Notes on numerical analysis

It is very frequently the case that some sort of numerical work is needed to complete an analysis of a physics problem. For example, consider the integration of the following function $f(x)$:

The easiest method of approximating the integral, is the mid-point formula, which divides the interval $x_{\text {min }} \leq x \leq x_{\max }$ into N regularly spaced sampling points $\left(n-\frac{1}{2}\right) h, n=1,2, \cdots N$, and $h=\left(x_{\max }-x_{\min }\right) / N$.

Mid point integration

In this example, $N=5$ and $h=0.2$.
The mid-point algorithm for approximating the integral is:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx h \sum_{n=1}^{N} f\left(a+\left(n-\frac{1}{2}\right) h\right) \tag{1}
\end{equation*}
$$

At the next level of approximation, there is the trapezoidal rule which evaluates the function at the end points of the N intervals to estimate the area as the sum of trapezoidal areas.

In this example, $N=5$ and $h=0.2$.
The trapezoidal rule algorithm for approximating the integral is:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \frac{h}{2} \sum_{n=1}^{N}\{f(a+(n-1) h)+f(a+n h)\} . \tag{2}
\end{equation*}
$$

There is a very large class of methods which can be derived from a Taylor series expansion:

$$
\begin{equation*}
\Phi(\mathbf{r}+\mathbf{u})=\Phi(\mathbf{r})+\mathbf{u} \cdot \nabla \Phi(\mathbf{r})+\frac{1}{2!}(\mathbf{u} \cdot \nabla)^{2} \Phi(\mathbf{r})+\frac{1}{3!}(\mathbf{u} \cdot \nabla)^{3} \Phi(\mathbf{r})+\frac{1}{4!}(\mathbf{u} \cdot \nabla)^{4} \Phi(\mathbf{r})+\cdots . \tag{3}
\end{equation*}
$$

This expansion shows how the value of a function at a given point is related to its values at neighboring points and its derivatives. We can use the Taylor series to approximate numerical derivatives. For example, the first derivative of a function $f(x)$ can be approximated by

$$
\begin{equation*}
\frac{d f(x)}{d x} \approx \frac{f(x+h)-f(x-h)}{2 h}+O\left(h^{2}\right) . \tag{4}
\end{equation*}
$$

The second derivative of the function can be approximated by

$$
\begin{equation*}
\frac{d^{2} f(x)}{d x^{2}} \approx \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}+O\left(h^{2}\right) . \tag{5}
\end{equation*}
$$

In a similar way, we can also derive higher order integration algorithms. For example, Simpson's rule for integrating with an even number of intervals is given by:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \frac{h}{3} \sum_{n=1}^{N / 2}\{f(a+(2 n-2) h)+4 f(a+(2 n-1) h)+f(a+2 n h)\} \tag{6}
\end{equation*}
$$

Here it is assumed that N is even and that $b=a+N h$. The result follows from considering approximating $f(x)$ within each interval $-h \leq x \leq h$ as

$$
\begin{equation*}
f(x) \approx f(0)+x \frac{d f(0)}{d x}+\frac{1}{2} x^{2} \frac{d^{2} f(0)}{d x^{2}}+\ldots \tag{7}
\end{equation*}
$$

with the further approximation

$$
\begin{equation*}
f(x) \approx f(0)+x\left(\frac{f(h)-f(-1)}{2 h}\right)+\frac{1}{2} x^{2}\left(\frac{f(h)+f(-h)-2 f(0)}{h^{2}}\right)+\ldots \tag{8}
\end{equation*}
$$

Using this last expression to perform the integral, we obtain

$$
\begin{equation*}
\int_{-h}^{h} f(x) d x=2 h f(0)+0+\frac{2 h^{3}}{3}\left(\frac{f(h)+f(-h)-2 f(0)}{h^{2}}\right)=\frac{h}{3}(f(-h)+f(h)+4 f(0)) . \tag{9}
\end{equation*}
$$

We can also use the difference formula Eq. (5) for solving differential equations. For example suppose we have a differential equation of the form

$$
\begin{equation*}
\frac{d^{2} f}{d x^{2}}=A(x), \tag{10}
\end{equation*}
$$

where $A(x)$ is a known function. Then we can rewrite Eq. (5) to find $f(x+h)$ in terms of $A(x), f(x-h)$, and $f(x)$:

$$
\begin{equation*}
f(x+h) \approx h^{2} A(x)+2 f(x)-f(x-h) \tag{11}
\end{equation*}
$$

A more accurate method that can also be used for eigenvalue problems is discussed in the notes "numerov.pdf".

