Electrodynamics - PHY712

Lecture 13 - Magnetic Dipolar Fields

Reference: Chap. 5 in J. D. Jackson's textbook.

Magnetic dipolar field

The magnetic dipole moment is defined by

$$
\begin{equation*}
\mathbf{m}=\frac{1}{2} \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \tag{1}
\end{equation*}
$$

with the corresponding potential

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^{2}} \tag{2}
\end{equation*}
$$

and magnetostatic field

$$
\begin{equation*}
\mathbf{B}_{\mathbf{m}}(\mathbf{r})=\frac{\mu_{0}}{4 \pi}\left\{\frac{3 \hat{\mathbf{r}}(\mathbf{m} \cdot \hat{\mathbf{r}})-\mathbf{m}}{r^{3}}+\frac{8 \pi}{3} \mathbf{m} \delta^{3}(\mathbf{r})\right\} \tag{3}
\end{equation*}
$$

Magnetic dipolar field - continued

Some details:

$$
\begin{equation*}
\nabla \times(s \mathbf{V})=\nabla s \times \mathbf{V}+s \nabla \times \mathbf{V} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \times\left(\mathbf{V}_{1} \times \mathbf{V}_{2}\right)=\mathbf{V}_{1}\left(\nabla \cdot \mathbf{V}_{2}\right)-\mathbf{V}_{2}\left(\nabla \cdot \mathbf{V}_{1}\right)+\left(\mathbf{V}_{2} \cdot \nabla\right) \mathbf{V}_{1}-\left(\mathbf{V}_{1} \cdot \nabla\right) \mathbf{V}_{2} \tag{5}
\end{equation*}
$$

For $r>0$:

$$
\begin{equation*}
\nabla \times\left(\frac{\mathbf{m} \times \mathbf{r}}{r^{3}}\right)=\frac{3 \mathbf{r}(\mathbf{m} \cdot \mathbf{r})-r^{2} \mathbf{m}}{r^{5}} \tag{6}
\end{equation*}
$$

Justification for the δ function contribution at the origin of the magnetic dipole

Note: This derivation is very similar to the analogous electrostatic case.
The evaluation of the field at the origin of the dipole is poorly defined, but we make the following approximation.

$$
\begin{equation*}
\mathbf{B}(\mathbf{r} \approx \mathbf{0}) \approx\left(\int_{\text {sphere }} \mathbf{B}(\mathbf{r}) \mathbf{d}^{3} \mathbf{r}\right) \delta^{3}(\mathbf{r}) \tag{7}
\end{equation*}
$$

First we note that

$$
\begin{equation*}
\int_{r \leq R} \mathbf{B}(\mathbf{r}) d^{3} r=R^{2} \int_{r=R} \hat{\mathbf{r}} \times \mathbf{A}(\mathbf{r}) d \Omega . \tag{8}
\end{equation*}
$$

This result follows from the divergence theorm:

$$
\begin{equation*}
\int_{\text {vol }} \nabla \cdot \mathcal{V} \mathbf{d}^{3} \mathbf{r}=\int_{\text {surface }} \mathcal{V} \cdot \mathbf{d} \mathbf{A} . \tag{9}
\end{equation*}
$$

Singular contribution to dipolar field - continued

The divergence theorem can be used to prove Eq. (8) for each cartesian coordinate of $\nabla \times \mathbf{A}$ since $\nabla \times \mathbf{A}=\hat{\mathbf{x}}(\hat{\mathbf{x}} \cdot(\nabla \times \mathbf{A}))+\hat{\mathbf{y}}(\hat{\mathbf{y}} \cdot(\nabla \times \mathbf{A}))+\hat{\mathbf{z}}(\hat{\mathbf{z}} \cdot(\nabla \times \mathbf{A}))$. Note that $\hat{\mathbf{x}} \cdot(\nabla \times \mathbf{A})=-\nabla \cdot(\hat{\mathbf{x}} \times \mathbf{A})$ and that we can use the Divergence theorem with $\mathcal{V} \equiv \hat{\mathbf{x}} \times \mathbf{A}(\mathbf{r})$ for the $x-$ component for example:

$$
\begin{equation*}
\int_{\text {vol }} \nabla \cdot(\hat{\mathbf{x}} \times \mathbf{A}) d^{3} r=\int_{\text {surface }}(\hat{\mathbf{x}} \times \mathbf{A}) \cdot \hat{\mathbf{r}} d A=\int_{\text {surface }}(\mathbf{A} \times \hat{\mathbf{r}}) \cdot \hat{\mathbf{x}} d A \tag{10}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{r \leq R}(\nabla \times \mathbf{A}) d^{3} r=-\int_{r=R}(\mathbf{A} \times \hat{\mathbf{r}}) \cdot(\hat{\mathbf{x}} \hat{\mathbf{x}}+\hat{\mathbf{y}} \hat{\mathbf{y}}+\hat{\mathbf{z}} \hat{\mathbf{z}}) d A=R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega \tag{11}
\end{equation*}
$$

which is identical to Eq. (8). We can use the identity (as in electrostatic case),

$$
\begin{equation*}
\int d \Omega \frac{\hat{\mathbf{r}}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{4 \pi}{3} \frac{r_{<}}{r_{>}^{2}} \hat{\mathbf{r}^{\prime}} \tag{12}
\end{equation*}
$$

Singular contribution to dipolar field - continued

Now, expressing the vector potential in terms of the current density:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{13}
\end{equation*}
$$

the integral over Ω in Eq. 8 becomes

$$
\begin{equation*}
R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega=\frac{4 \pi R^{2}}{3} \frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{r_{<}}{r_{>}^{2}} \hat{\mathbf{r}^{\prime}} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \tag{14}
\end{equation*}
$$

If the sphere R contains the entire current distribution, then $r_{>}=R$ and $r_{<}=r^{\prime}$ so that (14) becomes

$$
\begin{equation*}
R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega=\frac{4 \pi}{3} \frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \equiv \frac{8 \pi}{3} \frac{\mu_{0}}{4 \pi} \mathbf{m} \tag{15}
\end{equation*}
$$

which thus justifies the delta-function contribution in Eq. 3 and results so-called "Fermi contact" contribution in the "hyperfine" interaction.

Magnetic field due to electrons in the vicinity of a nucleus

Contribution due to "orbital" magnetism in a spherical atom

The current density associated with an electron in a bound state of an atom as described by a quantum mechanical wavefunction $\psi_{n l m_{l}}(\mathbf{r})$ can be written:

$$
\begin{equation*}
\mathbf{J}(\mathbf{r})=\frac{-e \hbar m_{l} \hat{\phi}}{m_{e} r \sin \theta}\left|\psi_{n l m_{l}}(\mathbf{r})\right|^{2} \tag{16}
\end{equation*}
$$

In the following, it will be convenient to represent the azimuthal unit vector $\hat{\phi}$ in terms of cartesian coordinates:

$$
\begin{equation*}
\hat{\phi}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}=\frac{\hat{\mathbf{z}} \times \mathbf{r}}{r \sin \theta} . \tag{17}
\end{equation*}
$$

The vector potential for this current density can be written

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=-\frac{\mu_{0}}{4 \pi} \frac{e \hbar}{m_{e}} m_{l} \int d^{3} r^{\prime} \frac{\hat{\mathbf{z}} \times \mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{{r^{\prime}}^{2} \sin ^{2} \theta^{\prime}} \tag{18}
\end{equation*}
$$

Contribution due to "orbital" magnetism in a spherical atom - continued
We want to evaluate the magnetic field $B=\nabla \times A$ in the vicinity of the nucleus $(\mathbf{r} \rightarrow 0)$. Taking the curl of the Eq. 18, we obtain

$$
\begin{equation*}
\mathbf{B}_{\mathbf{o}}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{e \hbar}{m_{e}} m_{l} \int d^{3} r^{\prime} \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \times\left(\hat{\mathbf{z}} \times \mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{\mathbf{3}}} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{r^{\prime 2} \sin ^{2} \theta^{\prime}} \tag{19}
\end{equation*}
$$

Evaluating this expression with $(\mathbf{r} \rightarrow 0)$, we obtain

$$
\begin{equation*}
\mathbf{B}_{\mathbf{o}}(\mathbf{0})=-\frac{\mu_{0}}{4 \pi} \frac{e \hbar}{m_{e}} m_{l} \int d^{3} r^{\prime} \frac{\mathbf{r}^{\prime} \times\left(\hat{\mathbf{z}} \times \mathbf{r}^{\prime}\right)}{{r^{\prime}}^{3}} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{r^{\prime 2} \sin ^{2} \theta^{\prime}} \tag{20}
\end{equation*}
$$

Contribution due to "orbital" magnetism in a spherical atom - continued

$$
\begin{equation*}
\mathbf{B}_{\mathbf{o}}(\mathbf{0})=-\frac{\mu_{0}}{4 \pi} \frac{e \hbar}{m_{e}} m_{l} \int d^{3} r^{\prime} \frac{\mathbf{r}^{\prime} \times\left(\hat{\mathbf{z}} \times \mathbf{r}^{\prime}\right)}{r^{\prime 3}} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{r^{\prime 2} \sin ^{2} \theta^{\prime}} \tag{21}
\end{equation*}
$$

Expanding the cross product and expressing the result in spherical polar coordinates, we obtain in the numerator
$\left.\hat{\mathbf{r}}^{\prime} \times\left(\hat{\mathbf{z}} \times \hat{\mathbf{r}}^{\prime}\right)=\hat{\mathbf{z}}\left(\mathbf{1}-\cos ^{\mathbf{2}} \theta^{\prime}\right)-\hat{\mathbf{x}} \cos \theta^{\prime} \sin \theta^{\prime} \cos \phi^{\prime}-\hat{\mathbf{y}} \cos \theta^{\prime} \sin \theta^{\prime} \sin \phi^{\prime}\right)$.
In evaluating the integration over the azimuthal variable ϕ^{\prime}, the $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ components vanish which reduces to

$$
\begin{equation*}
\mathbf{B}_{\mathbf{o}}(\mathbf{0})=-\frac{\mu_{0}}{4 \pi} \frac{e \hbar}{m_{e}} m_{l} \int d^{3} r^{\prime} \frac{\hat{\mathbf{z}}{r^{\prime}}^{2} \sin ^{2} \theta^{\prime}}{r^{\prime 3}} \frac{\left|\psi_{n l m_{l}}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{r^{\prime 2} \sin ^{2} \theta^{\prime}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{B}_{\mathbf{o}}(\mathbf{0})=-\frac{\mu_{0} e \hbar m_{l} \hat{\mathbf{z}}}{4 \pi m_{e}} \int d^{3} r^{\prime}\left|\psi_{n l m_{l}}\right|^{2} \frac{1}{{r^{\prime}}^{3}} \equiv-\frac{\mu_{0} e}{4 \pi m_{e}} L_{z} \hat{\mathbf{Z}}\left\langle\frac{1}{{r^{\prime}}^{3}}\right\rangle \tag{23}
\end{equation*}
$$

"Hyperfine" interaction

The so-called "hyperfine" interaction results from the magnetic dipole moment of a nucleus μ_{N} responding to the magnetic field formed by the magnetic dipole of the electron spin $\left(\mu_{\mathbf{e}}\right)$ as well as the electron orbital current contribution.

$$
\begin{equation*}
\mathcal{H}_{\mathrm{HF}}=-\mu_{\mathbf{N}} \cdot\left(\mathbf{B}_{\mu_{e}}+\mathbf{B}_{o}(0)\right) \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{H}_{\mathrm{HF}}=-\frac{\mu_{0}}{4 \pi}\left(\frac{3\left(\mu_{\mathbf{N}} \cdot \hat{\mathbf{r}}\right)\left(\mu_{\mathbf{e}} \cdot \hat{\mathbf{r}}\right)-\mu_{\mathbf{N}} \cdot \mu_{\mathbf{e}}}{r^{3}}+\frac{8 \pi}{3} \mu_{\mathbf{N}} \cdot \mu_{\mathbf{e}} \delta^{3}(\mathbf{r})+\frac{e}{m_{e}}\left\langle\frac{\mathbf{L} \cdot \mu_{\mathbf{N}}}{r^{3}}\right\rangle\right) . \tag{25}
\end{equation*}
$$

