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An exact stochastic simulation of the Schroedinger equation for charged bosons and
fermions has been used to calculate the correlation energies, to locate the transitions
to their respective crystal phases at zero temperature within 10%, and to establish the
stability at intermediate densities of a ferromagnetic fluid of electrons.
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The properties of the ground state of the elec-
tron gas, also referred to as the fermion one-
component plasma and jellium, have rigorously
only been established in the limit of high densi-
ties! where the system approaches a perfect gas
and at low density? where the electrons crystal-
lize. Furthermore, Hartree-Fock calculations®
and variational calculations?® suggest that at inter-
mediate densities, the spin-aligned state of the
electrons will be more stable than the normal,
unpolarized state. Precise calculations of this
many -fermion system are required to establish
the regions of stability of the various phases be-
cause of the small energy differences among
them. This note outlines a Monte Carlo method
that, if run long enough on a computer, can give
as precise a solution for the ground state of a
given fermion system as desired.

In practice, the precision of such a calculation
is limited to about two orders of magnitude small-
er than that of an approximate trial wave func-
tion that is introduced as an importance function
in the Monte Carlo process. That the introduc-
tion of such an importance function is essential
was previously demonstrated for the many-boson
problem.5 The extension of this boson calcula-
tion to fermions requires dealing with antisym-
metric functions whose nodes are unknown. This
leads to two related complications; namely, the
probability density of a random walk cannot be
chosen everywhere positive, and unless prevented
the random walk will always converge to the all
positive, boson ground state. It is demonstrated
here that by representing the wave function by
the difference between two probability densities,
the effect of this inherent instability becomes
serious, and it is possible to extract the proper-
ties of the lowest antisymmetric state. A more
general procedure which removes the effects of

the instability has yet to be perfected.

The solution of the fermion problem was car-
ried out in two steps. In the first step the nodes,
the places where the trial function vanishes, act
as fixed absorbing barriers to the diffusion proc-
ess. Inside a connected nodal region the wave
function is everywhere positive and vanishes at
the boundaries. With these boundary conditions,
the fermion problem is equivalent to a boson
problem. The energy calculated with this proce-
dure, which we will refer to as the “fixed-node”
energy, is an upper bound to the exact fermion
ground-state energy and generally very close to
it. In principle one could next vary the nodal loca-
tions to obtain the best upper bound, for example,
by varying the functions used as elements in the
Slater determinant of the trial wave function. In
practice, the highly dimensional nodal surfaces
are difficult to parametrize in a systematic fash-
ion,

The second step, called “nodal relaxation,”
begins with the population of walks from the
“fixed-node” approximation. In this second proce-
dure, if a random walk strays across the node
of the trial function it is not terminated, but the
sign of its contribution to any average is re-
versed. At any stage of the random walk there
is a population of positive walks (those that re-
mained in the same nodal region or crossed an
even number of nodes) and a population of nega-
tive walks (those that crossed an odd number of
nodes). The importance function used in this
process is the absolute value of the trial function,
It can be easily shown that the difference popula-
tion converges to the antisymmetric eigenfunc-
tion. However, both the positive and negative
populations grow geometrically with a rate equal
to the difference between the Fermi and Bose en-
ergies. If the relaxation time from the fixed-node
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distribution times this energy difference is less
than unity, the fermion energy can be reliably
extracted. We have found that for the electron
gas this condition is satisfied if the nodes of the
Hartree-Fock wave function are used.

Our simulation method is a simpler version of
the Green’s function Monte Carlo method of Kalos,
Levesque, and Verlet.®> However, it requires
numerical truncation. A trial wave function ¥(R)
of the Bijl-Jastrow-Slater type* and an ensemble
of about 100 systems are Selected from a varia-
tional Monte Carlo calculation, where R repre-
sents the 3N spatial coordinates of the system of
N electrons. Let the probability density of find-
ing a random walk in dR3" at time ¢ be given by
f(R, t)AR®*¥. Then the value of f at t=0 is given
by | ¥,(R)|? properly normalized. The diffusion
equation for f(R, t) is

g=£—[i}lvizf— v, (fVv,In]| ‘I'le)]
- [H—\I:I;l "Eref:lfv 1

where H is the Hamiltonian

H=<§ﬁmi> i;lv,.z— S e/r,, . (2)

1<J

It is easily verified that for large times, f(7,t)
= Vg, exp[—t(E,c; — E,)}, where E, and ¢, are the
exact eigenvalue and eigenfunction. The above
equation for f(R, ¢) has a simple interpretation
as a stochastic process. Each member of the en-
semble of systems undergoes (i) random diffu-
sion caused by the zero-point motion, (ii) bias-
ing or drift by the trial quantum force, Vin|¥ [
and (iii) branching with probability given by the
time step times the difference between the local
trial energy, E,=HY,/¥, and the arbitrarily
chosen reference energy, E,.;. By “branching”,
it is meant that a particular system is either
eliminated from the ensemble (if the local energy
is greater than the reference energy) or dupli-
cated in the ensemble (otherwise). A steady-
state population of the ensemble requires that the
reference energy equal the lowest eigenvalue.
This is one way of determining the eigenvalue.
The trial wave function employed in the present
calculations is identical with those used in an
earlier Monte Carlo variational calculation.*
This trial function is a product of two-body cor-
relation factors times a Slater determinant of
single-particle orbitals. The two-body correla-
tion factors are chosen such that they remove

exactly the singularities in the local energy when
two electrons approach each other, thus reduc-
ing tremendously the variance of the estimate of
the ground-state energy. For the fluid phase the
single-particle orbitals are plane waves, with

the wave vector lying within the Fermi sea. For
the polarized state, where there is only one spin
for each spatial state, as opposed to two for the
normal unpolarized state, the Fermi wave vec-
tor has been increased to allow for twice as many
spatial orbitals. In the crystal phase, the orbitals
are Gaussians centered around body-centered
cubic lattice sites with a width chosen variational-
ly.

Figure 1 shows that the relaxation from the un-
polarized nodes to the ground state is rapid with
a small lowering of the energy. A less accurate
trial wave function with different nodes obtained
from a linear combination of polarized and un-
polarized Slater determinants is nevertheless
shown to lead to similar energies with a some-
what larger relaxation time. This suggests that
the results are insensitive to the original location
of the nodes, although a longer calculation beyond
this relaxation time would be possible and de-
sirable. Since at all densities the relaxation from
the Hartree-Fock nodes was rapid, the ground-
state energy of the electron gas by the method
employed could be obtained with very little un-
certainty.

The largest uncertainty in the results is, in
fact, due to the number dependence. Because of
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FIG. 1. The energy in rydbergs per particle of a 38-
electron system at the density 7, = 10 vs diffusion time
(in inverse Rydbergs) from removal of the fixed nodes.
The lower curve is the relaxation of an ensemble of
1.6x10* systems from the nodes of the unpolarized
determinant of plane waves. The upper curve is the
relaxation of 1.0x 10° systems from the nodes of a
linear combination of polarized and unpolarized deter-
minants.
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TABLE I. The ground-state energy of the charged Fermi and Bose
systems. The density parameter 7 is the Wigner-sphere radius in units
of Bohr radii. The energies are rydbergs and the digits in parentheses
represent the error bar in the last decimal place. The four phases are
paramagnetic or unpolarized Fermi fluid (PMF); the ferromagnetic or
polarized Fermi fluid (FMF); the Bose fluid (BF); and the Bose crystal
with a bec lattice.

s Epmr Ermr Egr Ebece

1.0 1.174Q1) . e

2.0 0.0041(4) 0.2517(6) -0.4531(1)

5.0 -0.1512(1) -0.1214(2) -0.216 63(6)

10.0 -0.106 75(5) -0.1013(1) -0.12150(3)

20.0 -0.06329(3) -0.062 51(3) -0.066 66(2)

50.0 -0.02884(1) -0.028 78(2) -0.02927(1) -0.02876(1)
100.0 -0.015321(5) -0.015340(5) -0.015427(4) -0.015339(3)
130.0 s -0.012 072(4) -0.012037(2)
200.0 -0.008 007(3) -0.008 035(1)

the high accuracy of the results derived from
employing a good trial wave function and the con-
sequent small statistical error, the number de-
pendence, which was empirically established for
systems ranging from 38 to 246 particles, is an
order of magnitude larger than the statistical
error. Extrapolation to infinite-particle results
was carried out at each density on the basis of
E(N)=E,+E,/N+E,A,, where the coefficients E,,

E,, and E, were empirically determined from the
simulations. The E, term arises from the poten- -
tial energy and is due to the correlation between
a particle and its images in the periodically ex-
tended space that is used in the Ewald summa-
tion procedure® to eliminate the major surface
effects. The E, term comes from the discrete
nature of the Fermi sea for finite systems, and
Ay is the size dependence of an ideal Fermi sys-
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FIG. 2. The energy of the four phases studied relative to that of the lowest boson state times 7

% in rydbergs vs

7s in Bohr radii. Below 7, = 160 the Bose fluid is the most stable phase, while above, the Wigner crystal is most
stable. The energies of the polarized and unpolarized Fermi fluid are seen to intersect at g = 75. The polarized

(ferromagnetic) Fermi fluid is stable between 75 = 75 and 7;
the normal paramagnetic Fermi fluid below 7»; = 75.
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tem at the same density. That term is absent
for bosons. In addition, the energies have been
extrapolated to zero time step by empirically
establishing the validity of linear extrapolation.
This correction is quite small, on the order of
the statistical error for the time steps used.
However, this correction can be completely avoid-
ed by using an integral formulation of Eq. (1).°
The results for the energy of the plasma in
four different phases is given in Table I and
plotted in Fig. 2, The boson system undergoes
Wigner® crystallization at » =160+ 10. The
fermion system has two phase transitions, crys-
tallization at »,=100+ 20 and depolarization at »
=T75+5., We have found that the difference in en-
ergy between a boson crystal and a fermion crys-
tal is less than 1.0x107°R at »,=100, The ener-
gies of the three Fermion states are sufficiently
close in the low-density regime that still more
accurate calculations on larger systems would be
desirable to confirm these results. Although the
Bijl-Jastrow-Slater results are quite accurate,*
the error is different for the different phases;
changing their relative stability. This demon-
strates how essential it is to perform exact simu-

lations to calculate reliably phase-transition den-
sities.
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Polystyrene spheres (2450 A in diameter) are trapped in a surface energy well at water/
air interface. Because of asymmetry of charge distribution, electrical dipoles are
associated with each interfacial particle. The dipole-dipole repulsive interactions organ-
ize the polystyrene spheres into a two-dimensional triangular lattice. The direct micro-
scopic observations of such an interfacial colloidal crystal are reported for the first time.

PACS numbers:

Theoretical progress in phase transitions in
two dimensions' stimulated research of adequate
physical systems; the formation of the two-di-
mensional crystals was demonstrated both ex-
perimentally®* ¢ and by computer simulations.>”®
The experiments on an electron layer floating on
a surface of liquid helium?® are very attractive
because of simplicity of the interactions which
are long range and purely repulsive. However,
the detection of the crystalline ordering from the
existence of plasmon-ripplon modes is only in-
direct. Direct optical observations of the trian-
gular two-dimensional lattice were reported in

68.90.+g, 61.25.—f, 82.70.Kj

computer experiments® ° and in the model of hard
spheres (few millimeters in diameter) forming a
layer on a vibrating solid surface.?

In this Letter, I investigate the system of mono-
layer of polystyrene spheres trapped at water/air
interface. I will show that the interactions are
long range and purely repulsive as in the electron
layer® and that because of these interactions the
polymer particles order in a two-dimensional lat-
tice. This is the first report of the microscopic
observation of such interfacial colloidal crystals.

The experiments were made with the colloidal
crystal of polystyrene spheres of radius R =1225
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