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Notes for Lecture #27

Derivation of the Liénard-Wiechert potentials and fields

When we previously considered solutions to the inhomogeneous electromagnetic wave equa-
tions in the Lorentz gauge, (chapter 6 in Jackson, we were using MKS units. We keep these
units in the following derivations. Consider a point charge q moving on a trajectory Rq(t).
We can write its charge density as

ρ(r, t) = qδ3(r−Rq(t)), (1)

and the current density as
J(r, t) = qṘq(t)δ

3(r−Rq(t)), (2)

where

Ṙq(t) ≡
dRq(t)

dt
. (3)

Evaluating the scalar and vector potentials in the Lorentz gauge,

Φ(r, t) =
1

4πε0

∫ ∫
d3r′ dt′

ρ(r′, t′)

|r− r′|
δ (t′ − (t− |r− r′|/c)) , (4)

and

A(r, t) =
1

4πε0c2

∫ ∫
d3r′ dt′

J(r′, t′)

|r− r′|
δ (t′ − (t− |r− r′|/c)) . (5)

We performing the integrations over first d3r′ and then dt′, and make use of the fact that
for any function of t′,∫ ∞

−∞
dt′ f(t′)δ (t′ − (t− |r−Rq(t

′)|/c)) =
f(tr)

1− Ṙq(tr)·(r−Rq(tr))
c|r−Rq(tr)|

, (6)

where the “retarded time” is defined to be

tr ≡ t− |r−Rq(tr)|
c

. (7)

We find

Φ(r, t) =
q

4πε0

1

R− v·R
c

, (8)

and
A(r, t) =

q

4πε0c2

v

R− v·R
c

, (9)

where we have used the shorthand notation R ≡ r−Rq(tr) and v ≡ Ṙq(tr).



In order to find the electric and magnetic fields, we need to evaluate

E(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
(10)

and
B(r, t) = ∇×A(r, t). (11)

The trick of evaluating these derivatives is that the retarded time (7) depends on position r
and on itself. We can show the following results using the shorthand notation defined above:

∇tr = − R

c
(
R− v·R

c

) , (12)

and
∂tr
∂t

=
R(

R− v·R
c

) . (13)

Evaluating the gradient of the scalar potential, we find:

−∇Φ(r, t) =
q

4πε0

1(
R− v·R

c

)3

[
R

(
1− v2

c2

)
− v

c

(
R− v ·R

c

)
+ R

v̇ ·R
c2

]
, (14)

and

−∂A(r, t)

∂t
=

q

4πε0

1(
R− v·R

c

)3

[
vR

c

(
v2

c2
− v ·R

Rc
− v̇ ·R

c2

)
− v̇R

c2

(
R− v ·R

c

)]
. (15)

These results can be combined to determine the electric field:

E(r, t) =
q

4πε0

1(
R− v·R

c

)3

[(
R− vR

c

)(
1− v2

c2

)
+
(
R×

{(
R− vR

c

)
× v̇

c2

})]
. (16)

We can also evaluate the curl of A to find the magnetic field:

B(r, t) =
q

4πε0c2

 −R× v(
R− v·R

c

)3

(
1− v2

c2
+

v̇ ·R
c2

)
− R× v̇/c(

R− v·R
c

)2

 . (17)

One can show that the electric and magnetic fields are related according to

B(r, t) =
R× E(r, t)

cR
. (18)

Two formulations of electromagnetic fields produced by

a charged particle moving at constant velocity

In Chapter 11 of Jackson (page 559 – Eqs. 11.151-2 and Fig. 11.8), we derived the electric
and magnetic field of a particle having charge q moving at velocity v along the x̂1 axis. The
results are for the fields at the point r = bx̂2 are:

E(x1, x2, x3, t) = E(0, b, 0, t) = q
−vγtx̂1 + γbx̂2

(b2 + (vγt)2)3/2
(19)



and

B(x1, x2, x3, t) = B(0, b, 0, t) = q
γβbx̂3

(b2 + (vγt)2)3/2
(20)

for the electric and magnetic fields respectively. The denominators of these expressions
are easily interpreted as the distance of the particle from the field point, as measured in
the particle’s own reference frame. On the other hand, we can consider the same physical
problem from the point of view of Liénard-Wiechert potentials:

Consider the electric field produced by a point charge q moving on a trajectory described by
r0(t) with ρ(r, t) ≡ qδ3(r−r0(t)). Assume that v0(t) ≡ ∂r0(t)/∂t and ∂2r0(t)/∂t2 = 0. Using
the previously derived results for the Liénard Wiechert potentials, changed into Gaussian
units, the electric field can be written in the form:

E(r, t) =
q

4πε0

(1− v2
0/c

2)(R− v0R/c)

(R− v0 ·R/c)3

−→
Gaussian units

q
(1− v2

0/c
2)(R− v0R/c)

(R− v0 ·R/c)3
, (21)

where R ≡ |R(tr)|, R(tr) ≡ r− r0(tr), and where all quantities which depend on time on
the right hand side of the equation are evaluated at the retarded time tr ≡ t − R(tr)/c. In
Gaussian units, the corresponding magnetic field is given by

B =
R× E

R
. (22)

If we evaluate this result for the same case as above (Fig. 11.8 of Jackson), v0 ≡ vx̂1, and
R(tr) = −vtrx̂1 + bx̂2. In order to relate this result to Eqs. 19 and 20 above, we need to
express tr in terms of the known quantities. Noting that

R(tr) = c(t− tr) =
√

(vtr)2 + b2, (23)

we find that tr must be a solution to the quadratic equation:

t2r − 2γ2ttr + γ2t2 − γ2b2/c2 = 0 (24)

with the physical solution:

tr = γ

γt−

√
(vγt)2 + b2

c

 . (25)

Now we can express the length parameter which appears in Eq. 21 as

R = γ
(
−βvγt +

√
(vγt)2 + b2

)
. (26)

We also can show that the numerator of Eq. 21 can be evaluated:

R− v0R/c = −vtx̂1 + bx̂2, (27)

and the denominator can be evaluated:

R− v0 ·R/c =

√
(vγt)2 + b2

γ
. (28)

Substituting these results into Eqs. 21 and 22, we obtain the same electric and magnetic
fields as given in Eqs. 19 and 20 from the field transformation approach.


