\hat{z}} \times \mathbf{\hat{r}}') = \mathbf{\hat{z}}(\mathbf{1} - \cos^2 \theta') - \mathbf{\hat{x}} \cos \theta' \sin \theta' \cos \phi' - \mathbf{\hat{y}} \cos \theta' \sin \theta' \sin \phi')$$

In evaluating the integration over the azimuthal variable ϕ' , the $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ components vanish which reduces to

$$\mathbf{B}_{\mathbf{o}}(\mathbf{0}) = -\frac{\mu_0}{4\pi} \frac{e\hbar}{m_e} m_l \int d^3 r' \frac{\mathbf{\hat{z}} r'^2 \sin^2 \theta'}{r'^3} \frac{|\psi_{nlm_l}(\mathbf{r}')|^2}{r'^2 \sin^2 \theta'}$$
(22)

and

$$\mathbf{B}_{\mathbf{o}}(\mathbf{0}) = -\frac{\mu_0 e\hbar m_l \hat{\mathbf{z}}}{4\pi m_e} \int d^3 r' \left|\psi_{nlm_l}\right|^2 \frac{1}{r'^3} \equiv -\frac{\mu_0 e}{4\pi m_e} L_z \hat{\mathbf{z}} \left\langle\frac{1}{r'^3}\right\rangle.$$
(23)

"Hyperfine" interaction

The so-called "hyperfine" interaction results from the magnetic dipole moment of a nucleus $\mu_{\mathbf{N}}$ responding to the magnetic field formed by the magnetic dipole of the electron spin ($\mu_{\mathbf{e}}$) as well as the electron orbital current contribution.

$$\mathcal{H}_{\rm HF} = -\mu_{\mathbf{N}} \cdot \left(\mathbf{B}_{\mu_e} + \mathbf{B}_o(0) \right). \tag{24}$$

$$\mathcal{H}_{\rm HF} = -\frac{\mu_0}{4\pi} \left(\frac{3(\mu_{\mathbf{N}} \cdot \hat{\mathbf{r}})(\mu_{\mathbf{e}} \cdot \hat{\mathbf{r}}) - \mu_{\mathbf{N}} \cdot \mu_{\mathbf{e}}}{r^3} + \frac{8\pi}{3} \mu_{\mathbf{N}} \cdot \mu_{\mathbf{e}} \delta^3(\mathbf{r}) + \frac{e}{m_e} \left\langle \frac{\mathbf{L} \cdot \mu_{\mathbf{N}}}{r^3} \right\rangle \right).$$
(25)

