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Notes for Lecture #1

1 Introduction

1. Textbook and course structure
2. Motivation
3. Chapters I and 1 and Appendix of Jackson

(a) Units - SI vs Gaussian
(b) Laplace and Poisson Equations

(¢) Green’s Theorm

2 Units - SI vs Gaussian

Coulomb’s law has the form:
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Ampere’s law has the form:
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where the current and charge are related by i; = dgq;/dt for all unit systems. The two
constants K¢ and K4 are related so that their ratio K¢/K 4 has the units of (m/s)? and it
is ezperimentally known that the ratio has the value Ko/K = ¢?, where c is the speed of
light.

The choices for these constants in the SI and Gaussian units are given below:
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Here, Z—O =10""N/A? and = 210" N/A? = 8.98755 x 10°N - m?/C2.
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Below is a table comparing SI and Gaussian unit systems. The fundamental units for each
system are so labeled and are used to define the derived units.

Variable SI Gaussian SI/Gaussian
Unit Relation Unit Relation
length m | fundamental cm fundamental 100
mass kg | fundamental gm fundamental 1000
time s | fundamental s fundamental 1
force N kg-m?/s dyne gm - cm?/s 10°
current A | fundamental | statampere | statcoulomb/s 1100
charge C A-s statcoulomb | +/dyne - cm? 12]0

One advantage of the Gaussian system is that the field vectors: E, D, B, H, P, M all have
the same physical dimensions., In vacuum, the following equalities hold: B = H and E = D.
Also, in the Gaussian system, the dielectric and permittivity constants e and p are dimen-
sionless.
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“Proof” of the identity (Eq. (1.31))
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Noting that
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we see that we must show that
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We introduce a small radius a such that:
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For a fixed value of a,
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If the function f(r) is continuous, we can make a Taylor expansion of it about the point
r = r/, keeping only the first term. The integral over the small sphere about r’ can be carried

out analytically, by changing to a coordinate system centered at r’;

u=r-—-r,

so that
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If the infinitesimal value @ is a < R, then (R? 4 a?)3/? ~ R® and the right hand side of
Eq. 10 is —4m. Therefore, Eq. 9 becomes,
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about r’

which is consistent with Eq. 5 above.



