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The behavior of metals at high pressure is of great importance to the fields of shock physics, geophysics,
astrophysics, and nuclear materials. We study here bulk crystalline aluminum from first principles at pressures
up to 2500 GPa—soon within reach of laser-based experimental facilities. Our simulations use density-
functional theory and density-functional perturbation theory in the local-density and generalized-gradient ap-
proximations. Notably, the two different exchange-correlation functionals predict very similar results for the
fcc→hcp, fcc→bcc, and hcp→bcc transition pressures, around 175, 275, and 380 GPa, respectively. In
addition, our results indicate that core overlaps become noticeable only beyond pressures of 1200 GPa. From
the phonon dispersions of the fcc phase at increasing pressure, we predict a softening of the lowest transverse
acoustic vibrational mode along the �110� direction, which corresponds to a Born instability of the fcc phase
around 725 GPa.
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First-principles calculations have proven useful to the
fields of geophysics,1 astrophysics,2 and nuclear materials.3

Aluminum, being cubic close packed and having no d-shell
electrons, is a prototype for theoretical predictions and un-
derstanding the high-pressure behavior of simple metals.4

Currently, the National Ignition Facility5 at LLNL is ex-
pected to achieve shockless compression6 of metals up to
2000 GPa. This new facility may provide rapid advance-
ments to high-pressure physics and could partner very suc-
cessfully with theoretical studies.

The equation of state �EOS� and phase stability of alumi-
num were first studied from first principles in the early
1980s.7–9 In all cases, the predicted phase sequence was
fcc→hcp→bcc, but predictions greatly differed in the tran-
sition pressures. Several other calculations within the local-
density approximation �LDA�10 or the generalized-gradient
approximation �GGA�11,12 have since then been performed,
with a predicted static �i.e., without the phonon contribution�
fcc→hcp transition pressure of 205�20 GPa �Ref. 10� in
LDA and 170 �Ref. 11� and 192 GPa �Ref. 12� in GGA.
These discrepancies are more notable for the hcp→bcc tran-
sition pressure: 565�60 GPa �Ref. 10� in LDA versus
360 GPa �Ref. 11� in GGA, leaving significant uncertainties
open. Theoretical work on the vibrational properties of alu-
minum also suggests for the fcc→hcp transition a transition
pressure higher than the static one.11,12 Elastic properties13,14

and the absolute strength under tension15 have also been cal-
culated; the latter results are of particular interest as they
demonstrate the important role vibrational modes play in de-
termining mechanical stability and suggest that shear failure
modes are inherent in aluminum.

Experimentally, the equation of state of aluminum at high
pressures was studied by shock compression16 at pressures
above the predicted maximum for the fcc→hcp phase
boundary,10 but a transition was not observed. However, re-
cent diamond anvil cell experiments observed a fcc→hcp
transition at 217�10 GPa,17 highlighting the difficulty in
achieving thermodynamic equilibrium in shock compression.

In this Brief Report, we report first-principles calculations
of aluminum under hydrostatic compression up to 2500 GPa.
In order to assess mechanical stability under shock, we also

calculate the vibrational properties in the fcc phase and de-
termine the elastic constants from the slopes of the phonon
dispersions �i.e., the sound velocities�.

The equations of state in the fcc, bcc, and hcp phases have
been calculated with density-functional theory within both
LDA18 and GGA.19 Calculations have used the QUANTUM-
ESPRESSO package.20 We use plane-wave basis sets and
pseudopotentials and both 3 electron �3e� norm-conserving
pseudopotentials,21 with the 3s and 3p electrons in the va-
lence and nonlinear core corrections, and 11 electron �11e�
ultrasoft pseudopotentials22 where the 2s and 2p electrons,
usually frozen in the core, are explicitly included in the va-
lence. The inclusion of the 2s and 2p electrons in the valence
is essential to investigate the relevance of inner core elec-
trons at high pressure. The plane-wave cutoffs for the wave
functions are 25 and 100 Ry for the 3e and 11e pseudopo-
tentials, respectively, and 150 and 800 Ry for the charge den-
sity. Brillouin zone integrations have been performed using a
cold smearing14 of 0.02 Ry over shifted Monkhorst–Pack
meshes of order 16�16�16 for the fcc, 22�22�22 for the
bcc, and 16�16�10 for the hcp phases. The large sizes of
the k-point meshes are necessary to obtain fully converged
transition pressures. The data for the total energy as function
of volume have been fitted to the Birch third order EOS23

near equilibrium to obtain equilibrium volumes and bulk
moduli. The data for the equation of state have been deter-
mined from calculations performed at around 50–100 differ-
ent volumes over a pressure range 0–2500 GPa. Finally, the
vibrational properties have been computed using density-
functional perturbation theory �DFPT�.24 The dynamical ma-
trices have been calculated on a 4�4�4 q-point mesh and
Fourier interpolation has been used to evaluate the phonon
frequencies on finer grids.

The role of the inner core electrons is of primary concern
at very high pressures. Under normal conditions, there is not
sufficient overlap between the core and valence shell elec-
trons to question the frozen-core approximation,25 but at the
pressures considered here core overlaps may become signifi-
cant. To study the validity of the frozen-core approximation,
we first compared the equations of state for different phases
using both the 3e and 11e pseudopotentials. We report in
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Table I the equilibrium lattice parameters and bulk moduli in
the fcc phase at zero pressure, and in Fig. 1�a� the relative
enthalpies of fcc and bcc Al with respect to the fcc phase, up
to 2500 GPa. These results show that �1� there is little dif-
ference between the LDA and GGA predictions, hinting at a
broad applicability of density-functional theory in either ap-
proximation, and �2� that the role of the core electrons starts
to become noticeable only around 1200 GPa, even if already
at zero pressure the cores of the 3e pseudopotential start to
overlap.27 The equations of state for aluminum in the fcc,
bcc, and hcp phases, using the 11e GGA pseudopotentials,
are shown in Fig. 1�b�. Although the 11e and 3e calculations
give consistent results up to 1200 GPa, the calculated transi-
tion pressures can vary, particularly for the hcp→bcc transi-
tion. This could easily derive from the fact that enthalpy
differences between these three phases are only a few mRy
�see Fig. 1�b��, and so, even at full computational conver-

gence of all parameters, small effects �e.g., core-state relax-
ations�, which could shift the calculated enthalpy by less
than a mRy, can significantly affect the calculated transition
pressures. On the other hand, core electrons seem to have a
negligible effect in determining the equilibrium volume, bulk
modulus, and even phonon dispersions �see below�.

Our LDA and GGA results are consistent with previously
reported GGA calculations;11,12 discrepancies arise with the
LDA results reported in Ref. 10, which predict 205�20 and
565�60 GPa for fcc→hcp and hcp→bcc transition pres-
sures, respectively. This discrepancy could arise from Ref.
10 using only 10–15 points to fit the equation of state: As
reported there, this approximation could significantly affect
transition pressures due to the aforementioned small enthalpy
differences between competing structures. We also observe
that all parameters of the calculation, and particularly the
k-point sampling of the Brillouin zone, need to be carefully
converged.

Although the pressure that we obtain for the fcc→hcp
transition, 175 GPa, is consistent with previous works,11,12

this result is lower than the experimental value of 217 GPa.
As suggested in Refs. 11 and 12, this discrepancy could arise
from excluding the phonon contribution to the free
energy—a hypothesis that should be thoroughly tested, but
that is beyond the scope of this Brief Report.

It should be noted that in our simulations, the hcp phase
was always fully relaxed to identify the optimal, equilibrium
c /a ratio; this is shown in Fig. 2�a�. Comparison with experi-
ment at 292 GPa finds agreement in the c /a ratio to within
0.1% and well within experimental uncertainty.17 At
222 GPa, the predicted value of the c /a ratio differs from
experiment by 1%. Since experiments observe a region be-

TABLE I. The equilibrium lattice parameters, bulk moduli, and
transition pressures of Al calculated with the different pseudopoten-
tials described in the text, and compared to experimental results.

a0 �Å� B0 �GPa� fcc→hcp fcc→bcc hcc→bcc

11e GGA 4.044 73.2 175 GPa 275 GPa 383 GPa

11e LDA 3.985 83.7 172 GPa 272 GPa 380 GPa

3e GGA 4.055 71.8 180 GPa 285 GPa 420 GPa

Expt. 4.025a 78.3a 217 GPa

aReference 26.
bReference 17.

FIG. 1. �Color online� �a� Enthalpy of the bcc phase �3e and 11e
GGA� relative to the enthalpy of the fcc phase �3e and 11e GGA,
respectively�. �b� Enthalpies for hcp and bcc phases relative to the
enthalpy of the fcc phase. The fcc→hcp, fcc→bcc, and hcp
→bcc transition pressures are 175, 275, and 380 GPa, respectively.

FIG. 2. �Color online� �a� The c /a ratio of the hcp phase plotted
with increasing pressure. �b� Volume vs pressure for the fcc, hcp,
and bcc phases plotted relative to the fcc phase.
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tween 217 and 260 GPa in which the fcc and hcp phases
coexist, this discrepancy is made more reasonable consider-
ing that the system might be out of equilibrium. We also
show in Fig. 2�b� the equilibrium volumes for the different
phases as a function of pressure. Volume differences between
the phases are −0.055, −0.104, and −0.040 Å3 for the fcc
→hcp, fcc→bcc, and hcp→bcc transitions, respectively,
corresponding to volume changes of 0.6�6�%, 1.4�0�%, and
0.6�1�%. We note that in our phase sequence, and in those
discussed in literature,7–9 only the fcc, hcp, and bcc phases
are considered. As a brief self-check, we performed variable-
cell relaxations at 1000 GPa using a four-atom unit cell and
five random distinct perturbations. The bcc structure was al-
ways found.

In order to estimate the dynamical response of aluminum
under compression, we calculated both the phonon disper-
sions of the fcc phase and the cubic elastic constants �these
were derived from the sound velocities, i.e., the slope of the
phonon dispersions around �� as a function of pressure. Ex-
periments have shown that the fcc phase may exist at pres-
sures above the transition pressure either as a superpressur-
ized phase16 or as a two phase region.17 Therefore, the
mechanical properties of fcc aluminum at pressures beyond
the equilibrium transition pressure, and any mechanical in-
stabilities that may lead to mechanical failure are relevant to
high-pressure experiments.

We calculated the phonon dispersions up to 1150 GPa us-
ing DFPT. For aluminum, this method has been shown to
accurately reproduce experimental values at P=0.24 Our cal-
culations were performed with the 3e GGA pseudopotential,
but compared at selected points in the Brillouin zone with
11e GGA calculations at pressures up to 1200 GPa. As
shown in Fig. 3, the discrepancies between the 3e and 11e
results are at most of the order of 3%–4% at the highest
pressure, and much smaller below that. The phonon disper-
sions are shown in Fig. 4�a� and we highlight the appearance,
with increasing pressure, of a distinct softening of the lowest
energy mode in the �110� direction. This starts to become
evident at approximately 400 GPa, and is complete at
725 GPa, as highlighted in Fig. 4�b�. Since the slope of the
dispersion curves is directly related to the elastic constants
�Eq. �1��, we can extract the stiffness tensor from the vibra-
tional modes near �; in our case, the Born28 criterion for
stability is

1

2
m� 1

�

�E

�k110
�2

= c11 − c12 � 0. �1�

As Fig. 5 shows, the stiffness against shear deformation,
�c=c11−c12, decreases above 400 GPa and goes to zero
around 725 GPa, resulting in a Born28 instability. These re-
sults complement existing studies of the properties of bulk
aluminum11,13 and suggest another shear failure mode, sup-
porting previous studies suggesting shear failure modes to be
inherent to bulk aluminum.13,15 More advanced treatments of
mechanical stability including such effects of anharmonic
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FIG. 3. �Color online� The frequencies of the two nondegenerate
acoustic phonon modes at X calculated with both the 3e and 11e
pseudopotentials and plotted as a function of increasing pressure.

FIG. 4. �Color online� �a� The lowest energy branch of phonon
dispersion for fcc Al with increasing pressure. �b� As above, en-
larged around �, in the K→� direction. A steady flattening is ob-
served with increasing pressure.
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FIG. 5. �Color online� Elastic constants as obtained from the
sound velocities along the �100�, �110�, and �111� directions. Ac-
cording to the Born criterion, the fcc phase becomes mechanically
unstable when �c=c11−c12=0; this occurs around 725 GPa.
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modes24 and internal shear stresses created by loading29–31

need to be considered in relation to the specific experimental
setup before reliable maximum stable pressures can be de-
finitively determined.
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