PHYSICAL REVIEW B

VOLUME 50, NUMBER 24

15 DECEMBER 199%4-11

Projector augmented-wave method

P. E. Bl6chl
IBM Research Division, Zurich Research Laboratory, CH-8803 Rischlikon, Switzerland
(Received 13 June 1994; revised manuscript received 22 August 1994)

An approach for electronic structure calculations is described that generalizes both the pseu-
dopotential method and the linear augmented-plane-wave (LAPW) method in a natural way. The
method allows high-quality first-principles molecular-dynamics calculations to be performed using
the original fictitious Lagrangian approach of Car and Parrinello. Like the LAPW method it can be
used to treat first-row and transition-metal elements with affordable effort and provides access to the
full wave function. The augmentation procedure is generalized in that partial-wave expansions are
not determined by the value and the derivative of the envelope function at some muffin-tin radius,
but rather by the overlap with localized projector functions. The pseudopotential approach based
on generalized separable pseudopotentials can be regained by a simple approximation.

I. INTRODUCTION

In the past few decades, electronic structure calcula-
tions have made significant contributions to our under-
standing of solid-state properties. The majority of such
calculations are based on the local-density approximation
(LDA) of the density-functional theory.!»? The density-
functional theory maps the ground state of an interacting
electron gas onto the ground state of noninteracting elec-
trons, which experience an effective potential.

Numerous methods have been developed to solve the
resulting one-particle Schrodinger equation of the LDA.
The most widely used electronic structure methods can
be divided into two classes: (i) the linear methods® de-
veloped by Andersen from the augmented-plane-wave
(APW) method*® and the Korringa-Kohn-Rostocker
method®7 and (ii) the pseudopotential method based on
norm-conserving ab initio pseudopotentials invented by
Hamann, Schliiter, and Chiang.® A third class, primar-
ily employed in chemistry, uses Gaussian basis sets to
expand the full wave functions.

The linear methods can be subdivided into a vari-
ety of methods ranging from the most accurate linear
augmented-plane-wave (LAPW) method to the linear
muffin-tin orbital (LMTO) method, which, in a simpli-
fied version, even allows some electronic structure calcu-
lations to be performed with paper and pencil. The lin-
ear methods deal with the full wave functions and treat
all elements in the Periodic Table, i.e., s-, p-, d-, and
f-electron systems, on the same footing.

The pseudopotential method, when used in combina-
tion with a plane-wave basis set, on the other hand, has
the advantage of formal simplicity. When applied to ei-
ther first-row elements or systems with d or f electrons,
even pseudopotentials become very “hard,” so that in
practice either very large or complicated basis sets in-
stead of plane waves have to be used. Similarly, treating
semicore states as valence states, which is often necessary
for early transition-metal elements and alkali and alkaline
earth metals, results in hard pseudopotentials and affects
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the transferability of the pseudopotential. Vanderbilt’s
ultrasoft pseudopotentials®1? have improved this situa-
tion significantly by relaxing the norm-conservation con-
dition that is usually imposed on the pseudopotential ap-
proach. This method also allows first-row and transition-
metal elements to be dealt with in an economical way.

Car and Parrinello have combined the density-
functional theory with molecular-dynamics techniques.!!
Here both the electronic structure problem and the dy-
namics of the atoms are solved simultaneously by a set of
Newton’s equations. In this way not only has the struc-
ture determination become a straightforward technique,
but the fully dynamic time evolution of the atomic struc-
ture has also become accessible.

The Car-Parrinello method was first applied in the con-
text of the plane-wave pseudopotential method. There
is considerable interest in applying the same technique
to all-electron (AE) methods, which allow one to deal
efficiently with first-row and transition-metal elements
and which supply information about the wave func-
tion close to the nucleus probed by several experimen-
tal techniques, but not provided by the pseudopoten-
tial approach. These are, among many others, hyper-
fine parameters'? and electric field gradients.!3'* Sev-
eral features of the Car-Parrinello method have been im-
plemented into existing AE methods such as the com-
bined minimization of electronic and nuclear degrees of
freedom.!®1® To my knowledge, however, no energy-
conserving molecular-dynamics simulation has been per-
formed to date that can compare in terms of quality with
simulations using the pseudopotential approach.

This article describes an approach that combines the
versatility of the LAPW method with the formal sim-
plicity of the traditional plane-wave pseudopotential ap-
proach. The method extends the augmented-wave meth-
ods, such as the LAPW method, and the pseudopoten-
tial method in a natural way. As an AE method it pro-
vides the full wave functions that are not directly acces-
sible with the pseudopotential approach, and the poten-
tial is determined properly from the full charge densi-
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ties. It will be demonstrated that the accuracy of the
method described here compares well with the most ac-
curate existing electronic structure methods based on
the local-density approximation. The quality of first-
principles molecular dynamics obtained with the present
AE approach is in line with that of state-of-the-art Car-
Parrinello calculations. Hence the first energy-conserving
molecular-dynamics calculations based on the full wave
functions were made possible. Finally, it can be imple-
mented with relatively minor effort into existing pseu-
dopotential codes.

The method has many similarities with both the ex-
isting linear methods and the pseudopotential approach.
We can therefore expect that this method will close the
gap between the two. The LAPW method is a special
case of the present method, and the pseudopotential for-
malism is obtained by a well-defined approximation.

This article is organized as follows. Section II estab-
lishes the principles of the method. Section III describes
which approximations are required in real calculations.
Section IV derives the expressions for the Hamilton op-
erator and forces. Section V describes the implemen-
tation in a first-principles molecular-dynamics scheme.
Section VI describes the basic ingredients used in the
method, such as partial waves and projector functions.
Section VII contains a detailed analysis of the errors in-
troduced in Section III. Section VIII is devoted to nu-
merical test calculations. Section IX shows the relation
between the new method and existing approaches.

II. FORMALISM

A. Projector augmented-wave functions

Wave functions of real materials have very different
signatures in different regions of space: in the bonding
region the wave function is fairly smooth, whereas close
to the nucleus the wave function oscillates rapidly owing
to the large attractive potential of the nucleus. This is the
source of the difficulty of electronic structure methods to
describe the bonding region to a high degree of accuracy
while accounting for the large variations in the atom cen-
ter. The strategy of the augmented-wave methods has
been to divide the wave function into parts, namely, a
partial-wave expansion within an atom-centered sphere
and envelope functions outside the spheres. The enve-
lope function is expanded into plane waves or some other
convenient basis set. Envelope function and partial-wave
expansions are then matched with value and derivative
at the sphere radius.

Even though the present method has been inspired by
the existing augmented-wave methods, I approach the
problem in a somewhat different way. The relation of
my approach to the commonly used one described above
will be described in Sec. IX B. Concerning the following
derivation it is emphasized that the present method is, in
a certain sense, the most general augmentation scheme.

Let us consider the Hilbert space of all wave functions
orthogonal to the core states. The physically relevant
wave functions in this Hilbert space exhibit strong os-
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cillations, which make a numerical treatment cumber-
some. Therefore, we transform the wave functions of this
Hilbert space into a new, so-called pseudo (PS) Hilbert
space. Mapping the physical valence wave functions onto
the fictitious PS wave functions thus defined shall be a
linear transformation and it shall transform the physi-
cally relevant AE wave functions onto computationally
convenient PS wave functions. The PS wave functions
will be identified with the envelope functions of the lin-
ear methods or the wave functions of the pseudopoten-
tial approach. An AE wave function is a full one-electron
Kohn-Sham wave function and is not to be confused with
a many-electron wave function. All quantities related to
the PS representation of the wave functions will hence-
forth be indicated by a tilde.

This transformation changes the representation of the
wave functions in a way reminiscent of the change from a
Schrodinger to a Heisenberg picture. Knowing the trans-
formation 7 from the PS wave function to the AE wave
functions, we can obtain physical quantities, represented
as the expectation value (A) of some operator A, from
the PS wave functions |¥) either directly as (¥|A|¥) af-
ter transformation to the true AE wave functions |¥) =
T|¥) or as the expectation value (4) = (¥|A|¥) of a PS
operator A = T1AT in the Hilbert space of the PS wave
functions. Similarly we can evaluate the total energy
directly as a functional of the PS wave functions. The
ground-state PS wave functions can be obtained from

OEITIV) _, 779y . (1)

(Y|

Next, we choose a particular transformation. Since we

will exploit the characteristics of particular atom types,

we consider only transformations that differ from identity

by a sum of local, atom-centered contributions 7g such
that

T=1+>» Tr. (2)
R

Each local contribution 7z acts only within some aug-
mentation region Qg enclosing the atom. This implies
that AE and PS wave functions coincide outside the aug-
mentation regions. The equivalent of the augmentation
region in the linear methods is the muffin-tin or atomic
sphere. In the pseudopotential method the augmentation
region corresponds to the so-called core region.

The local terms Tg are defined for each augmenta-
tion region individually by specifying the target func-
tions |¢;) of the transformation 7 for set of initial func-
tions I(;;,) that is orthogonal to the core states and other-
wise complete in the augmentation region,?’ namely, by
|¢:i) = (1 + 7A~R)|¢,~) within Qg. I call the initial states
|¢;) PS partial waves and the corresponding target func-
tions |¢;) AE partial waves. A natural choice for these
functions for the AE partial waves are solutions of the
radial Schrédinger equation for the isolated atom, which
are orthogonalized to the core states if necessary. Hence
the index i refers to the atomic site R, the angular mo-
mentum quantum numbers L = (£, m), and an additional
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index n to label different partial waves for the same site
and angular momentum. For each such AE partial wave
let us choose a PS partial wave denoted by |¢;). The PS
partial waves must be identical to the corresponding AE
partial waves outside the augmentation region and should
themselves form a complete set of functions within the
augmentation region. The remaining degree of freedom
in the choice of the PS partial waves will be exploited
to map the physically relevant AE wave functions onto
computationally convenient PS wave functions. In our
case these are smooth functions.

This formal definition must be turned into a closed
expression for the transformation operator. We make use
of the fact that, within the augmentation region, every
PS wave function can be expanded into PS partial waves:

|¥) = |i)e; within Qp. (3)

Since |¢;) = 7'|<z~5,~), the corresponding AE wave function
is of the form

|¥) = T1¥) = ) " |4i)e; within Qp, (4)

with identical coeflicients ¢; in both expansions. Hence
we can express the AE wave function as

®) =) ~ Z |6i)e: + Z ¢a)ei s (5)

where the expansion coefficients for the partial wave ex-
pansions remain to be determined.

Since we require the transformation 7 to be linear,
the coefficients must be linear functionals of the PS wave
functions. Hence the coefficients are scalar products

ci = (il ¥) (6)

of the PS wave function with some fixed functions (p;|,
which I will call projector functions. There is exactly one
projector function for each PS partial wave.

The projector functions must fulfill the condition
> 1#:)(B:| = 1 within Qg, so that the one-center ex-
pansion ), |4:) (5| ¥) of a PS wave function is identical
to the PS wave function |¥) itself. This implies that

(Bilds) = 6:j - (7)

The projector functions are localized in the augmentation
region, even though more extended projector functions
could in principle also be chosen. The most general form
for the projector functions is (p;| = Zj({(fk|¢1)})i_jl(fj|,
where the | f;) form an arbitrary, linearly independent set
of functions. The projector functions are localized if the
functions |f;) are localized. The reader interested at this
point in a practical procedure to determine partial waves
and projector functions might wish to jump to Sec. VI.
In summary, a linear transformation

T=1+ Z(ltﬁi) — |@:)) (Bl (8)
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between the valence wave functions and fictitious PS
wave functions has been established. Using this trans-
formation, the AE wave function can be obtained from
the PS wave function by

|¥) = %) + Z(|¢i) — 16:) B:®) - (9)

The three quantities that determine this transformation
are (i) the AE partial waves |¢;) obtained by radially
integrating the Schrodinger equation of the atomic en-
ergy for a set of energies €} and orthogonalization to the
core states; (ii) one PS partial wave |¢~3,-), which coincides
with the corresponding AE partial wave outside some
augmentation region for each AE partial wave; and (iii)
one projector function |p;) for each PS partial wave lo-
calized within the augmentation region and which obeys
the relation (p;|¢;) = di;.

The partial waves are functions on a radial grid, mul-
tiplied with spherical harmonics. In our case the PS
wave functions are expanded into plane waves, but other
choices are equally possible. The projectors are also cal-
culated as a radial function times spherical harmonics,
but are then transformed into the same representation
as the PS wave functions, which, in our case, is a plane-
wave representation. Since the projectors are tied to the
atomic positions and since their shape is independent of
the potential, their Fourier components are expressed as
a product of a form factor and a structure factor.

The core states |¥€) are decomposed in a way simi-
lar to the valence wave functions. They are decomposed
into three contributions: a PS core wave function |¥¢),
which is identical to the true core state outside the aug-
mentation region and a smooth continuation inside; an
“AE core partial wave” |¢°), which is identical to the AE
core state |¥¢) and is expressed as a radial function times
spherical harmonics; and finally a “PS core partial wave”
|¢°), which is identical to the PS core state |¥€), but rep-
resented as a radial function times spherical harmonics.
The core state is therefore expressed as

[T°) = [8°) +[4°) — %) - (10)

In contrast to the valence states, no projector functions
need be defined for the core states, and the “coefficients”
of the one-center terms are always unity. Furthermore,
consistent with the frozen-core approximation, the core
states are imported from an isolated atom. In prac-
tice, a soft core scheme with core states that adjust
to the instantaneous potential is also conceivable (see
Sec. VIID 2), but has not been implemented. In the fol-
lowing, the core states are implicitly included when sum-
ming over energy states. Note that the corresponding
coefficients are not defined via the scalar product with a
PS wave function, even though, for the sake of simplicity,
I will still use the symbol for all states.

It should be noted that the frozen-core approximation
allows certain nontrivial changes of the core wave func-
tion during the self-consistency or molecular-dynamics
simulation. The frozen-core approximation only restricts
the variational degree of freedom to a simple unitary
transformation among the core states (and occupied va-
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lence states). It does allow mixing among the core states
due to changing potential. Therefore, to test the accu-
racy of the frozen-core approximation one should never
compare the core states of the isolated atom on a one-to-
one basis with those obtained from a relaxed-core calcu-
lation in a crystal or molecule.

At this point I will not discuss the components of the
projector augmented-wave (PAW) method further. They
are described in Sec. VI of this article. I will, however,
continue to impose the condition that the AE and PS
partial waves form complete sets of functions within the
augmentation regions. In practical calculations the num-
ber of partial waves and projectors needs to be truncated.
The way to truncate the series and the errors involved are
also described in detail in later sections of the paper.

Here and in the following I will make extensive use of
Dirac’s bra and ket notation. A wave function in real
space is written as (r|¥) = ¥(r); its complex conjugate
function is (¥|r) = ¥*(r). The Fourier components of
the wave function are (G|¥) = ¥(G) with a similar def-
inition of its complex conjugate. A plane wave is of the
form (r|G) = exp (¢Gr). I have adopted the convention
for the Fourier transform that the forward transform of
a function f is (r|f) = Y 4 (r|G){(G|f) and the backward
transform is of the form (G|f) = 1/V [, dr(G|r){r|f),
where V is the volume of the unit cell.

B. Operators

Since in the PAW method the PS wave functions in-
stead of the AE functions play the role of the variational
parameters, we need to be able to obtain observable
quantities as the expectation values of the PS wave func-
tions. As the representation of the wave functions has
been changed, we also need to transform our operators
into new, so-called PS operators.

Consider some operator A: Its expectation value (A) =
> fn(¥,|A|T,.), where n is the band index and f,, is the
occupation of the state, can be obtained alternatively as
(A) = >, fa(¥n]|A|¥,). For quasilocal operators, such
as the kinetic-energy operator —V?2/2 and the real-space
projection operator |r){r|, which are needed to evaluate
total energy and charge density, the PS operator has the
form

A=TYAT
= A+ 15)(:lAlg;) — (B:lAl$)) (55| - (11)

%,
To arrive at Eq. (11) I expanded 7 using Eq. (8) and
deleted terms that cancel because Y, |¢;)(p;| = 1 within

the augmentation region Qg and |¢;) = |¢4;) outside the
augmentation region. Note that only on-site terms con-
tribute.

For truly nonlocal operators we need to add a term
AA to the expression Eq. (11) given as

AA=3 15 (i - <¢">i|>A(1 -3 1<is,~><ﬁj|>
HL=BNBDAGS) — GG (12)
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The general form of an operator is strongly reminiscent
of generalized separable pseudopotentials.?! The PS op-
erator contains three parts: The first part is an operator
that directly acts on the PS wave function and is evalu-
ated either in real or reciprocal space. The remaining two
parts contain the projectors and the expectation value of
the operator either between the AE or the PS partial
waves, which can be easily obtained on radial grids using
spherical harmonics and Clebsch-Gordan coefficients. If
the partial waves are unbound, the individual terms A’
and A! are not defined. However, since the PS and AE
partial waves are identical outside the augmentation re-
gion, these tails cancel exactly for each pair of partial
waves. In practice, this problem is solved by truncat-
ing the AE and PS partial waves somewhere outside the
augmentation region in a completely identical way.

There is an additional freedom to add a term of the
form

B~ S [5:)(: Bl&;) (51 (13)

i,

to the right-hand side of Eq. (11), where B is an ar-
bitrary operator that is localized within the augmen-
tation regions. It is easily shown that the expectation
value of this term is zero for any PS wave function,
since |¥) = >, |¢:)(P;|¥) within the augmentation re-
gion. This freedom can be exploited when the operator A4
cannot easily be evaluated in a plane-wave expansion. An
example is the Coulomb potential of the nucleus, which
is problematic due to its singularity at the nuclear site.
In this case we may construct a new potential that is
identical to the true potential outside the augmentation
region and a smooth continuation inside. The difference
between the two potentials is localized within the aug-
mentation region and therefore can act as the operator
B in Eq. (13). By adding a term of the kind of Eq. (13)
to the PS electrostatic potential obtained from Eq. (11),
we can cancel the Coulomb singularity in the plane-wave
part and obtain an expression that is less sensitive to a
truncation of number of plane waves.

We now obtain the charge density following the de-
scription given in Eq. (11). The charge density at a
point 7 in space is the expectation value of the real-space
projection operator |r)(r|. Hence the charge density is
given by

n(r) = a(r) + n'(r) — al(r), (14)
where
Ar) =D fn(Tnlr)(r|¥n) (15)
nt(r) = Y fa(Talfi)(bilr)(rld;) (B;1¥n),  (16)
n,(4,5)
and
al(r) = Z FnTnlBi)(Bilr)(r]d;) (Bs|¥n) - (17)

n,(4,5)
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Note also that n! contains the contribution of the core
states Y (@5 |r)(r|¢S) and that 7! as well as 7 contain
the contribution of the PS core states 3, (¢S |r)(r|¢S)
and 3, (¥S|r)(r|¥S), respectively.

In practice, we do not construct a PS core state for
each core state individually unless we are interested in
the physics related directly to the core states. Instead,
we construct only a PS core density.

C. Total energy

Similar to the expectation values, the expression for
the total energy functional

E= an<wn|—§vzlwn>

o [ ot

(18)

can also be divided as E = E + E! — E', into a smooth
part E, which is evaluated on regular grids in Fourier or
real space, and two one-center contributions E! and E‘l,
which are evaluated on radial grids in an angular mo-
mentum representation. Let us denote the point charge
density of the nucleus by nZ and the energy per electron
from exchange and correlation as €,.. Here and in the
following I use hartree atomic units (A = e = m, = 1).
The three contributions to E are

E= an@ |-1V2|¥,,)

/dr/d ' "+")("|+") /drfw

+/drﬁexc(ﬁ) , (19)

V= 3 FulEaldi i - 1V?165) 51 B

n,(4,5)

/dr/d (0! +n®)(n! +n?)

=]

+ [ drmtee(nt) (20)

Y FalTalpi) (@il =3 V165) (Bs | Tn)

n,(4,5)

/dr/d (A +n)_(:1,,|+n) /drﬁlf)
+/drﬁlexc(ﬁ1). (21)

The potential ¢ is an arbitrary potential localized in
the augmentation regions. Its contribution to the total
energy vanishes exactly because # = ! within the aug-
mentation region. Since the potential ¥ contributes only
if the partial wave expansion is not complete, it is used
to minimize truncation errors.
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In addition, let us introduce the so-called compensa-
tion charge density 7. After adding an appropriate com-
pensation charge density to the PS charge density and
its one-center expansion, the difference of the AE and
the PS one-center contributions (n! + n%) — (”! + )
to the charge density has vanishing electrostatic multi-
pole moments and hence no longer interacts with charges
outside the augmentation region: This energy has been
transferred to E. Here I made use of the fact that a
localized charge distribution produces a potential that,
outside the region of localization, depends only on the
electrostatic multipole moments, but not on the shape of
the charge distribution.

The identity E = E + E! — E! for a complete set of
partial waves can be seen as follows. (Those not inter-
ested to follow through this detail may proceed to the
next paragraph.) One divides space into augmentation
regions and an interstitial region. Now we use the identi-
ties n = n! and #! = 7 inside the augmentation regions
and the identities n = 72 and n' = A! in the interstitial
region. One can convince oneself easily that the decom-
position is true for the kinetic energy (see Sec. II B), for
the exchange and correlation energy, and for the term
proportional to 9. The decomposition for the electro-
static energy is more complex to show: Let us add a
charge density n! + nZ — 7! — @ to 2 + 7 in Eq. (19)
and to 7! + 7 in Eq. (21). The effect of this addition
vanishes: First, the term_quadratic in nl4+n? —al —n
cancels exactly because E and E! are added with oppo-
site sign. Second, the terms linear in n! + nZ — 7! — 7
are proportional to 7 — 2!, which is zero within the aug-
mentation regions, and to the electrostatic potential of
n! + nZ — Al — i, which is zero in the interstitial re-
gion, because the density itself is localized within the
augmentation region and has zero electrostatic multipole
moments. Once this term has been added, the electro-
static contributions of the last two terms Egs. (20) and
(21) are identical and cancel, while the first term is the
true electrostatic interaction of the full charge density
n+n? = 7+ n' — Al + nZ. This special form of the
total energy has been chosen in order to obtain a strict
separation into partial-wave and plane-wave expansions
and to achieve rapid convergence for both expansions.

The compensation charge density 7 = ), 7agp With

fp(r)

= gre(r)QrL (22)
7

is expressed as a sum of generalized Gaussians

gri(r) = Celr — R|'Yy(r — R)e~(n=RI/T9*  (23)
with the normalization constant C, determined such that
its multipole moment f dr r*Yr(r)gr(r) is unity. Yz, isa
spherical harmonic function or its real counterpart. The
decay length 7. is sufficiently small so that the compensa-
tion charge density is localized within the augmentation
regions. The value of r. depends on the particular atom
type; R stands for a particular nuclear site and L = (£, m)
represents the angular momenta in the spherical harmon-
ics expansion. The multipole moments Q gy, are given by
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OnL = /dr|r — Rf*[nk(r) + n&(r) — ik (r)]YZ(r — R) .

(24)

Since the Gaussians are required to decay within the
augmentation regions, they often have high Fourier com-
ponents. This would require a large plane-wave cutoff
in the PS charge density. The problem is solved by
a well-known trick already used in the pseudopotential
approach:?? We introduce a second, primed compensa-
tion charge density 7/, which has the same multipole mo-
ments as 7, but uses generalized Gaussians g (r) with
a larger decay constant 7/, than the unprimed compensa-
tion charge density. It may extend over several atomic
sites, but should not contribute higher Fourier compo-
nents than the PS charge density itself does.

Now we rewrite the electrostatic energy in E:

/ /d’ (R +n) (A +R)

=7

-3/ /d’
/drn ZURR:
R,R’

The first term in the new expression (25) involves only
smooth functions and can be evaluated in Fourier space
as

n+n')(n+n')
=7

(25)

7(G) +7'(G)
2V Y *“TI . (26)
G
The second part of Eq. (25) introduces a potential

it = [V =HE)

T (27)
which has high Fourier components just as the original
compensation charge density does. However, they do not
contribute to the total energy because they are multi-
plied with the high Fourier components of the PS charge
density, which are exactly zero if a plane-wave cutoff is
imposed. Hence this term can also be exactly evaluated
in Fourier space. The spacial extent of this potential in
real space is identical to that of the smooth compensation
charge density n';.

The last term in Eq. (25) is a short-ranged pair po-
tential between the atoms

UR,RI:%/dT/dT

which can be evaluated analytically.22"2® The range of
this pair potential is twice that of the smooth compen-
sation charge densities 7i/. It depends explicitly on the
charge distributions via the multipole moments Qgrr.
Note that the potential ¥ and the pair potential Ug g
contain nonspherical terms and adjust to the actual
charge density.

, An(r) g (r') — Ap(r)ih ()
fr =7

b

(28)
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Finally, we need to evaluate the energy of exchange and
correlation for a one-center expansion. We adopt a proce-
dure from previous full-potential LMTO calculations?%-27
and expand the corresponding energy density in the de-
viation of the one-center charge density from its spherical

T
part np oo

/dr "}tEXC(”}Z) = /d" nh,l:ofxc("}?,tzo)

6/Lxc nR( 0)( 1.2
on},

s TR (1)
) [ar b
+0((nk,1)?) » (29)

where py.(n) = d[nexc(n)]/dn. The angular momentum
components of the one-center charge density are denoted
by n}z, - In practice a Taylor expansion up to the second
order has shown to be sufficiently accurate.?® The one-
center contribution of the PS charge density is treated
identically.

III. FROM AN EXACT FORMALISM
TO A PRACTICAL SCHEME

Up to this point the PAW method is an exact im-
plementation of the density-functional theory within the
frozen-core approximation. However, we have required
certain completeness conditions for the plane-wave basis
set for the PS wave functions and the AE and PS partial
waves. In order to arrive at a practical scheme, let me
now introduce two approximations.

(i) Plane waves are included only up to a given plane-
wave cutoff Epw defined as the maximum of G2/2.

(ii) The number of AE partial waves, PS partial waves,
and projectors is finite. However, the truncation of AE
and PS partial waves and projector functions are done in
exactly the same way. That is, for each AE partial wave
there is a corresponding PS partial wave and its projector
function.

Both approximations can be controlled in a straight-
forward way, by increasing either the plane-wave cutoff
and/or the number of partial waves. The convergence for
both is rapid if a suitable set of partial waves and pro-
jectors has been selected. Typically good convergence
is obtained for plane-wave cutoffs of 30 Ry and one or
two partial waves per site and angular momentum, with
a maximum angular momentum of typically £ = 1 or
{ = 2. The partial-wave truncation will be discussed in
detail in Sec. VIL

The two approximations define a new total energy
functional, and we have to establish that this new func-
tional is sufficiently close to the correct functional for
the physically relevant states. Once this new functional
is defined, no further approximations are allowed be-
cause they would destroy the energy conservation in a
molecular-dynamics simulation. Energy conservation is
the most important test of the quality of any molecular-
dynamics simulation. Many previous electronic struc-
ture methods have concentrated on providing a satisfac-
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tory description of the potential. For molecular-dynamics
simulations the primary quantity is the total energy func-
tional because small inconsistencies between forces and
total energy can create substantial difficulties in a simula-
tion. An accurate description of the potential follows, of
course, from an accurate description of the total energy
functional.

There are two further approximations that are not nec-
essary, but are employed to accelerate the calculations:
One can introduce a plane-wave cutoff in the representa-
tion of the PS charge density and an angular momentum
truncation in the one-center PS and AE densities. With-
out these cutoffs, the PS charge density has plane-wave
components corresponding to four times the plane-wave
cutoff for the wave function and the one-center expan-
sions have angular momentum components of up to twice
the maximum angular momentum of the partial waves.
However, a number of these terms contribute little to the
total energy, so that these approximations are convenient
ways to save computation time. One can truncate the
angular momentum expansion safely at £ = 2, and the
plane-wave cutoff for the density can be chosen in many
cases to be only twice the value of the wave function.

IV. FORCES, HAMILTON OPERATORS, AND
OVERLAP MATRICES

In order to find the ground state of the density func-
tional or to propagate wave functions and atoms in a
molecular-dynamics simulation, one needs to calculate
the gradients of the total energy functional with respect
to all the variational parameters, namely, the PS wave
functions and the atomic positions. In the following
subsections I shall derive explicit expressions for forces,
Hamilton operators, and overlap matrices.

A. Overlap operator

The overlap matrix in the AE representation is given
simply by the matrix elements of the unity operator.
Consequently plane waves form an orthogonal basis set
in the AE representation. The PS version of the unity
operator obtained via Eq. (11), however, is a nonlocal
operator of the form

O =1+ [p:)[(4ile;)

7

— (:16:))(B1 - (30)

Hence, in the PS representation, plane waves are no
longer orthogonal, that is, (G|O|G’) # g ', if the PS
overlap operator O differs from unity. This is a direct
consequence of relaxing the condition of norm conser-
vation: The PS overlap operator obviously reduces to
the unity operator if the norm-conservation condition

(¢ild;) = (¢i]¢;) is imposed.

B. Hamilton operator

The Hamilton operator is the first derivative of the to-
tal energy functional with respect to the density operator
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P =3 ,.Yn)fn(¥s,|, where f, denotes the occupations
and |¥,) the orthogonal eigenfunctions of the density
operator. This can be explained as follows: Since the ex-
pectation value of any one-particle operator A is the trace
(A) = Tr[pA] of the product between the one-particle op-
erator and the density operator, the first derivative of the
total energy with respect to the density operator can be
written as

_1ly2
op

OE OTx[|r)(r|p]
an(r) dp

- _%vz Y, (31)

where the potential is v(r) = |r) 8n(r)(r|, which is the
well-known form of the Hamilton operator.

As the variational parameters of the PAW method are
the PS wave functions, we construct a PS Hamilton op-
erator H defined as the derivative of the total energy,
given by Egs. (19)-(21), with respect to the PS density
operator 5 = 3, |¥,)fn(¥,| with wave functions that
obey the orthogonality condition (¥,|0|¥,,) = 6pm. In
this section we shall derive the explicit expressions for
the PS Hamilton operator that will be needed to set up
the Kohn-Sham equations or the equations of motion for
first-principles molecular dynamics.

Let us treat the potential energy as a functional of four
arguments 72, n!, 7!, and the multipole moments Qry.
The multipole moments, which determine the compen-
sation charge densities, are themselves unique functions
of the one-center densities. This choice—which is not an
approximation—will simplify the bookkeeping in the fol-
lowing derivation. The derivative with respect to the PS
density operator is then obtained as

OE afmﬁf] O 0
9 9p "on 05
/ dr OE aQRL)_
dQrr On 3/3

0E O0QrL
Z 8QRL anl ) 6;3 (32)

+/(

where
T = —%Vz
+ 30150 (46 — 3V2103) — (il — 37°16)) 5]

.5

(33)

is the PS version of the kinetic-energy operator T' =
—V2/2. Note that the three densities 7, n!, and 7!
are linear functions of the PS density operator and their
derivatives with respect to the PS density operator are
obtained easily from Egs. (15)—(17).

The individual terms in Eq. (32) are evaluated as fol-
lows.

(i) The derivative with respect to the PS charge density
is obtained from Egs. (19) and (25) as
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sy — OE [ () + ()
"= 5y = [ @ 7]
+0(r) + o(r) + p.xc[ﬁ('r‘)] . (34)

(ii) Since the multipole moments enter the total energy
expression only via the compensation charge densities 7
and 7/, the corresponding derivative of the total energy
is

oE dr OE O0n(r)

BQRL (91’1,(7‘) 3QRL

OE ow'(r)
o' (r) OQrL

In order to obtain energies and forces in a fully
consistent manner—a requirement for exact energy
conservation—we must not evaluate the derivative of a
term in one representation if the total energy is eval-
uated in another. Therefore we divide this expression
further, by following exactly the way the corresponding
total energy terms are evaluated. These representations
are the Fourier mesh denoted by M and the radial grid
RG. A stands for analytical evaluation as used for the
pair potential defined by Eq. (28). We divide the energy
derivative with respect to the multipole moments further
into

5%% =/ dr/ gr SRL(T)A(T

(35)

) + R (1) (1)

/dr/ dr /9RL(T 17‘|T)'—:r,.:"7’1|u( ) (r')

[ e + Al
S [ =] » (36)

using Egs. (19), (21), (25), (27), and (28).
(iii) Using Eq. (24) we can resolve dQgr/dn'(r) and
OQrr /00t (r). We define the potential

OF 6QRL . OF 8QRL
Z QR 371,1(7') Z 0QRrL anl (r)

8E
= ;(

R)*Yi(|r - Rl) (37)
(iv) With the help of Egs. (20),
evaluate the potentials

(21), and (37

), we

OE 0QrrL
vR(r) = 8n1 L 9Qrr Oni(r)
-/ d%l{_”l&u T pxelnk(r)] + v3(r)
(38)
and
1 _ OF OF O0Qrr
vR(T') = - (6711 (r) 8Q g1 OR! (r))

+ pxe[RR(r)] + vR(r) .
(39)

[ P )
R

=7

The potential vk (r) is the one-center expansion of the
AE potential and 9%(r) is the one-center expansion of
the PS potential 4(r) at site R.
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(v) The expressions (33), (34), (38), and (39) can now
be combined using Eq. (32) to form the PS Hamiltonian

- 1
H= -3V 45+ 3 15:) (4] = 3V +0'[gy)

~(il = 3V +5"|8;)) (B - (40)
The full potential
v(r) = o(r) + vi(r) — ot (r) (41)

is, like the full charge density, a superposition of a smooth
plane-wave part and two one-center expansions per site.
The smooth part is a plane-wave sum and the one-center
expansions are radial functions times spherical harmon-
ics. The gradient of the total energy functional with re-
spect to the PS wave functions is then obtained as

dE[¥, R)

3<\i’n] = H|¥,)fn. (42)

R

C. Forces
1. Force theorems

Several force theorems have been discussed in the liter-
ature. Most of them exploit the variational principle for
the electronic wave functions, which says that the total
energy is insensitive to the first order to a change in the
charge density. In other words, the forces acting on the
electrons vanish in the electronic ground state. In the
Hellmann-Feynman theorem?®730 the force on the atoms
follows from an infinitesimal distortion of the atomic po-
sitions alone, while changes of the electronic wave func-
tions do not contribute if the latter are determined vari-
ationally. In the so-called “force theorem,”3'734 not only
the nucleus, but also the electronic charge density within
some arbitrary volume enclosing the nucleus is rigidly
displaced. Both force theorems produce the same result
in the electronic ground state, where no net forces act
on the electrons. Otherwise, their results differ, if the
Kohn-Sham equations have not been obtained in a fully
self-consistent manner.

However, if we use a Lagrangian formalism to calculate
the trajectories, with the electronic wave functions and
the atomic positions as independent parameters, there
is only one choice for calculating the forces. The force
must be identical to the partial derivative of the to-
tal energy with respect to the atomic positions while
keeping the variational parameters of the wave functions
fixed, Fgp = ——g—gh@). Note that the variational param-
eters refer to the Hilbert space spanned by the occupied
one-particle states. If an infinitesimal displacement of
the atoms affects the orthonormality of the one-particle
states, the latter must be rescaled as described below.
This expression for the forces is uniquely defined even
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arbitrarily far from the electronic ground state. The rea-
son for using this expression is not that this force theorem
is particularly insensitive to deviations from the Born-
Oppenheimer surface, but rather that only the direct par-
tial derivative avoids the double counting of forces acting
on the wave functions and those acting on the atoms.

To calculate the derivative with respect to the atomic
positions, one first has to calculate the forces on the
nucleus and second to include the change of the AE
wave functions for fixed PS wave functions, but changing
atomic positions. This term appears because the aug-
mentation depends on the atomic position. The force
on the nucleus is obtained as FHF = —%h\p). It is
the product of the electric field at the nucleus and the
nuclear charge. Its value is derived from an infinitesimal
displacement of the nuclear charge density nZ. The forces
resulting from an infinitesimal change in the wave func-
tions due to the atomic displacement can be written as
FE = _%ll‘i’) + 2E|,4y and are called Pulay forces.® To
use the language of the force theorem, the Pulay forces
describe forces on the electrons that are dragged along
with the nucleus due to the position-dependent basis set.
With the PAW method we must consider Pulay forces
from the frozen-core electrons,3® which shift rigidly with
the nucleus, and the contributions from the augmenta-
tion.

When calculating the Pulay forces, we must also con-
sider the change in the overlap between the wave func-
tions. An infinitesimal change of the atomic positions
must be accompanied by a change in the wave func-
tions that restores the orthogonality. The new occu-
pied wave functions must span the same portion of the
Hilbert space that was occupied before displacement of
the atoms. Hence the new wave function can be expressed
as a linear combination

[¥n(R +dR)) = [¥n(R) + ) [¥m(R)AmndR  (43)

of the PS wave functions with undistorted atomic po-
sitions. Note that these wave functions should not be
confused with the self-consistent wave functions for dis-
placed atomic positions. The new wave functions obey
the orthogonality condition

(¥,.(R+dR)|O(R+ dR)|¥n(R+ dR)) = 6p (44)

to linear order in the displacement, which determines
Anm by

Apm + AL = —(9,|VRO|¥,,) . (45)

Here Vg corresponds to a derivative of a nuclear coor-
dinate rather than to a derivative with respect to an
electronic coordinate, which is denoted by V. To ar-
rive at this expression we used the orthonormality of the
wave function |¥,(R)) before the displacement. We re-
tain the freedom of adding an arbitrary antisymmetric
matrix to A, which is reminiscent of the invariance of the
total energy with respect to a unitary transformation of
the occupied wave functions. This can be seen as fol-
lows: A unitary matrix has the general form e®, where
B is an anti-Hermitean matrix (i.e., B = —B'). Hence

17 961

a unitary matrix can be written in the first order in B
as 1 + B. Since the total energy is invariant with re-
spect to a unitary transformation between the occupied
wave functions, the forces are invariant with respect to
the antisymmetric part of A, given that A is block diag-
onal separating occupied and unoccupied states. Hence
we obtain

Val¥n) = —2 3 [0} (¥ VRO En) + Bona] . (46)

Using Egs. (46) and (47) and

%‘Iﬂ . = zfn(‘i}nlvRﬁl\i’ﬂ) ’ (47)

[¥n) n

we can write the total force including the force on the
nucleus and the Pulay force as

FR = — Efn<\i’n‘vRH|‘i’">
B ELE L MU R A
3 %Bm@nml@m) : (48)

The last term in Eq. (48) describes the effect of elec-
tronic excitations resulting from a unitary transformation
between occupied and unoccupied states and cannot be
specified further. However, its contribution to the force
vanishes if the Hamilton matrix (¥,|H|¥,,) commutes
with the occupations (for example, if it is diagonal). This
is the case if the wave functions are obtained by diagonal-
ization of a Hamiltonian. In a Lagrangian formalism this
term must be chosen in a well-defined way, as described
in a later section.

2. Forces in the PAW method

The change of the AE wave functions is related to a
displacement of the projector functions and the partial
waves

Val¥) = = 3196 - 1965l E)
- Z(|¢i) — 16:))(V5il¥)
3 S ) (FnlVROE) . (49)

The first summation corresponds to a rigid displacement
of the partial waves, the second to change of shape of the
one-center expansions, and the third is the force due to
the change of the overlap. For simplicity, we derive the
forces that result from the three contributions indepen-
dently.

The force resulting from a rigid shift of the partial
waves is treated together with those functions that do not



17 962

explicitly depend on the PS wave functions but are tied
directly to the nuclear positions, such as the rigid shift
of the nucleus n%, the potential oz, and the Gaussians
grL and gy used to expand the compensation charge
densities 7ig and Ay, .

_ Let us first analyze the contribution of the smooth part
E, given in Eq. (19), of the total energy

FO = /drVﬁ’R/dr’ l"+",|
.

—/drﬁCVf) ~ ZVR|QUR,R’ . (50)
R’

/ driv(Vig + Vog)

The first three terms are evaluated in G space. The
fourth is related to the derivative of the pair potential
for fixed multipole moments Qg and is evaluated ana-
lytically. Note that the multipole moments do not change
under an infinitesimal rigid shift of the partial waves be-
cause the center of the Gaussians is also shifted analo-
gously.

Second, let us consider the contribution of the rigid
shift from the one-center terms E! and E'. Their contri-
bution is exactly zero, because all contributing densities
and potentials are rigidly shifted, so that the change can
be reduced to a change of coordinates, which does not
affect the energy. Note that this term also contains the
force on the nucleus.

Next we consider the change of shape of the one-center
densities. Here we can use quantities that have already
been calculated in the Hamiltonian. This force is propor-
tional to the gradient

Va®i = — Y fa((¥n|V5:) (55| ¥n) + (Vnlfi) (VD5 ¥n))
(51)
of ©;;, which is defined as

©ij = ) fn(Unlfi) (B;|¥n) , (52)

where ©;; is a density matrix for the one-center expan-
sions in terms of partial waves.
The force due to the change of shape has the form

FI(Zz) — Z a@” VRG'L] (53)

The energy derivative with respect to ©;; is obtained
similarly to the corresponding term in the Hamiltonian
[cf. Eq. (32)]

OFE OFE
80, /d’(ﬁ
OFE

Z OFE BQRL) 8n1
8Qrr On' ) 90,

OE 8Qry\ 07!
+§;8QRL Bt )aeij’ (54)

where
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an ) i/ 55)
905, (ilr)(r|e;) (
ant - -
= (¢; " 56

This force can be evaluated using the one-center expan-
sions v!(r) and 9(r) of the AE and the PS potential

FQ =~ > Ve ((dnl - %VZ +v'|¢;)
B

— (| — %v2+ﬁ1|<{sj>). (57)

Finally, we consider the forces resulting from the
change of the orthogonality of the AE wave functions.
The corresponding force is of the form

FO = 3 I I G | 18,) (8| V201 82)
Y I, a8,
x 2Re((¥n| V5:) (55 Tm)) ((:l$5) — (:195)) -
(58)

The total force is given by the sum of the three terms

Fr=FY +F® + FY . (59)

V. FIRST-PRINCIPLES
MOLECULAR DYNAMICS

A. Fictitious Lagrangian

The first-principles molecular dynamics is imple-
mented in a straightforward manner once the exact ex-
pressions for the Hamiltonian and the forces have been
obtained. After inclusion of the real kinetic energy of the
nuclei and the fictitious kinetic energy of the PS wave
functions, we obtain a Lagrangian

L= mef,, (T, |\yn>+z I MpR? - EB[|9,),R

+Z(<‘I’ 101% 1) = 8nm) Arms (60)

n,m

where the last term ensures orthogonality of the AE wave
functions via the method of Lagrange parameters. The
resulting Euler-Lagrange equations have the form

(61)

me|n) = —H|¥,) + ; 0|\i!m>Amnfin

and
MgrR = Fg (62)

and are integrated with the Verlet algorithm.3” The La-
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grange parameters for a system at rest are related to the
Hamiltonian via Apm = (Vs |H|¥m)(fr + fm)/2. Note
that for a system at rest the Hamiltonian commutes with
the occupations.

B. Propagation of the wave functions

The equations of motion for the electrons are inte-
grated using the Verlet algorithm3?

18 (4)) = 2180(0)) ~ 18 (-)) = AIFO)
+ 3 OlEm(0) A - (63)

The following notation is used here for the time steps.
The time step is denoted by A. The wave func-
tions have an integer argument denoting the num-
ber of the particular time step relative to the ac-
tual configuration. Hence the series of coordinates is
e 1 F(=2)), ¥ (=), 18 (0)), [T (), [Fn(+2)), -
For convenience let us abbreviate the arguments for the
previous and the subsequent time step. Similar notation
is used for the atomic positions.

As a rule of thumb, the equations of motion for the
wave functions are integrated properly if the time step
A is related to the fictitious mass of the wave functions
my so that AZ/my lies in the range 0.1-0.15 a.u.3® For
most systems the mass my can be chosen to be 1000 a.u.,
resulting in a time step of about 10 a.u. or 0.25 fsec.

During the dynamical simulation, we have to ensure
the orthogonality of the wave functions in an energy-
conserving manner consistent with the accuracy of the
Verlet algorithm.3” The methods were originally invented
for molecular-dynamics simulations of polymers3® that
obey bond-length constraints. Car and Parrinello!!:40
adopted this algorithm in their formulation of first-
principles molecular dynamics. Later Laasonen et al.%!
extended this method to the case of a position-dependent
overlap matrix, as used for Vanderbilt’s ultrasoft pseu-
dopotentials. I have adopted their strategy and extended
it to include the possibility of different occupations for
different states. This will be described in the following.

The wave functions are first propagated without con-
straints, which yields |¥)

- - N o= A?
[¥n) = 2¥n(0)) — [¥n(-)) - HI‘I’n(O))m—\p - (64)

The forces of constraint are added in a second step

A2

my fn ’ (65)

[Tn(+)) = [Tn) = Y 0(0)| ¥ (0))Amn
and the Lagrange parameters A,,,, are determined itera-
tively so that the constraints for the next time step

(‘i’n(+)|0(+)"i’m(+)) = 0nm (66)

are exactly fulfilled within a given tolerance for the over-
lap matrix. O(+) is the PS overlap operator for the next
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time step. It differs from O(0) only if the atoms are mov-
ing. The trajectories determined with this procedure are
exactly symmetric under time reversal, which is crucial
to obtaining energy conservation and predicts the wave
functions accurately to the order A3, consistent with the
overall accuracy of the Verlet algorithm. Furthermore,
the constraints cannot deteriorate if a finite time step is
used.

In practice we first evaluate the forces of constraints
as

Ixn) = 0(0)|¥4(0)) - (67)

Using Eq. (65) I rewrite the constraint equation Eq. (66)
as

A® L X'B+B'X + XtCcx =1 (68)

with the definitions

AQ), = (Ta|O(+)[¥m) (69)
Bom = (ané('l')l\ilm)v (70)
Cnm = (Xn|6(+)|Xm>a (71)
and
A2
Xrmn = Arn (72)

Equation (68) cannot be solved directly for X. There-
fore we obtain X iteratively. Let us first analyze Eq. (68)
in orders of the time step A.

We will see that the leading order is proportional to

A2 AQ = bpm + O(A?), because the forces of con-
straint contribute only in the second order and therefore
|T(+)) = |¥) + O(A?). As the leading order of X, is
proportional to A2, the term XTCX vanishes in leading
order and only the zeroth order of B contributes. The
zeroth order of B is equal to (¥,(0)|0(0)?|¥,,(0)) and
therefore Hermitian. Hence the lowest order of Eq. (68)
in Ais

EB x84

where i = 0 and B®* = (B + B')/2 is the Hermitian
part of B. Equation (73) determines X = X(®) + O(A3)
accurately in leading order.

Analogously to the previous discussion we find that
also the higher orders of X = 3, X(® are obtained from

Eq. (73), with A®) given by

x'B;, = (A%, = 6um),  (73)

A = AG-1) 4 x(@E-Ditp , gpx(-1) 4 x@E-Digx(GE-1)
(74)

However, there are many solutions to Eq. (73). They dif-
fer by a matrix §X = (B®)~!D, where D is an arbitrary
antisymmetric matrix. Only a solution that fulfills

Xifi = fiXii (75)
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will conserve the energy and is of interest.

To obtain X, we diagonalize By, = ), Ullbl Ui, and
obtain its eigenvalues b; and the unitary matrix U,
formed by its eigenvectors. From that we determine

X = 3

P.dsk,l

UwIpUPj(Agilg —851)UNUim  2f,
bp + bl fn + fm ’

(76)

The iterative procedure Eq. (76) for X = 3. X* has
a fixed point at the correct solution for Egs. (75) and
(68). In each iteration Eq. (75) is exactly fulfilled, which
ensures energy conservation in each step.

This iterative scheme for X is a Taylor expansion in
A if either all occupations are identical or if B® is unity
times a constant factor. As these requirements often are
not fulfilled, each order in A requires an additional itera-
tion, which is similar to that described above, but with-
out the term quadratic in X and the non-Hermitian
part of B in Eq. (74). Owing to the close relationship
between the two nested iteration schemes, in practice I
perform only the outer iteration, which now also plays
the role of the inner iteration.

Evaluation of the overlap matrix A®) does not require
that the scalar products of the wave functions be reevalu-
ated. Instead, the matrix A®®) is calculated from Eq. (68)
using the matrices X () from the previous iteration steps.
Note also that B® needs to be diagonalized only once for
every time step, i.e., once for the entire iterative scheme
described in this subsection. Convergence is reached if
every element of the right-hand side in Eq. (73) is smaller
than a certain given tolerance. Finally we can predict the
new PS wave functions according to Eq. (65).

C. Propagating the atoms

The equations of motion for the ions are integrated as
2

R, (+) = 2R,’(0) - R,’(—) + Fg, Mz

(77)

1. Forces consistent with the Lagrange multipliers

As mentioned before, the force component due to the
changing overlap operator described in Eq. (58) must be
modified in the molecular-dynamics formalism. Instead
of (¥, |H|¥m)(frn + fm)/2, one has to use the Lagrange
multipliers. This results from the condition of energy
conservation. The change of the total energy is

. L. . dF [ Lo
E=MRR+ R + gfn My ((¥n|¥n) + (¥n|¥n))

(T

dE dE | @n)] ' 78)

(T d|Tn)

We insert the equations of motion and resolve the energy
derivatives using Eqgs. (42) and (47) to obtain
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E=RFr+ R fo(¥n|VRH|T,)
+ S TAL (e [O1F0) + (#1n]O1F ) Ap] . (79)

Now we use the first energy derivative of the constraint
equation (¥,,|O|¥,,) and the requirement that A be Her-
mitian to obtain

E = R[FR + 3 fu(¥a|VRH|T,)
- Z(‘i’nlvnol\i’mmmn] (80)

The requirement E = 0 results in an expression for the
force

Fr==Y fa(¥a|VRH|T,) + Y (¥a| VRO ¥ m)Amn ,
n n,m
(81)
which in the stationary case is identical to Eq. (48) above.
The propagation of the ionic positions is straightfor-
ward once the Lagrange multipliers are known. As seen
in Sec. VB, those will be calculated only after the new
positions are determined because the PS overlap opera-
tor and hence the orthogonalization that yields the La-
grange multipliers depend explicitly on the atomic po-
sitions. However, the Verlet algorithm has only limited
accuracy in the time step A. Hence it is sufficient if we
can predict An,, up to the order Al. This implies that a
linear extrapolation from the last two time steps

Apm(0) = 2Anm (=) — Apm(—2) + O(A?) (82)

is sufficient. It is therefore not necessary to achieve self-
consistency of atomic positions and Lagrange multipliers
iteratively, which would be computationally extremely
demanding. This is in contrast to the approach used
by Laasonen et al.,*! who suggest that A and forces be
determined self-consistently.

2. Renormalization of the atomic masses

The fictitious dynamics of the electronic wave func-
tions has two main effects on the atomic trajectories.
First, energy is transferred constantly to the wave func-
tions, which have a temperature that is very low com-
pared to that of the ionic subsystem. The rate of
heat transfer is roughly proportional to the magnitude
of the forces acting on the ions and to the band gap
between occupied and unoccupied states.®® This effect
can be controlled for long simulations using two Nosé
thermostats,*?#3 one to keep the ions at their physical
temperature and one to keep the wave functions close to
the Born-Oppenheimer surface.

The second effect is that the ions propagate as quasi-
particles dressed by the wave functions,** which increases
the effective mass. This effect can be compensated by
renormalizing the masses of the nuclei. The magni-
tude of the effect can be estimated from an isolated
atom that experiences external forces, described by a
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potential Vext(R) acting on the nuclei. Assuming that
the wave functions of the atom reside exactly on the
Born-Oppenheimer surface, the wave functions do not
change, except that they undergo a rigid displacement

and |\il)at = —|V\il)atR. Hence the Lagrangian can be
simplified to

3
1 . ~ ~
Ll = ‘2‘ E ‘ Ri (zm\ll E fat,n(viq’n‘vjq’n>at
i,J n

+MR5,'J') Rj - EO[\I’] - Vext . (83)

Here E, is the total energy of the isolated atom, which
is constant during the simulation. The constraints of
orthonormal wave functions are automatically fulfilled
because here ¥ denotes rigidly displaced PS wave func-
tions of the isolated atom. The effective mass tensor
2me Y, fa(Vi¥,|V;¥,) + Mgé;; is diagonal because
the isolated atom is spherically symmetric. The effec-
tive mass

_ 4 = ~
Mp = ;my Z Fatn(¥ = 5V 8)ae + Mr (84)

is therefore one-third of the trace of the mass tensor,
which has been modified after applying Gauss’s theorem.
The expectation value 3 fn(¥| — 1V?2|U),, is nothing
other than the plane-wave part of the true electronic ki-
netic energy. Hence the bare mass of the ions used in the
Lagrangian should be reduced by

4 - .
SM = 3 ; fatn(Tn| — 1V2T,) 5. (85)

This correction has been included in all our simulations
described here. The quality of this correction can be
estimated by comparing the kinetic energy related to the
PS wave functions of the system of interest to that of the
isolated atoms.

VI. CONSTRUCTION OF PARTIAL WAVES
AND PROJECTORS

The basic ingredients of the PAW method are partial
waves and projectors. There is an infinite number of ways
to construct them. I will describe here in detail the par-
ticular choice I made for this application. Even though
the solution of the problem is quite satisfactory, there
may be better choices than the ones described here. In
particular the construction of PS partial waves is com-
pletely analogous to the construction of pseudopoten-
tials with the pseudopotential method. The expertise
acquired with the pseudopotential method**™4® is likely
to create choices that permit a further reduction of the
number of plane waves. The partial waves and projector
functions obtained with the procedure described below
are shown in Fig. 1.

A. All-electron partial waves

The AE partial waves are obtained by radially inte-
grating the Schrodinger equation
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FIG. 1. Partial waves and projectors for Mn. Left panel:
AE partial waves (solid lines) and PS partial waves (dashed
and dash-dotted lines). The “first” PS partial wave is a
dash-dotted line. Right panel: first (solid line) and second
(dashed line) projector functions. (a) and (d) show the re-
sults for the first and the second partial wave of the s angular
momentum channel, respectively, (b) and (e) for the p chan-
nel, and (c) and (f) for the d channel. 3s and 3p functions are
treated as valence states. Functions are scaled individually.

(=577 +vee = €t)Ie) =0 (86)

outward for the self-consistent atomic AE potential v,
and a set of energies ¢!. In practice we use the scalar
relativistic version of Koelling and Harmon.*°

The AE partial waves are chosen to describe the phys-
ically relevant states, i.e., those from the valence band
region, reasonably well. The energy €' of the first partial
wave per angular momentum and site is usually chosen as
the energy of the lowest bound valence state of the atom.
The energy of the second partial wave is chosen after in-
specting the scattering properties of the PAW method
for the isolated atom with only one partial wave. It is
placed at the energy where the scattering properties be-
gin to deteriorate. There is no need for the partial wave
to be bound states because the exponentially increasing
tail will be canceled exactly by the identical behavior of
the PS partial waves. The number of partial waves is
then further increased until the scattering properties of
the valence band region are described satisfactorily.

An equally justified approach, more similar in spirit
to the linear methods, is to use increasingly higher en-
ergy derivatives of the energy-dependent partial waves
obtained at one fixed energy. In principle, one can also
add partial waves from atoms with various occupations.

If core states extend beyond the augmentation re-
gion, we subsequently orthogonalize the AE partial waves
within the augmentation region to core states centered
on the same site. We find that one AE partial wave per
angular momentum and site is often sufficient and that
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two terms yield a satisfactory description even for diffi-
cult cases such as transition metals and systems in which
semicore states are treated as valence states. However, if
one is interested in states that lie far above the valence
band region, the number of AE partial waves can be in-
creased further until the desired accuracy is achieved.

The entire construction is fairly insensitive to the
choice of the energies of the AE partial waves. Since
the valence band region can be described fairly well with
two partial waves, as shown in the linear methods, any
two partial waves from this region will span a very similar
portion of the Hilbert space. Even though the individual
partial waves and projectors will differ, they represent an
almost equivalent choice.

B. Pseudopartial waves

To construct PS partial waves, I proceed in loose anal-
ogy to the pseudopotential approach described in the
work of Hamann et al.,®%%5%! which I have extended to
include several terms into the separable form.?! However,
in general we do not perform the norm-conservation step
suggested there.

I first select a PS potential U,;. This is done in two
different ways, depending on the element.

(i) For transition metals, a polynomial of fourth order
is matched differentially to the AE potential. Outside
the matching radius the two potentials coincide. The
remaining free parameter, the value of 7, at the nuclear
site, is adjusted by hand.

(ii) For elements without d electrons in the valence
shell, U, is obtained from the AE potential as 0a¢(r) =
Uat(0)k(r) +[1 — k(7)]vat (1), using a cutoff function of the
form

k(r) = exp[-—(r/rk))‘] . (87)

In order to obtain the PS partial wave, I define for each
AE partial wave a PS potential of the form

w;i(r) = Var(r) + cik(r) . (88)

The values of the cutoff radius r; and the exponent A are
chosen such that this potential is virtually identical to the
AE atomic potential outside the augmentation region.
Often we choose A\ = 6 and r; as three-quarters of the
covalent radius. The values used in our calculations are
listed in Table I. The PS partial wave is obtained as a
solution of the nonrelativistic Schrodinger equation

(—%v2 ()~ )1di) =0 (89)

for the energy of the corresponding AE partial wave and
the potential w;(r). The free coefficient ¢; in Eq. (88)
is then determined such that the PS partial wave coin-
cides with the corresponding AE partial wave outside the
augmentation region.

C. Projector functions

Next we calculate preliminary projector functions ac-
cording to
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TABLE 1. Parameters for the construction of PS partial
waves. The cutoff parameter has been chosen as A = 6 for all
atoms and angular momentum channels.

Symbol #(0)[H] e [H] ria & Tkp €d Tkd
H -3.43 -0.234 0.45
Li -1.43 -0.106 1.20
Be -1.40 -0.207 1.20 -0.079 1.20
B -2.20 -0.346 1.00 -0.137 1.00
C -2.47 -0.501 1.00 -0.199 1.00
N -2.58 -0.677 1.00 -0.266 1.00
Oa -3.19 -0.873 0.90 -0.338 0.90
Oy -2.60 -0.873 1.00 -0.338 1.00
F -2.55 -1.090 1.00 -0.415 1.00
Fe 1.88 -0.020 1.50 -0.058 1.50 -0.287 1.50
0.000 1.50 0.000 1.50
Mn, 0.0 -0.194 1.50 -0.054 1.50 -0.257 1.50
1.50 1.50 0.500 1.50
Mn, -3.20 -3.138 1.50 -2.002 1.50 -0.257 1.50
-0.194 1.50 -0.054 1.50 0.500 1.50
B:) = (=3 V2 + Tar — €]) 1) - (90)

If the result is zero, we set the projector function equal to
the cutoff function k(r). These projector functions must
be modified such that they fulfill the condition (ﬁ,lq;]} =
0;;. This condition is now imposed iteratively beginning
with the lowest partial wave. The following equations
[(91)—(96)] should not be read as mathematical identities
but rather like a computer program: The left-hand side
is the product of the right-hand side, with the new value
overwriting previous values for the same symbol. I have
done this to avoid multiple symbols for the same quantity.

For a given partial wave denoted by subscript ¢, and
assuming that (pr|¢;) = O; for k,j < i, the projector
functions are first orthogonalized to all lower PS partial
waves by

[Be) = 1B:) = 3 15s)(51Pi) - (91)

Then the AE and PS partial waves are modified in order
to ensure the orthogonality of the PS partial wave with
the lower projector functions

1—1

(¢ = 195) = D 19:)(Bil6) 5 (92)
18 = 180 — X2 1655140 (93)

Finally the projector function and partial waves are
scaled so that (p;|¢;) is unity

i) = |Bi)/ (Bildi) x ¢, (94)
|6i) = |di) /e, (95)
|¢:) = |#:)/c. (96)
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The free constant c is used to avoid very large projector
functions, while the partial waves are very small and vice
versa. It has no influence other than to prevent very small
and very large numbers, which may create problems on
the computer. Once the set of projectors and partial
waves with index i are modified to obey the orthogonality
condition, one proceeds to the next set of projectors and

partial waves |Bit1), [@it1), [Bit1)-

D. The potential &

The potential ¥ is now obtained by subtracting the
potential of the self-consistent atomic PS density from
the PS potential used to define the PS waves:

= -

o) = dulr) = [ ™R ). o)
This step is the analog to the unscreening of a pseudopo-
tential performed in the pseudopotential approach.

Since the PS partial waves do not necessarily corre-
spond to the atomic bound states, which are needed in
Eq. (97), the latter are obtained from the radial, separa-
ble Schrodinger equation

1 : : N
(—§V2 + Vot — €+ Z |p:) (dH;; — €d0ij)<Pj|)l‘I’j> =0
2,7

(98)

with dH;; and dO;; given as

dHij = ($:] — 1V2 + vat|d;) — (] — 1V2 + 5at|;),
(99)

dO;; = ($ild;) — (¢il¢;) - (100)
A way to solve this equation is sketched in the Appendix.

To obtain the PS density we still need to define its
core contribution. The PS core density ¢ is obtained by
matching a parabola differentially to the AE core density.
Outside the matching radius PS and AE core densities
are identical. Using the wave functions and occupations
of the atom one constructs a PS charge density 7 and
from that & according to Eq. (97).

E. Outlook

The procedure described above is by no means the
only way to create PS partial waves. There are a
number of different ways to construct first-principles
pseudopotentials.2%46:48 These methods can easily be
adapted to relax the norm-conservation condition, to al-
low a larger augmentation region, and to include un-
bound states. Each of them can be used to construct
PS partial waves corresponding to given AE partial waves
and, with the procedure outlined above, to construct pro-
jector functions.

Once the PS partial waves are defined, it is recom-
mended that the procedure described above be followed
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in detail. In particular, this approach ensures that the
states used to construct the PS partial waves are repro-
duced correctly as atomic PS wave functions of the PAW
method, irrespective of the quality of the partial-wave
expansion.

Let me summarize which quantities we import from the
atomic calculation into the ab initio molecular dynamics
simulation: (i) the AE and PS core densities, (ii) AE and
PS partial waves |¢;) and |<,Zw,) and PS projector functions
(ps], (iil) the matrices (¢i| — 3 V?|¢;) — (b:] — 1V2¢;) and
(diloj) — (s l¢~)_.,) for the calculation of the one-center con-
tributions of kinetic energy and overlap matrix (note that
the Laplacian for the AE partial waves is replaced by its
scalar relativistic counterpart), and (iv) the cutoff r. that
determines the range of the short-ranged compensation
densities.

VII. ANALYSIS OF THE PARTIAL-WAVE
TRUNCATION ERROR AND EXTENSIONS
OF THE PAW METHOD

In the previous sections we have taken the point of
view that the PAW method is an exact formulation of
the Kohn-Sham equations, from which a practical scheme
is obtained by truncating two rapidly converging series
expansions. Here I will analyze the truncation errors of
the partial-wave expansion in detail and thus justify the
choices I made for wave functions and total energy ex-
pressions. This section can be skipped by the practi-
tioner. I recommend this section to those who are inter-
ested in the underlying principles and possible extensions
of the present implementation of the PAW method.

A. Truncation error in the wave function

1. Orthogonality to the core states

The main effect of the truncation of the partial-wave
expansions for the wave function is to redefine the trans-
formation from the valence wave functions to the PS wave
functions. This in itself does not introduce errors, but it
affects the orthogonality to the core states. Whereas the
AE partial waves are constructed to be orthogonal to the
core states, a nonzero remainder of |¥) — 3, ;) (P:|¥)
can create a nonzero overlap with the core states.

Therefore, I introduce a new definition of the trans-
formation 7 that explicitly ensures that any PS wave
function is transformed onto an AE wave function that
is exactly orthogonal to the core states |¢°):

12) = 19) + D _(16s) — [6:) Bl &)
=161 (1 - X 1@asl) 1B (1on)

In the analysis of truncation errors it should be kept in
mind that Eq. (101) rather than Eq. (9) is the true def-
inition of the transformation between PS and AE wave
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functions. Of course, if the partial waves form a complete
set, the two expressions are identical.

2. Additive augmentation

When truncating the partial-wave expansions it is im-
portant that the partial-wave expansions of the AE and
the PS wave functions are truncated in a completely anal-
ogous way. This principle is called additive augmentation
and has important advantages.

First, the wave functions of the PAW method are dif-
ferentiable to an arbitrary order if the PS partial waves
have been constructed to be differentiable to an infinite
order. (In many implementations of the LAPW method
the wave function is even discontinuous.)

Second, higher partial waves not explicitly included in
the partial-wave expansions are represented by the tails
of the plane-wave part that extend into the augmentation
region.

Finally, the PAW basis set is complete whenever the
plane waves form a complete basis set, irrespective of
the partial-wave truncation. This justifies the use of
partial waves imported from the isolated atom with-
out adjusting them to the actual potential, as done in
the linear methods. The use of frozen partial waves
has substantial advantages in combination with the first-
principles molecular-dynamics approach because it elim-
inates a large number of parameters that otherwise have
to be treated as dynamical variables or determined vari-
ationally in each time step to a very high degree of accu-
racy.

The principle of additive augmentation itself is not
new and has been exploited to some extent in the
LMTO method and in the APW method of Soler and
Williams.'® 17 There the angular momentum expansions
of the wave function and charge density were truncated
in the same way, resulting in a very rapid £ convergence.
As a result of the projector augmentation, however, we
can exploit this principle even on the level of individual
partial waves.

Here I will show that truncation of the partial-wave
expansions does not affect the completeness of the ba-
sis set: If a set of PS wave functions forms a complete
basis, the corresponding basis of projector augmented
wave functions is complete in the Hilbert space orthog-
onal to the core states. For this to be true two weak
conditions must be fulfilled: There is a matrix a;; such
that Y, aiu(Pk|¢;) = 6:j, which has no zero right-hand
eigenvalues,®? and the differences between AE and PS
partial waves |¢;) — |@;) are not linearly dependent.

To prove this statement, it must be shown that for
every AE wave function orthogonal to the core states
there exists one and only one well-defined PS wave func-
tion. For linear transformations such as the ones consid-
ered here, this implies first that we can define an inverse
transformation 7 ~! from the AE wave function to the PS
wave function. This is indeed possible and the expression
is formally very similar to the forward transformation:

=|¥) + Z |:) —

9:))(P:[¥) , (102)

P. E. BLOCHL 50

with the “AE projector functions” defined as

(pil =D _((Bld)1)54(Bs] -

J

(103)

Note the difference between the AE and the PS projector
functions.

To show that the transformation is unique, we test
whether any nonzero function orthogonal to the core

states is mapped onto a zero PS wave function. This
would be the case only if
o) + Z |6i) — 16:)) (ps| @) = (104)

for any function |¥) orthogonal to the core states. Hence
such a function |¥) must be a superposition »_,(|¢:)

|q~51))cl If we insert this ansatz into Eq. (104) and exploit
(p:|@;) = 8ij, it is clear that the coefficients must fulfill

S (16:) — 16:)(pild)e; = 0.

1,J

(105)

The matrix (p,|¢~>]) is none other than the matrix a;; de-
fined above, as it fulfills the relation Y, (pi|or) (Pr|d;) =
d;;. Equation (105) can only be fulfilled if either a;; has
a zero right-hand eigenvalue or the functions on the left-
hand side can add up to zero; these are the exceptions
given above. This concludes the proof of the complete-
ness of the PAW basis set.

B. Truncation error in the expectation values

While evaluating expectation values in Sec. VIIA,
it was reasonable to neglect cross terms between the
three contributions of the wave function because |¥) —
> |¢,)(p,|\l') = 0 in the augmentation regions, if the par-
tial waves form a complete set of functions in the aug-
mentation region. However, if the partial-wave expan-
sions are truncated, this condition is no longer exactly
fulfilled.

In the following I will use the symbols |¥!) =
El|¢z)(ﬁ,|‘i') for the one-center expansion of the AE
wave function and |¥1) = 3°.|¢;)(;|¥) for the one-
center expansion of the PS wave function. The difference
AAn, = AA,?,L + AAS,Z% between the matrix elements
of an operator A calculated directly from Eq. (101) and
(\iln|/i|\ilm), with the PS operator from Eq. (11
by

DAL, = [(TR]A(L — P°) — (| A][ ¥
+(T, - (2

), is given

- ¥)
— P)A|T;) — AP,

(106)
AAQZ), = (T — TL[(1 — PIAQL - P°) = A% = T7)
(107)
where P = Y. |#%)(¢¢| is the projection operator on the

core states.
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_The first term AAS,I,zl is proportional to the difference
|¥) — [¥!) between a PS wave function and its one-center

expansion, whereas AALZ,L depends quadratically on it.
Consequently both terms converge to zero as the partial-
wave expansion is made complete.

The first term is a matrix element between the differ-
ence between the PS wave function and its one-center
expansion, which is largest at the surface of the aug-
mentation region, and a function that is localized in the
center of the atom, namely, the difference between the
one-center expansion of the AE wave function and the
one for the PS wave functions. For quasilocal operators
such as the kinetic energy or the real-space projection op-
erator needed for the total energy, one profits from the
fact that the two functions are largest in opposite regions
of space, resulting in small errors.

The fact that the dominant truncation error AAs,l,zl
is proportional to the difference between AE and PS
partial waves is the reason for truncating both partial-
wave expansions in exactly the same way. Partial waves
for higher energies become increasingly insensitive to
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the shape of the potential: High-energy electrons pass
through the atom too fast to be seriously affected by
the potential. Hence the difference between the AE and
PS partial waves vanishes for high energies, even though
each partial wave itself is still sizable. Since they appear
in pairs of opposite sign in the truncation error, the con-
sistent truncation of both expansions is highly favorable.
I shall return to this point when comparing the PAW
with the LAPW method.

C. Truncation error in the total energy

The error in the total energy can be divided into two
parts. The first is due to the difference between expres-
sions (19)—(21) and the total energy calculated directly
using the expectation values for charge density, kinetic
energy, and overlap obtained via Eq. (11). The second
source of the error is due to the approximations described
in Sec. VIIB.

The first error term is of the form

g(r') + fir(r')

) — i) —mt (1 [ ap (PRED) FPERE)
AE sz/an[n() ho [ (

|r /|

+ [ dr{fa) + () = 7 el + nt = 7) = Ar)enc(®) = (o) = 7 (rexe ()}
Qr

It is easily seen that both terms vanish as 7 — 7!, i.e., if
the partial-wave expansions are complete. Furthermore
the integrands go smoothly to zero at the boundary of
the augmentation region.

To get a better idea of these terms, we can expand
them in orders of 74 — 7! and |¥) — |¥') and consider
only terms up to the first order:

AEW = 3 [ drlitr) - (o (r) — k()]
R
+0(7 — t)?
= 2Rern(\iln - ‘i’,l,|(vjlg - 6R)I‘i’:z>
Rn

+O(|) - [¥1)%. (109)
Before returning to AE(), I consider the errors that
propagate from the approximation of the expectation val-
ues. The error can be obtained via Egs. (106) and (107),

J

AE® + AE® =2Re Y fu(¥n — TL{(1 = P°)[(v — vas) — (e

R,n,:

—[(wv-v") -

(wi — %) = (en

-o()

|r — /|

(108)

-

where the operator A is ——V2 + v — €,, where v is the
exact potential and €, the exa.ct energy eigenvalues. The
error is the sum of the diagonal matrix elements with

the eigenfunctions. Let us consider again only the lowest
order in |¥) — [¥1):

AE® =2Re Y fu(¥, — ¥}
R,

x{(1 = P)[(v — vat) — (€ — €})]I:)

~[(v — w:) = (€n — €))]16:) }Bi| ¥n)

+0(|¥) — [¥1))?, (110)
using Eqgs. (86) and (89), which define the partial waves,
and (106). (Note that we need to apply a linear trans-
formation to partial waves and projectors to undo the
scrambling of partial waves described in Sec. VIC.)

Combining the two sources of error, AE() from
Eq. (109) and AE® from Eq. (110), we find

n = €)]l¢:)

— €)l6) }Bi|Tn) - (111)

Let us simplify Eq. (111) by replacing v with v!, which is justified since the difference between them also vanishes
if the partial-wave expansions are complete and therefore does not contribute to the lowest order of the truncation

error in I\II)

|¥1). Furthermore, we exploit the fact that (¥ — \Illl(w,)vat)lcb,) vanishes because (w; — vat)(¢,) can be
expressed as a superposition of projector functions [Eqgs. (89) and (90)] and (¥ — ¥1|5;) = (¥|(1—

EJ 'p1><¢1|)|Pz> =0:
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AEM + AE®) = 2Re > fn(¥, — ¥}
R,n

x{(1 = P)[(v" = vat) = (en — €})]I$i) = (8" = Tat) — (en — €})]1:) } (B[ L)

Equation (112) is an important result. It tells us that
the strongly varying potential of the core and the nu-
cleus does not contribute to the error. This is a result of
an efficient cancellation of two errors, namely, AE(1) and
AE®_ In a hand-waving way, the term proportional to
(1= P)(v! —vat)|di) — (91 —Tat)|@:) describes the charge
density transferability error because it depends on the de-
viation of the potential from the atomic one, whereas the
term proportional to (e, —€})|$; — ¢;) describes the error
in the scattering properties or the energy transferability.
Note that the constant term in v and ¥ almost cancels a
similar term in €, — €}. It is also worthwhile to note that
the right-hand side of the product vanishes differentiably
at the boundary of the augmentation region, whereas the
term (¥| — (¥!| is a small quantity, which is expected to
be largest far from the center of the atom. The resulting
expression could actually be used to estimate the partial-
wave truncation error in practice.

D. Extensions of the PAW method

The PAW method lends itself to a number of extensions
which, though not yet implemented, may be interesting
to keep in mind. These extensions concern the use of
partial waves that adjust to the actual potential and the
relaxation of the frozen-core approximation. I will show
in Sec. VIII that the PAW method is highly accurate even
without these features owing to the rigorous exploitation
of the principle of additive augmentation. However, I
want to demonstrate that the PAW method is sufficiently
flexible to accommodate them, if desired. This will turn
the linear transformation between AE and PS wave func-
tions into a nonlinear one. As in the linear methods with
adjusting partial waves, the nonlinear degrees of freedom
can be relaxed during a self-consistent procedure. How-
ever, some caution is required if they are to be used in
combination with a fictitious Lagrangian formalism be-
cause all nonlinearities must be treated consistently. In
contrast to the linear methods in their present implemen-
tation, the partial waves will be adjusted here to both
spherical and nonspherical parts of the on-center poten-
tials.

1. Optimization of partial waves
to the actual potential

Here I describe how the partial waves can be adjusted
to the actual potential within the frozen-core approxima-
tion. In Sec. VIID?2, I will describe how to relax also
the frozen-core approximation.

We start out with a large set of partial waves, one that
is sufficiently complete to describe the wave functions ac-
curately for all possible potentials that may occur in a
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(112)

f

molecular or crystalline environment. This set of par-
tial waves will be divided into a subset of “lower” partial
waves that will be used as partial waves in the way out-
lined in the previous sections and a subset of “higher”
partial waves. The lower partial waves are adjusted to
the actual potential by mixing with the higher partial
waves. This approach avoids the inclusion of additional
projector functions and the corresponding increase of the
computational effort by determining the coefficients of
the higher partial waves self-consistently from the po-
tential within the sphere. The procedure can be termed
downfolded augmentation.

Let us denote the higher partial waves by the sub-
scripts h, h' and the lower partial waves that adjust to the
potential by the subscripts {,!’. The rigid partial waves
that have been constructed from an atom and that will be
used as a reference are distinguished from the adjusting
partial waves by the superscript 0.

I make the following ansatz for the lower partial waves
and projectors

1) = 180) + D> _ [6R)ant »
h
1) = |67) + Z |éh)an ,
h
B1) = D 1600bet + ) IBR)en -
4 h

The coefficients will be determined such that (i) the or-
thogonality relation between projector functions and par-
tial waves is fulfilled and (ii) the scattering into the higher
partial waves vanishes:

(Br|é1) = buus
(dn10a(—1V? + o' —a)l¢r) =0,

(113)

(114)

~ 1 - _
(¢hl0a (—§V2 +3t —a+ Y |pr)

l’,l”
X (dHy i — szOl',l“)<I31"l) |f1) = 0.

Inserting the ansatz, we obtain expressions for the ma-
trices a, b, c

any=—»_ Enn(a)(nlba(-3V2 +v' - e)ler)
' (115)
cny == ($hl0a(—3V? + 0" —e)|dp)[dH — dO];} ,
l (116)

by =11 — chhahl’ ) (117)

h
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where = pp(€) is defined by

> " Eirne (€)(dn|0a(— 3V + 0" —€)|dnr) = Snn - (118)
hll

The matrices dH; ;» and dO;» are defined as in Eqs. (99)
and (100) using only the lower, optimized partial waves
and the actual one-center potentials instead of the atomic
potential. If the partial waves are made self-consistent
in each time step, also the projections (p;|¥,) must be
transformed according to the change in the projector
functions. When adjusting the partial waves and pro-
jectors, the energies ¢; are chosen relative to a potential
reference, such as the average potential in the augmenta-
tion sphere, in order to avoid a dependence on a arbitrary
overall shift of the potential.

2. Beyond the frozen-core approzimation

Even though the present method has been imple-
mented in the frozen-core approximation, it is not lim-
ited to it. The core states can of course always be re-
laxed within an internal self-consistency loop for core
wave functions and one-center potentials. The only diffi-
culty is that the orthogonality between AE partial waves
and core states must be restored. One could simply imag-
ine using a Gram-Schmitt orthogonalization procedure.
However, this would produce partial waves that are no
longer close to the solution of the Schrodinger equation,
resulting in large partial-wave truncation errors.

Let us therefore mix the partial waves with both the
frozen- and the relaxed-core states to impose orthogonal-
ity and to minimize the total energy. We can make an
ansatz for the new AE partial waves

(8 = 160) + D 165%0asi + D 1690bse,  (119)

where |¢;) are the AE partial waves orthogonalized to the
relaxed-core states, [¢?) are the partial waves orthogonal-
ized to the frozen-core states, |¢) are the relaxed-core
states, and |¢S°) are the frozen-core states. The coef-
ficients aj; and bj; are determined such that the total
energy is minimized

(65°] — 3V2 + 0! —€l¢;) =0,
(¢5] — 3V2+ vl —€lg;) =0.

(120)
(121)

The relaxed-core states |¢;) depend explicitly on the co-
efficients a;; and b;;. Using the fact that the core states
are solutions to some Schrédinger equations, we see that
the second equation reduces directly to the orthogonality
condition between relaxed core states and the new par-
tial waves. The resulting partial waves for the relaxed
core are

|¢:) = (1 - P°) [l¢?) =D 165°)E5(e:)
.k
x(¢R°1(1 = P) (=3 V? + o' — &)

x(1- PC)!¢?)], (122)
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where 2%, (€) is defined by

E5u((@51(1 = P)(~3V? +v' — )
x(1— PC)I¢’ICO) — 5. (123)

Pe=Y", |¢5){¢5| denotes the projection onto the relaxed-
core states. The validity of the result can be verified by
inserting it into the defining equations. The result can be
further simplified using the fact that the core states are
solutions to some Schrodinger equations and the known
orthogonality relations. It should, however, be noted
that (1 — P°)|¢<°) vanishes as the frozen-core states and
relaxed-core states become similar. Hence these func-
tions should be normalized before inserting them into
the above equation in order to avoid a division by zero.
If semicore states are present, the same transformation
should be performed between the PS partial waves and
PS core states in order to guarantee that PS and AE
partial waves match at the boundary of the augmenta-
tion region. This linear system of equations can be solved
and iterated until self-consistency is achieved among core
states, AE valence partial waves, and the potential.

VIII. NUMERICAL TESTS
A. Scattering properties

It can easily be shown that the scattering properties
of the atom are reproduced correctly in the neighbor-
hood of the energies for which partial waves have been
included. The logarithmic derivative of the PS and AE
wave functions and their first derivatives agree beyond
the core region. The proof is analogous to that for local
potentials, which can be found in Skriver’s book.%3

Thus the scattering properties of the atom can be im-
proved systematically for an arbitrarily large energy re-
gion by increasing the number of partial waves. This
principle is illustrated in Fig. 2 for the example of man-
ganese. The semicore states have been treated as va-
lence states, which is not necessary in most applications.
The logarithmic derivatives obtained with only one par-
tial wave per angular momentum—not to be confused
with the setup Mn, in Table I—result in a poor descrip-
tion of the valence region. If the number of partial waves
is doubled, the scattering properties are accurate up to
approximately 1.5 Ry above the occupied states as shown
in Fig. 2, which is more than sufficient for most calcula-
tions. This choice corresponds to the number of partial
waves used in the linear methods. Our experience is that
first-row elements can be well described with only one
partial wave per angular momentum and that two pro-
jectors per angular momentum are sufficient for the nar-
row d states and if semicore states are treated as valence
states.

B. Accuracy of the AE wave functions

In order to analyze the accuracy of the AE wave func-
tions obtained with the PAW method, let us calculate the
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FIG. 2. Scattering properties of the Mn atom. Logarithmic
derivative function D¢(€) = r8,¢¢(r,€)/d(r,€) with 7 = 3ao
for s, p, and d angular momenta versus energy. Triangles,
circles, and squares indicate the exact result for s, p, and d
angular momenta, respectively. Solid lines are obtained with
the PAW method using the setup denoted as Mn,; in Table L.
Dashed lines have been obtained with the same setup, but
without the second partial wave per £.

scattering states of an isolated manganese atom using the
PAW method and compare the resulting AE wave func-
tions with the direct integration of the radial Schrodinger
equation. Figures 3(a)-3(c) shows the wave functions for
an energy of —8.16 eV, which lies in the range of the oc-
cupied states. The deviation between the PS and the AE

@ Y o
N \\ \\\

© ' (fi

r (ao) r (ao)

FIG. 3. Comparison of atomic wave functions of Mn using
the PAW method with the exact result. Each graph shows the
wave function obtained from the PAW method (solid line), the
exact AE wave function (bullets), their difference magnified
by a factor of 10 (dash-dotted line), and the PS wave func-
tion (dashed line) for a given energy and angular momentum.
(a)—(c) are obtained at an energy of —8.16 eV, which lies in
the valence band region; (d)—(f) are obtained at an energy of
+13.61 eV, which is far above the valence band region. (a)
and (d) are s-type wave functions, (b) and (e) are p-type wave
functions, and (c) and (f) are d-type wave functions.
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wave function is smaller than 1%.

In order to see the deviations let us compare the wave
functions for an energy of +13.6 eV; see Figs. 3(d)-3(f).
This is about 20 eV above the valence states. Whereas
the wave functions of the p and d angular momenta are
still quite accurate, we see deviations of 15% in the s-type
wave function. This type of deviation, namely, an under-
estimation of the maxima of the wave function close to
the nucleus, is a typical signature of partial-wave trunca-
tion errors in the wave function. We can conclude that
the PAW method predicts the wave function with high
accuracy over a wide energy range.

C. Structural properties

I have performed a number of test calculations on
simple molecules to establish the accuracy of the PAW
method. I have chosen small molecules because they
exhibit the strongest nonspherical potentials and the
smallest bond lengths and therefore should provide strin-
gent test systems for any electronic structure method.
The results are summarized in Table II together with
the results of other recent accurate all-electron LDA

TABLE II. Comparison of binding energies, structural
properties, and vibrational properties for dimers obtained
with the PAW method at a plane-wave cutoff of 30 Ry with
those of other all-electron LDA calculations. Note that the
B2 and the O; dimer of Ref. 54 are non-spin-polarized.

Molecule Quantity PAW Other LDA
H, Eg (eV) 4.62 4.65,> 4.6°
d (ao) 1.46 1.45,° 1.45°
w (cm™?) 4040 4160°
Liz Eg (eV) 1.04 1.00,* 1.02°
d (ao) 5.13 5.12,° 5.20°
w (cm™?) 335 322°
Bez EB (eV) 0.53
d (ao) 4.51 4.52¢
w (cm™") 367
B, Eg (eV) 3.78 3.5°
d (ao) 3.03 3.05°
w (cm™1) 1060 1030°
N, Egp (eV) 11.38 11.47,* 11.3°
d (ao) 2.09 2.07,° 2.07°
w (cm™) 2417 2380°
O, Eg (eV) 7.33 7.48,* 6.2°
d (ao) 2.32 2.29°
w (em™1) 1660 1620°
F2 Eg (eV) 3.11 3.33,* 3.1°
d (ao) 2.67 2.62,° 2.63°
w (cm™1) 1148 1060°
Fe, Egp (eV) 3.99 4.05,9 2.89°
d (ao) 3.68 3.74,4 3.70°
w (em™") 441 4184 412°

®Reference 54.
PReference 55.
“Reference 56.
dReference 58.
°Reference 57.
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calculations.?4 758

I used fcc supercell with a lattice constant of 30 a.u.
The PS wave functions have been expanded up to a plane
wave cutoff of 30 Ry. The charge density has been ex-
panded to 60 Ry. The augmentation charge density has
been expanded up to £ = 2. I used the Perdew-Zunger>®
parameterization of Ceperley and Alder’s Monte Carlo
calculations of the free-electron gas.®® The parameters
used to define the PS partial waves are listed in Table I.
For the O dimer calculation we used the setup denoted
by O, in Table I. The setup O, resulted in a frequency
about 5% too low due to the overlap of the augmenta-
tion regions in the O, molecule. This setup (Op) has been
used in the calculations of MnFO3; described below.

The atoms have been calculated with integer occupa-
tions, which makes them nonspherical. An exceptionisF,
which prefers to spread the two 2p; electrons over three
orbitals. In the case of Fe; we use a numerical spherical,
spin-polarized calculation on radial grids in the experi-
mentally observed valence configuration djd}s®. This is
not the ground-state configuration of the LSDA, but it
has been used to allow comparisons with previous calcu-
lations.

Dioxygen and the boron dimer have been calculated
in the triplet configuration, and the iron dimer has been
treated in the septet configuration. All other dimers have
been calculated in a non-spin-polarized fashion. Binding
energies have been reduced by the zero-point vibration
energies.

Vibrational frequencies have been obtained by dynam-
ical simulation. Hereby I expanded the bond length
by approximately 5% and let the system evolve unper-
turbed according to equations of motion. No thermo-
stating has been used for electrons or ions. I used a time
step of 10 a.u. for all molecules, except for the hydrogen
molecule, for which I used a time step of 1 a.u. The Hp
vibrational frequency obtained with a time step of 10 a.u.
is about 10% lower and that obtained with 5 a.u. is 1.2%
lower. For Nj, the reduction of the time step to 5 a.u.
lowers the frequency by less than 1%.

The results agree very well with other AE calculations.
The bond length deviates typically by less than 1% and
vibrational frequencies deviate typically by 4%. Binding
energies have deviations of 0.1-0.2 eV, which is within the
accuracy of previous calculations. Note that the largest
discrepancies can be reduced further by increasing the
plane-wave cutoff.

In order to study the other worst case for the PAW,
i.e., that in which the density deviates strongly from the
atomic density, I studied MnFO3. In this compound, the
manganese occurs in a formal oxidation state of seven.
The structure is that of a slightly distorted tetrahedron
formed by the oxygen and fluorine atoms, with the man-
ganese in its center. In this system I also compared a
calculation with frozen-semicore 3s and 3p states with
one that included these electrons explicitly as valence
electrons. Treating the semicore states as valence states
results in bond distances of dmn—r = 3.205a¢ (ao is the
Bohr radius) and dmn—o = 2.973ag, which agrees very
well with the results when keeping the semicore state
frozen, namely, dyn_F = 3.189a¢ and dpy—0 = 2.976a.
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The results agree very well with the AE calculations
of Chen et al.,%! who predict dya_r = 3.20a¢ and
dMn—0 = 2.96ap. As a comparison, the pseudopoten-
tial calculations of Chen et al. overestimate these bond
distances by about 2.5% relative to the AE results.

The calculations of MnFO3; demonstrate that the PAW
method faces no problems in dealing with high-oxidation
states. Furthermore they show that also calculations
with unfrozen-semicore states are feasible with moderate
computational effort.

I conclude that the PAW method matches the accu-
racy of the best existing schemes within the LDA. Even
though we have examined simple molecules here, stud-
ies of larger systems have also yielded a similar accu-
racy of structural parameters for which data existed for
comparison.52 767

D. First-principles molecular dynamics

To illustrate the quality of dynamical simulations I
show in Fig. 4 the various energy contributions to the
dynamics. The potential energy and the fictitious ki-
netic energy undergo a regular oscillation with a period
that corresponds to 441 cm™!, which agrees well with
the previously calculated vibration frequency of 412418
cm~1.57:58 The solid line represents the conserved energy
which should be constant in a high-quality molecular-
dynamics simulation. Here the conserved energy devi-
ates less than 0.8 meV from the initial value. No drift has
been observed within 10~5 H. Hence the quality of energy
conservation is as good as that obtained with traditional
Car-Parrinello simulations using pseudopotentials.

The oscillations of the fictitious kinetic energy should
not be misinterpreted as deviations from the Born-
Oppenheimer surface. The latter are irreversible and
their signature is a monotonous drift of the fictitious ki-
netic energy to higher values, accompanied by a simul-
taneous drift of the nuclear kinetic energy towards lower
values. The oscillations of the fictitious kinetic energy
seen in Fig. 4 represent the motion of the wave function
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FIG. 4. Energy contributions during a first-principles
molecular-dynamics simulation of an iron dimer. The
dash-dotted line is the LDA total energy, the dashed line the
fictitious kinetic energy of the wave functions, and the solid
line the conserved energy. All energies are plotted relative to
their initial values. See text for discussion.
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on the Born-Oppenheimer surface. Its influence on the
motion has been compensated by the renormalization of
the nuclear masses by 8% as described in Sec. VC2.

In conclusion it has been demonstrated that the PAW
method allows high-quality energy-conserving molecular
dynamics. Molecular-dynamics simulations have been
performed on larger systems and the results are published
elsewhere 6263

E. Plane-wave convergence

Figures 5-7 show the plane-wave convergence of total
energy, binding energies, and bond distances obtained
with the PAW method for all first-row elements (except
carbon) and iron as an example of a transition metal.5®
Convergence to 0.1 eV is achieved at about 30-40 Ry
even for difficult cases, such as oxygen and fluorine, and
substantially earlier for other elements. Structural prop-
erties such as the bond distances are accurate to 0.02a,
at a cutoff of 30 Ry, which is less than 1% of the bond
length. Binding energies converge faster than absolute
total energies, and the error at 30 Ry is as small as 0.1 eV.

For oxygen, we can compare this plane-
wave convergence with that of Vanderbilt’s ultrasoft
pseudopotential.! The accuracy and the plane-wave con-
vergence of our calculations are apparently comparable
to the “hardest” pseudopotential used. It is not unex-
pected that a similar plane-wave convergence is obtained
for the PAW method and Vanderbilt’s ultrasoft pseu-
dopotentials if a similar choice of PS wave functions is
used in our calculation and in the construction of the
ultrasoft pseudopotentials.

In all calculations shown here we expand the charge
density in plane waves up to a plane-wave cutoff that
is only twice that used to expand the wave functions.
Hence many operations, such as Fourier transforms eval-
uation of the potential-energy part of E, are performed as
if the plane-wave cutoff were only one-half of that actu-
ally used. This is one advantage over Vanderbilt’s ultra-
soft pseudopotentials, which either require a plane-wave

10 20 30 40 50
Erw(RY)

FIG. 5. Plane-wave convergence of the atomic total energy
for first-row elements and iron. Epw is the plane-wave cutoff
for the wave function. AF is the total energy relative to the
result obtained with Epw = 50 Ry. The following symbols
are used: H (A), Li (x), Be (), B (v), N (<), O (0), F (O),
and Fe (). For details see text.
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FIG. 6. Plane-wave convergence of the binding energy for
dimers. AF is the binding energy relative to the result ob-
tained with Fpw = 50 Ry. The symbols are the same as in
Fig. 5. See text for details.

cutoff that is substantially larger than twice the wave-
function plane-wave cutoff or where one has to resort to
multigrid techniques such as described by Laasonen et
al 4!

The plane-wave convergence of the PAW method is al-
ready close to that of the LAPW method, which predicts
mRy convergence of the total energy at a plane-wave cut-
off given by Epw = (5+ fmax)?/r3ipa2 Ry, where £ay is
the highest angular momentum of the wave functions and
rmr is the muffin-tin radius. For a system such as oxy-
gen with a muffin-tin radius of 1.1a¢ as is necessary for
molecular bonds, the plane-wave cutoff should be about
30 Ry. This is a better convergence than that produced
by the present implementation of the PAW method since
the former corresponds to mRy convergence.

IX. COMPARISON WITH EXISTING METHODS

One can observe that AE and the pseudopotential
methods introduced in the past few years seem to con-
verge. Vanderbilt’s ultrasoft pseudopotentials® opened
the way to the efficient study of first-row and transi-
tion metals using a plane-wave-based pseudopotential
approach. Conversely Goedecker and Maschke®® have
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0.1
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FIG. 7. Plane-wave convergence of dimer bond lengths.
AFE is the bond length relative to the result obtained with
Epw = 50 Ry. The symbols are the same as in Fig. 5. See
text for details.
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shown that the LAPW method can be simplified to yield
pseudopotentials and introduced techniques very similar
to the pseudopotential approach into the LAPW method.
I believe that the PAW method actually bridges the gap
between these two approaches, namely, the pseudopoten-
tial approach and the augmented-wave methods. On the
one hand, it is an augmented-wave method that yields
the full wave functions. It can be regarded, in a sense,
as a generalization of the LAPW method. On the other
hand, most of the operations done on the plane-wave part
are in fact identical to those performed in the plane-wave-
based pseudopotential approach. I view this as a promis-
ing development, as it allows the virtues of two separate
techniques to be combined. In this section I will there-
fore discuss the relationship between the PAW method
and other approaches.

A. Pseudopotential method
1. Norm-conserving pseudopotentials

The pseudopotential approach, based on generalized
separable potentials,21:7® can actually be derived from
the PAW method by making one well-defined approxi-
mation. This way of approaching the pseudopotential
theory sheds light on the underlying principles of the
pseudopotential approach. Furthermore, the comparison
will provide a one-to-one correspondence between quanti-
ties in the PAW method and those in the pseudopotential
method. In order to alert the reader to this fact, I have
called the plane-wave part of the wave function the “PS
wave function.”

Before we start comparing PAW and the pseudopoten-
tial approach, let us recall what is termed the “pseudopo-
tential approach.” A more extensive description can be
found in Refs. 8 and 50.

A valid first-principles pseudopotential obeys the fol-
lowing conditions.

(i) For the atom, the PS wave functions agree with the
AE wave functions beyond the core region.

(ii) Atomic eigenvalues and the first energy deriva-
tive of the logarithmic derivative of the energy-dependent
partial waves agree with those of the AE calculation.

(iii) The norm of the atomic PS wave function is iden-
tical to that of the true wave function.

Owing to the construction described in Sec. VI, the
PAW method fulfills the first two conditions automat-
ically. Even though the third condition is usually not
fulfilled, it can be imposed.

In order to reduce the PAW method to the traditional
pseudopotential approach, we must make a Taylor expan-
sion of the total energy in terms of the deviation of the
one-center densities n! and 7' from their isolated atom
values. This yields, to first order,

ExEes+E+) (Vn|vn|¥y) . (124)

The term linear in the density operator is a nonlocal pseu-
dopotential
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vai(r, ') = Y (rlBi) ((8il — $V7 + vuld;)
o

~(il = 3V +5/6i)) (BiIr')

and the constant is the so-called self-energy

(125)

Ewr = B}, — B3y — Y (Var,n[va| Yae,n)- (126)

The potentials v},, ¥l,, and 9 are obtained from the
charge densities n and 7 of the atoms. Also compen-
sation charge densities in E are kept frozen and are im-
ported from the isolated atoms. The first-order change of
the total energy with respect to a change in the compen-
sation densities has been absorbed by the nonlocal PS
potential. The approximations are well justified as long
as the PS charge density is sufficiently close to the AE
charge density. If the condition of norm conservation is
imposed, the overlap operator is identical to unity.

We thus obtain the form for the total-energy functional
that is well known from the pseudopotential method,
which is none other than that actually implemented in
the original Car-Parrinello codes?? using generalized sep-
arable pseudopotentials.?! Achieving a close similarity of
the computationally demanding plane-wave expressions
to existing Car-Parrinello codes was one of my goals while
deriving the PAW method. This allows us to make direct
use of the technology of existing methods, while incorpo-
rating the full-wave functions.

The major difference in the computational effort re-
quired for the PAW method and the traditional pseu-
dopotential approach is the explicit inclusion of the one-
center terms in the PAW method. The related effort,
however, scales linearly with the number of atoms and
is in practice negligibly small. Furthermore, the PAW
method provides new flexibility to increase computa-
tional efficiency and accuracy. We can use larger core
radii, and by relaxing the norm-conservation condition
we can use smoother PS partial waves and reduce the
basis set just as in Vanderbilt’s ultrasoft pseudopoten-
tials. The trade-off of this, however, is that the PS wave
functions have to be orthogonalized in the presence of a
nontrivial overlap operator. Hence the decision in favor
of or against the norm-conservation condition depends
on the system under study.

2. Vanderbilt’s ultrasoft pseudopotentials

Vanderbilt recently introduced ultrasoft pseudopoten-
tials that relax the norm-conservation condition.®!® This
approach has two basic ingredients: First, the wave
functions are not norm conserving and second, general-
ized separable pseudopotentials?2!—an extension of the
Kleinman-Bylander potentials’®—are used.

These two ingredients of the ultrasoft pseudopotentials
and the PAW method are similar. In addition, the projec-
tor augmentation uses concepts from the generalized sep-
arable pseudopotentials and, like other augmented wave
schemes, its PS wave function or envelope function has a
different norm than that of the AE wave function. The
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difference, however, is that the PAW method is an all-
electron method and Vanderbilt’s approach a pseudopo-
tential method.

(i) The PAW method avoids “pseudization” steps
to which one resorts when using pseudopotential ap-
proaches, be they norm-conserving pseudopotential ap-
proaches or not. The PAW method, on the other hand,
works directly with the full-wave functions and poten-
tials and includes the core states. This is a nontrivial
problem; the notion that the full-wave functions cannot
be treated in a reasonable way on a regular grid was the
reason to introduce augmented-wave and pseudopoten-
tial methods. The PAW method follows here the tradi-
tion of the augmented-wave methods, where the full-wave
function is decomposed into various parts, each of which
can be handled conveniently in its own representation.

(ii) The PAW method provides a prescription to go
back and forth between the PS wave functions and the
physical AE wave functions. The analogy between the
PAW method and the pseudopotential approach has been
exploited successfully by Van de Walle and myself'? to re-
construct an approximate full-wave function from a pseu-
dopotential calculation and obtain quantities that are not
directly accessible by the pseudopotential approach. The
PAW method is more rigorous than a mere reconstruc-
tion of the wave functions because the full wave function
takes part in the screening process.

(ii1) In the ultrasoft pseudopotentials the overlap oper-
ator and the local charges have been introduced to restore
the scattering properties of the pseudopotential when the
norm-conservation condition is relaxed in order to obtain
smoother PS wave functions. In the PAW method, the
non-norm-conserving PS wave functions enter naturally
as in all other augmented-wave methods.

(iv) From the point of view of computational effort,
the PAW method and the ultrasoft pseudopotentials are
equivalent with respect to plane-wave convergence if a
similar construction of non-norm-conserving PS wave
functions is used. However, the PAW method is more
efficient because it treats the one-center expansions on
radial grids, which effectively eliminates the related com-
putational cost, rather than in a plane-wave representa-
tion. Furthermore, the plane-wave cutoff for the charge
density can be chosen substantially lower in the PAW
method because the augmentation density is not directly
added to the density grid. This cuts the computational
effort for the Fourier transforms substantially.

B. Linear augmented-plane-wave method

The present method is in the tradition of exist-
ing augmented-wave methods. Augmented-wave func-
tions were originally invented by Slater.? There, the
Lippmann-Schwinger equation for a muffin-tin type po-
tential is solved by matching the energy-dependent par-
tial solution of the Schrodinger equation inside and out-
side the muffin-tin sphere. As this matching procedure is
computationally extremely demanding, Andersen intro-
duced the linear methods,3 where the partial solutions
from within the muffin-tin sphere are linearized with
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respect to the one-particle energy, resulting in energy-
independent basis functions of a type previously sug-
gested by Marcus® in the context of the APW method.
This allowed the wave functions to be obtained by ma-
trix diagonalization. It also led to the definition of basis
functions such as linear augmented-plane waves, linear
augmented muffin-tin orbitals, and many more.

All linear methods have in common that two partial
waves of the spherical part of the potential within the
muffin-tin sphere are matched at the sphere radius to a
so-called envelope function, which corresponds to the PS
wave function of the PAW method. The PAW method
modifies precisely that principle. Instead of determining
the coefficients of the partial-wave expansion from the
value and derivative of the PS wave function at some
sphere radius, it uses the more general principle of pro-
jector augmentation. We have seen in Sec. II that the
scalar product with some projector function is the most
general way to determine these coefficients linearly from
the PS wave function. There are other differences to
the linear methods made possible by this more general
approach which provide the important practical advan-
tages. Those will be discussed later.

Here we show that the LAPW method is, in some
sense, a special case of the PAW method, namely, that it
is possible to formulate the augmentation by matching as
in the linear methods by projector functions. That the
matching of the LAPW method can be expressed by pro-
jector functions has been observed earlier by Goedecker
and Maschke.%®

In the LAPW method the wave functions are expressed
by partial waves |¢,) and their energy derivatives |¢,) at
some energy ¢, within atom-centered muffin-tin spheres
Qg and by plane waves in the interstitial region €2;:

|¥) = (1 - 0a,)[¥) + Oag(ldv)a —[6,)b),  (127)
where 6q,, is a step function that is unity within the aug-
mentation sphere 2 and zero outside. The coefficients
a and b,

{ a ] - 1 ¥9,6, — §,0,%
b T (6.0,dy — drOrdy) | $,0-0 — V0,8,

are determined such that the wave function is differen-
tiable at the sphere radius. For reasons of simplicity we
can write these equations for only one angular momen-
tum component of the wave function.

The same result can also be reproduced using projec-
tor functions: First we construct two AE partial waves
per angular momentum and site as the partial wave |¢(¢))
for a given energy ¢,, yielding |¢, ), and its energy deriva-
tive |¢), where the overdot stands for energy derivative.
Then we construct PS partial waves analogously to the
procedure described in Sec. VI. When constructing the
projector functions, the augmented-wave methods devi-
ate from the recipe given in Sec. VI and build them up
as superpositions [p;) = 3_.,(V?0q,)|#;)cji. The coeffi-
cients c;; are determined such that the orthogonality con-
dition (ﬁ,ldjvj) =4;; is fulfilled.”™ The projector functions
corresponding to the linear methods are localized on the

, (128)
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two-dimensional muffin-tin surface, which excludes real
space summation to obtain the scalar products with the
PS wave function. However, the latter can be evaluated
in G space for any other representation of the PS wave
function in terms of analytical functions. There are ex-
tensions of the LAPW method that use more than two
partial waves,”? but they will not be discussed here, as I
only wish to illustrate the principle. The computational
effort for this part of the augmentation is similar in the
LAPW and the PAW methods if such a projection-type
approach is used in the LAPW method.

In contrast to the PAW method, the LAPW method
requires the one-center expansion of the PS wave func-
tion to be exactly identical to the PS wave function it-
self, which is computationally demanding. In the PAW
method there is no need to make the one-center expan-
sion of the PS wave function more accurate than the one-
center of the AE wave function and both are therefore
obtained in a completely analogous way. In fact, this pro-
cedure results in an extremely rapid convergence of the
partial-wave expansion, which is due to the error cancel-
lations discussed earlier. The one-center expansions of
the PS wave function are obtained without extra effort
because their coefficients are identical to those obtained
previously with the AE wave function.

Another difference between the LAPW and the PAW
methods is the use of frozen partial waves imported from
an isolated atom as opposed to partial waves that ad-
just to the actual potential. At first glance this appears
to be a disadvantage of the PAW method. However, if
we count the number of variational degrees of freedom,
we find that, given the same number of plane waves, the
PAW method has a more flexible basis set, even though
the partial-wave expansions often have fewer terms than
the LAPW method. Whereas the LAPW method has
complete flexibility to adjust to the spherical part of the
potential inside the muffin-tin spheres, the PAW method
lets the plane waves of the unaugmented part of the PS
wave function extend into the spheres and thus allows the
wave functions to adjust to both spherical and nonspher-
ical potentials. This is the result of what is often called
“additive augmentation” and has been discussed in the
Sec. VII. In combination with a fictitious Lagrangian for-
malism, the use of fixed partial waves has the important
advantage that the total energy is a unique function of
only the PS wave functions and the atomic positions.

1. The APW method of Soler and Williams

The APW method of Soler and Williams!5™17 differs
from other implementations of the LAPW method in sev-
eral ways. I will compare the main differences between
their APW method and the PAW method. Most of what
has already been said about the difference between the
PAW method and the LAPW method also applies here.

First, Soler’s APW method employs an iterative min-
imization of the total energy, which is similar in spirit
to the Car-Parrinello method. To my knowledge no
molecular-dynamics features have been implemented.
The reason has been attributed” to the problem of “hid-
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den” variables in the APW method, e.g., the shape of the
partial waves, that adjust to the actual spherical poten-
tial. As the PAW method uses frozen partial waves, this
problem does not arise.

Second, in the Soler-Williams APW the linear approxi-
mation has been abandoned in favor of so-called infinites-
imal paneling. This means that every state has its own
¢, ¢ functions obtained from the spherical potential at the
energy of that state. As a result the scattering properties
are correct for all one-particle energies given a spherical
potential. The PAW method reproduces the scattering
properties correctly over the entire energy range only in
the ideal case of an infinite number of partial waves. In
this case the PAW wave functions are exact solutions for
the full nonspherical potential. In practice the wave func-
tions of the PAW are accurate in an arbitrarily large, but
finite energy region.

Like previous implementations of the LMTO method,
the Soler-Williams APW employs the principle of addi-
tive augmentation. In the PAW method the principles of
additive augmentation are applied even more rigorously.
Not only the £ convergence, but also the partial-wave
convergence for each angular momentum channel is ac-
celerated using this idea.

2. Singh’s projector-basis technique

Recently, Singh”* introduced an implementation of the
LAPW method (and the mixed-basis pseudopotential)
method that is substantially more efficient than previous
implementations. Instead of matching the partial waves
directly to the plane-wave part of the wave function, a
set of analytical functions is first fitted to the PS wave
function on the real-space grid points in a localized re-
gion around each atom. Once an analytical expression
for the plane-wave part is given, the matching of partial
waves and the integrations over the muffin-tin sphere can
be evaluated quickly. The advantage of this approach
is that computational effort for the augmentation scales
quadratically [or N2In(N)] with the number of atoms
N, compared to an N3 scaling in a pure G space formu-
lation. Another solution of the same problem has been
developed in the pseudopotential approach.”

There has been some confusion about the terms “pro-
jector basis function” in Singh’s paper and the “projector
functions” of the PAW method. The two refer to different
objects. Since the projector functions are used to repre-
sent the PS wave function, the projector basis functions
of Singh’s approach relate more closely to the PS partial
waves of the PAW method rather than to its projector
functions. However, also here are differences: The PS
partial waves of the PAW method are per construction
adapted to the PS potential, and the coefficients of the
partial wave expansion are obtained by a scalar prod-
uct of my projector functions with the PS wave func-
tion, whereas in Singh’s approach these coefficients are
obtained by a least-squares-type fit to the plane-wave
part at the real-space grid points. The difference between
the two approaches is most apparent from the number of
projector functions and PS waves, which in PAW vary
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typically between four and fourteen per site, whereas in
Singh’s approach several hundred functions are used.
Singh’s approach can be applied equally to the
pseudopotential formalism and to all augmented-wave
schemes including the PAW method. When convergence
with the number of Singh’s projector functions and plane-
wave cutoff is obtained, it reproduces exactly the elec-
tronic structure method to which it has been applied.

X. CONCLUSIONS

An electronic structure method has been described
that works directly on the full valence and core wave
functions and allows highly accurate first-principles
molecular-dynamics simulation to be performed. It has
been demonstrated that the accuracy of the PAW method
matches that of other state-of-the-art electronic structure
methods based on the LDA and that high-quality first-
principles molecular-dynamics simulations are possible
using this approach. To the best of my knowledge, this
method was used in the first molecular-dynamics simula-
tion using an all-electron method.5? The method bridges
the gap between the existing augmented-wave methods
and the pseudopotential methods and underscores the re-
lationship between these two approaches. Compared to
the existing approaches, the present method is expected
to be more efficient, given a similar level of optimization.
The method can be incorporated into existing pseudopo-
tential codes with relatively minor additional effort.
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APPENDIX A: RADIAL SCHRODINGER
EQUATION WITH A SEPARABLE POTENTIAL

In order to test the scattering properties it is necessary
to solve the radial Schrédinger equation using a separable
pseudopotential. An approach is sketched here briefly:

(~%V2 +i- o))

+ Y 1Bi)(dHi; + €dOi;)(;|¥) = 0. (A1)

1,j

An ansatz for the solution is

1B) = [u) + Y Jwi)es (A2)
with |u) and |w;) defined as
(=iVi4+5—¢)|u)=0 (A3)
and
(=3 V247 = e)lwi) = [p:) (A4)

After inserting this ansatz into Eq. (A1) we obtain an
equation that determines the coefficients c; as

—1
C; = — Z 5,‘_7' + Z(dHik — edOik)(ﬁkle)
7,1 k

X(del — EdOj[)(])”’U.) . (AS)
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