Notes on GGA
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General Equations:

Euc = [ drf(n(r),|Vn(x) (1)
_ O0f(n,|Vn|) af(n,|Vn|) Vn
Vrelr) = == — = V" ( d|Vn| \Vn\) ‘ @
Using FFT’s — A
n(r) = Zﬁ(G)eZG'r. (3)
G
V)| = || Gan(@)eTE 4+ Y Gyn(@)e 4 | ZGzﬁ(G)e’G'r\Q] Y
G G G

Algorithm to calculate v,. for smooth pseudofunctions using 3 large work arrays of
size of FFT grid:

1. Wi = n(r) < FFT[(G)]

2. Wo =0
3.
Doi=1z,y,z2
W3 = V;n(r)/i < FFT[G;n(G)] (FFT #1,2,3)
Wy = Wa + |W3|?
Enddo

4. Wy = |Vn(r)| < VITa

5. Accumulate E,. from Wi (n(r)) and Wa (|Vn(r)|)

6. Similarly, use W71 and Ws on each grid point to replace Wp = agff and Wy = ﬁéﬁ‘;‘ \vilnr

7. Wi(G) < FFT ' [Wy(r)] (FFT # 4)

Doi=ux,y,z2
W3 = Vn(r)/i <« FFT|G;7n(G)] (FFT # 5,6,7 or could store and retrieve from first
evaluation of same quantities)

W3 <= W3 - Wy (W3 now contains 68|foTCL| ‘sz':' (r)/i.)

W3(G) < FETHW;s(r)] (FFT # 8,9,10)
Wi(G) = Wi(G) + G;W3(G)
Enddo




9. W1(G) now contains vy.(G).

This performs 10 FFT’s with 3 large arrays or could perform 7 FFT’s with 6 large arrays.

Evaluation of v,. contributions to atom-centered terms: In general, the matrix elements
have the form:

Myze = (65 [Vec[Mcore + naﬂgb?> - @?‘”wc{f"a”&?) (5)
According to Eq. 2, the gradient contribution to v,. involves the divergence of the function
df(n,|Vn|) Vn
XC = . 6
& a\vn|  |Vnl (6)

Suppressing some of the extraneous notation, consider a term of the form

= [ 67 ()6;()V - gl [V (7)

Using the divergence theorem and the fact that the boundary terms cancel for the complete matrix
element of M.,

— [ 19 (6 @),()) - gee(n, [T, ®)
This could be conveniently evaluated in spherical polar coordinates:

(% 18b ~ 1 0b

Yo T a0 9)

Derivatives of angular terms can be expressed in terms of derivatives of spherical harmonics and

probably can best be done analytically. For example, writing ¢;(r) = ¢"l (r) Y, (T), one term of
the matrix element can be written:

d)"i iqs"' i ¢7Li l'd)n- - n/Or
(ol = 0 Yo, 117 dr {4525 8 4 (%4525 R R | 10
(lml J ]) ¢nzlz¢n 8f 877,/89
* JdQ =g [ dr {< ]> MVn|Vn}
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Specific equations for PBE form[1, 2, 3, 4, 5]
Case with no spin polarization

For this case, the functional takes the form:

f(n(r),|Vn(r)]) = n(r) {e.(rs,0)F(s) + ec(rs,0) + H(t,rs,0)} . (11)

Here,

362 1/3
ex(rs,0) = —E(?)ﬂ' n) (12)



The exchange gradient term depends on

__ |Vn |Vn| . 2, \1/3
s == oty TEONE since kp = (37°n)"/°, (13)
according to
K
F(s)=1 - 14
A ey 14
Here k = 0.804 and p = 0.2195149727645171.
The Wigner-Seitz radius parameter is given by
3 1/3
s=|— . 15
" (47m> (15)
The correlation is given as defined in Ref. ([5]):
e? 1
c(rs,0) = —2—A'(1 + ayrg) In |1+ (16)
a0 2A By + Pars + Bars > + Bar2)

Here the constant values are given (in Hartree energy units) as follows. (A’ is used to distingish a
different “A(rs)” term used in the correlation expression below.)

A" = 0.0310906908696548950

a1 = 0.21370
B = T7.5957
By = 3.5876
By = 1.6382
B; = 0.49294

The correlation gradient term depends on

4
ith ke =/ — (372n)Y/6. 17
2nk,’ wi s 7ra0( ™) (17)

ag denotes the bohr radius. The correlation gradient functional is given by

e? 15} 1+ At?
H=—~qlnd1+=2 | —— "~ 1
aory . +7 1+ A2+ A2t4 | 7 (18)
where this A function takes the form
_ 8 1 ec(rs,0)
A = A(eq(rs,0)) = poe where A = oy (19)

The constants are given by 8 = 0.06672455060314922 and ~ = 1_”12“2 = 0.03109069086965489503.

The derivative terms take the form:

9f(n,|Vn|) _ 9fs(n,[Vn|)
on N on

+sc(rs,0)+H(rs,t,0)_riw (1 8H) _TtOH(rs,t,0)

3 Org Oe, 6 ot » (20)



where the exchange contribution is given by

dfa(n,|Vn|) e o 1/3 ( dF(s) )
SCEANETAALL S F(s) — 21
= ~ ()8 (F(s) - S, (21)
where the last term becomes
dF(s) K + 3us? ) dF(s) 2us
F(s) — =1 - = . 22
( () ds S) th (14 pus?/k)?%’ SICE T s (14 ps?/k)? (22)
The derivative of €.(rs,0) is given, following Perdew and Wang[5]:
880(7'5,0) 62 < / QOQll )
e o % (24'aIn(1 + 1 SR 12— 23
87'5 0 1 ( /Ql) QI(QI + 1) ( )
where
Qo = 24" (1 + aqrs), (24)
Q1 =24/ (Birl? + PBors + Bar? + Byr?), (25)
and
Q) = A (B2 + 265 + 383ri/* + 4Bars). (26)
The gradient correlation terms take the form
OH 0H 0A
dec ~ 04 D, 27)
which take the form N
e (28)
de.  Be?/ag
and
OH &  (2+ AP)A°By (20)
OA  ap [yP + B(t2 + AtY)|P’
with
P =1+ At? + A%, (30)
Finally, the gradient correlation terms take the form:
OH e*  2tBy(1+ 24t

Ot ag [YP+ B(2 + At P

The terms involving derivatives with respect to the magnitude of the gradient can also be evaluated
using

df(n,|Vn|) 1
8zc(1n,|Vn|) = hae(n, |Vn|)Vn, where hge(n,|Vn|) = (8]V|n\ D Val (32)
3e2 dF (s) 1 0HY\ 1
hae(n, [Vnl) = |~ ) =
(n, [Vnl) ( 81 ds 2ks 815) |Vn| (33)

Some of the above expressions must be evaluated with care. For example, since the computer
evaluates 1 + ¢ = 1 when € < 107, or so (less than the machine precision), we define a function

) In(142) for z>e
Logofterm(x) = { . for o< e (34)
In addition, the expression for A(e.(rs,0)) is evaluated using the function
8 for e, >
Aofec(ec) = { vert gl ¢ < ‘ (35)
— ey for ec<e
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