
Electrodynamics – PHY712

Lecture 13 – Magnetic Dipolar Fields

Reference: Chap. 5 in J. D. Jackson’s textbook.

Magnetic dipolar field

The magnetic dipole moment is defined by

m =
1

2

∫
d3r′r′ × J(r′), (1)

with the corresponding potential

A(r) =
µ0

4π

m× r̂

r2
, (2)

and magnetostatic field

Bm(r) =
µ0

4π

{
3r̂(m · r̂)−m

r3
+

8π

3
mδ3(r)

}
. (3)
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Magnetic dipolar field – continued

Some details:

∇× (sV) = ∇s×V + s∇×V. (4)

∇× (V1 ×V2) = V1(∇ ·V2)−V2(∇ ·V1) + (V2 · ∇)V1 − (V1 · ∇)V2. (5)

For r > 0:

∇×
(
m× r

r3

)
=

3r(m · r)− r2m

r5
. (6)
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Justification for the δ function contribution at the origin of the magnetic dipole

Note: This derivation is very similar to the analogous electrostatic case.

The evaluation of the field at the origin of the dipole is poorly defined, but we make the
following approximation.

B(r ≈ 0) ≈
(∫

sphere

B(r)d3r

)
δ3(r). (7)

First we note that ∫
r≤R

B(r)d3r = R2

∫
r=R

r̂×A(r) dΩ. (8)

This result follows from the divergence theorm:∫
vol

∇ · Vd3r =

∫
surface

V·dA. (9)
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Singular contribution to dipolar field – continued

The divergence theorem can be used to prove Eq. (8) for each cartesian coordinate of
∇×A since ∇×A = x̂ (x̂ · (∇×A)) + ŷ (ŷ · (∇×A)) + ẑ (ẑ · (∇×A)). Note
that x̂ · (∇×A) = −∇ · (x̂×A) and that we can use the Divergence theorem with
V ≡ x̂×A(r) for the x− component for example:∫

vol

∇ · (x̂×A)d3r =

∫
surface

(x̂×A) · r̂dA =

∫
surface

(A× r̂) · x̂dA. (10)

Therefore,∫
r≤R

(∇×A)d3r = −
∫
r=R

(A× r̂) · (x̂x̂+ ŷŷ + ẑẑ)dA = R2

∫
r=R

(r̂×A)dΩ

(11)
which is identical to Eq. (8). We can use the identity (as in electrostatic case),∫

dΩ
r̂

|r− r′|
=

4π

3

r<
r2>

r̂′. (12)
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Singular contribution to dipolar field – continued

Now, expressing the vector potential in terms of the current density:

A(r) =
µ0

4π

∫
d3r

J(r′)

|r− r′|
, (13)

the integral over Ω in Eq. 8 becomes

R2

∫
r=R

(r̂×A)dΩ =
4πR2

3

µ0

4π

∫
d3r′

r<
r2>

r̂′ × J(r′). (14)

If the sphere R contains the entire current distribution, then r> = R and r< = r′ so that
(14) becomes

R2

∫
r=R

(r̂×A)dΩ =
4π

3

µ0

4π

∫
d3r′ r′ × J(r′) ≡ 8π

3

µ0

4π
m, (15)

which thus justifies the delta-function contribution in Eq. 3 and results so-called “Fermi
contact” contribution in the “hyperfine” interaction.
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Magnetic field due to electrons in the vicinity of a nucleus

Contribution due to “orbital” magnetism in a spherical atom

The current density associated with an electron in a bound state of an atom as described
by a quantum mechanical wavefunction ψnlml

(r) can be written:

J(r) =
−e~mlφ̂

mer sin θ
|ψnlml

(r)|2 . (16)

In the following, it will be convenient to represent the azimuthal unit vector φ̂ in terms of
cartesian coordinates:

φ̂ = − sinφx̂+ cosφŷ =
ẑ× r

r sin θ
. (17)

The vector potential for this current density can be written

A(r) = −µ0

4π

e~
me

ml

∫
d3r′

ẑ× r′

|r− r′|
|ψnlml

(r′)|2

r′2 sin2 θ′
(18)
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Contribution due to “orbital” magnetism in a spherical atom – continued

We want to evaluate the magnetic field B = ∇×A in the vicinity of the nucleus
(r → 0). Taking the curl of the Eq. 18, we obtain

Bo(r) =
µ0

4π

e~
me

ml

∫
d3r′

(r− r′)× (ẑ× r′)

|r− r′|3
|ψnlml

(r′)|2

r′2 sin2 θ′
(19)

Evaluating this expression with (r → 0), we obtain

Bo(0) = −µ0

4π

e~
me

ml

∫
d3r′

r′ × (ẑ× r′)

r′3
|ψnlml

(r′)|2

r′2 sin2 θ′
(20)
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Contribution due to “orbital” magnetism in a spherical atom – continued

Bo(0) = −µ0

4π

e~
me

ml

∫
d3r′

r′ × (ẑ× r′)

r′3
|ψnlml

(r′)|2

r′2 sin2 θ′
(21)

Expanding the cross product and expressing the result in spherical polar coordinates, we
obtain in the numerator
r̂′ × (ẑ× r̂′) = ẑ(1− cos2 θ′)− x̂ cos θ′ sin θ′ cosφ′ − ŷ cos θ′ sin θ′ sinφ′).

In evaluating the integration over the azimuthal variable φ′, the x̂ and ŷ components
vanish which reduces to

Bo(0) = −µ0

4π

e~
me

ml

∫
d3r′

ẑr′
2
sin2 θ′

r′3
|ψnlml

(r′)|2

r′2 sin2 θ′
(22)

and

Bo(0) = −µ0e~mlẑ

4πme

∫
d3r′ |ψnlml

|2 1

r′3
≡ − µ0e

4πme
Lz ẑ

〈
1

r′3

〉
. (23)
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“Hyperfine” interaction

The so-called “hyperfine” interaction results from the magnetic dipole moment of a
nucleus µN responding to the magnetic field formed by the magnetic dipole of the
electron spin (µe) as well as the electron orbital current contribution.

HHF = −µN · (Bµe
+Bo(0)) . (24)

HHF = −µ0

4π

(
3(µN · r̂)(µe · r̂)− µN · µe

r3
+

8π

3
µN · µeδ

3(r) +
e

me

〈
L · µN

r3

〉)
.

(25)
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