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These notes are based on published work on the PAW formalism ([1, 2, 3, 4]) as implemented in the
atompaw and pwpaw codes (http://pwpaw.wfu.edu). Please send any questions and report errors
to natalie@wfu.edu.

1 PAW basis and projector functions

PAW calculations require a set of basis and projector functions which are denoted (in the notation
of previous work[1, 2, 5, 6, 3, 4]) |φa

i (r)〉, |φ̃a
i (r)〉, and |p̃a

i (r)〉, for the all-electron basis functions,
pseudopotential basis functions, and projector functions, respectively. Here the “a” superscript
denotes the atom index (which is suppressed in most of the remainder of this section), and the
“i” subscript represents the atomic quantum numbers ni, li, and mi. Since these function are
constructed from equations for a spherical atom, each can be written as a product of a radial
function times a spherical harmonic function, such as:

|φa
i (r)〉 ≡ |φa

nilimi
(r)〉 ≡ φa

nili
(r)

r
Ylimi(r̂). (1)

This notation is used to also enumerate the radial functions φa
nili

(r), φ̃a
nili

(r), and p̃a
nili

(r). The
symbol ni often corresponds to the principal quantum number for the state but also can corre-
spond to enumerate generalized functions needed for the basis.[1] The symbol li corresponds to the
angular momentum quantum number. Although the PAW method works using any of a variety
of basis and projector functions, the efficiency and accuracy of the calculation are affected by this
choice. In earlier work[2, 5] we investigated several alternative construction schemes. However,
we found a slight modifications of the original schemes developed Vanderbilt[7] for his ultra-soft
pseudopotential formalism and by Blöchl[1] for the PAW formalism, to be the most robust. In the
following we refer to these different schemes as the “Vanderbilt” or “Blöchl” schemes by which we
mean to credit their basic ideas, but imply no responsibility to either of them for how we have
implemented them in the atompaw code.

The starting point of the construction process is an all-electron self-consistent solution of the
Schrödinger equation for the reference atom a. (For the remainder of this section, we will drop
the index a.) It is assumed that the total electron density can be partitioned into a core electron
density ncore(r), corresponding to Qcore electrons and a valence electron density. The core density
ncore(r) is assumed to be fixed (“frozen”) in the same form in the atom as it is in the solid. Thus, all
of the calculational effort can be focused on the valence electrons. For some materials, especially
transition metals or ionic compounds, it is prudent to extend the notion of “valence” electrons
beyond the chemical definition to include upper core states. It is for the purpose of representing
these generalized valence electrons in the atom and in the solid that we construct the basis and
projector functions. The symbol n(r) is used to denote the corresponding valence electron density.

The all-electron basis functions |φi(r)〉 are valence and continuum eigenstates of the Kohn-Sham[8]
Hamiltonian.

H(r)|φi(r)〉 = εi|φi(r)〉, (2)
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The Hamiltonian takes the form:

H(r) = − h̄2

2m
∇2 + veff(r), (3)

where the self-consistent valence density n(r) enters through the effective potential:

veff(r) ≡ −Ze2

r
+ e2

∫
d3r′

ncore(r′) + n(r′)
|r− r′| + µxc[ncore(r) + n(r)]. (4)

Here Z denotes the nuclear charge. The function µxc denotes the exchange correlation functional.
In the present work, we used the local density approximation (LDA) form of Perdew and Wang[9],
but other forms can be easily added to the code. Self-consistency implies that the valence density
and the valence basis functions are related according to:

n(r) =
∑

nili

onili

|φnili(r)|2
4πr2

, (5)

where onili denotes the occupancy of the orbital “nili” which can be zero, especially for generalized
functions.

The next consideration is to construct a pseudopotential function V PS(r) that will be used to
construct the smooth basis functions φ̃nili(r) and whose unscreened version will be appear as a
local pseudopotential contribution to the smooth Hamiltonian. Our current recommendation for
V PS(r) is to construct ṽloc(r) using a norm-conserving pseudopotential[10, 11, 12] approach. The
idea is that in this way, the local potential can be constructed to force the good representation of
partial wave components with the chosen angular momentum Lv. The partial wave components
with smaller angular momentum will be represented with the non-local terms in the usual PAW
construction. This is by no means a new idea and was inspired by David Vanderbilt’s webpage on
soft-pseudopotential generation http://www.physics.rutgers.edu/ dhv/uspp/.

We recommend using the Troullier-Martins[12] form of the norm-conserving pseudopotential (key-
words VNCT or VNCTV). The main equations describing the method are as follows. Lv represents
the angular momentum chosen for constructing the norm-conserving (screened) pseudopotential.
The pseudowavefunction is chosen to have the form:

φ̃(r) =

{
rLv+1f(r) for r ≤ rc

φ(r) for r > rc.
(6)

Here φ(r) represents a chosen continuum wavefunction of the all-electron Hamiltonian at energy
E. The function f(r) is chosen to have the form

f(r) = ep(r), (7)

where p(r) is chosen to be an even 12th order polynomial:

p(r) =
6∑

m=0

Cmr2m. (8)

The 7 polynomial coefficients {Cm} are chosen to ensure that the wavefunction and its first 4
derivatives are continuous at the matching radius in addition to the norm conservation condition.
The last constraint is that screen pseudopotential has zero slope at the origin which, as shown

2



by Troullier and Martins[12] means that C2
1 + (2l + 5)C2 = 0. The matching radius rc defines

an augmentation sphere about each atom. It is assumed that there should be little or no overlap
between augmentation spheres in all of the materials studied with the pseudopotential and basis
functions. The screened norm-conserving pseudopotential can be determined from polynomial
according to

V PS(r) = E +
h̄2

2m

(
d2p

dr2
+

(
dp

dr

)2

+ +
2(Lv + 1)

r

dp

dr

)
. (9)

By construction, this function and its first two derivatives are equal to veff(r) for r ≥ rc.

At this point, we can construct a smooth pseudo-Hamiltonian analogous the all-electron Hamilto-
nian (2) of the form

H̃(r) ≡ − h̄2

2m
∇2 + V PS(r). (10)

We are now in a position to determine the projector and basis functions. The two methods that work
well are either the Blöchl scheme (keyword VNCT) or the Vanderbilt scheme (keyword VNCTV). As
we have implemented it, the Vanderbilt scheme has more flexibility and it seems possible to derive
slightly more rapidly converging projector and basis functions by fiddling with the parameters.

1.1 Vanderbilt scheme

In this scheme, the the shape of the smooth basis functions are directly controlled, φ̃i(r) while the
projector functions p̃i(r) are derived. Each radial smooth function is chosen to have the form

φ̃nili(r) =





rli+1
4∑

m=0

Cmr2m for r < ri

φnili(r) for r ≥ ri

(11)

The matching radii ri ≤ rc are used to control the shapes. The 5 coefficients {Cm} are chosen so
that φ̃nili(r) = φnili(r) at 5 points in the neighborhood of ri which is roughly equivalent to ensuring
that the function at its first 4 derivatives match at ri. For each smooth basis function, we can form
a localized auxiliary function

χnili(r) =

(
εi +

h̄2

2m

(
d2

dr2
− li(li + 1)

r2

)
− V PS(r)

)
φ̃nili(r), (12)

which, by design vanishes for r > rc. The projector functions are then formed from a linear
combination of these auxiliary functions of the same angular momentum:

p̃nili(r) ≡
∑
nj

χnj li(r)
(
B−1

)
njni

, (13)

where the elements of the matrix B are given by

Bninj ≡
∫ rc

0
drφ̃nili(r)χnj li(r). (14)

As shown by Vanderbilt[7] this construction ensures that

〈φ̃i|p̃j〉 = δij (15)

and that the smooth basis function φ̃i(r) is an eigenfunction of the atomic PAW Hamiltonian.
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1.2 Blöchl scheme

In this scheme, the shape of the projector functions p̃i(r) are chosen while the smooth basis functions
φ̃i(r) are derived. As we have implemented the scheme, the shapes of the functions are generally
controlled only with choice of the augmentation radius rc which is taken to be the same as that
used to construct the screened local pseudopotential V PS(r) discussed above. Of course, there
addition flexibility in choosing the set of all electron basis functions {φ0

nili
(r)} as discussed above,

where we use the superscript “0” to denote the initial basis functions which may change later due
to orthogonalization requirements.

In Blöchl’s pseudo-function construction scheme, the projector functions are constructed with the
help of a shape function k(r) which vanishes outside the augmentation region. In previous work
we find the following shape function to work the best:

k(r) =





[
sin(πr/rc)
(πr/rc)

]2

for r < rc

0 for r ≥ rc

. (16)

The pseudo-basis functions |φ̃0
i (r)〉 are found by solving a self-consistent Schrödinger-like equation

involving the “smooth” Hamiltonian H̃. The equation takes the form:
(
H̃(r)− εi

)
|φ̃0

i (r)〉 = Cik(r)|φ̃0
i (r)〉. (17)

In this equation, εi is fixed at the all-electron eigenvalue found in Eq. (2), while Ci is to be
determined. In numerically integrating the radial part of this equation for φ̃0

nili
(r), the coefficient

Ci is adjusted so that φ̃0
nili

(r) has the correct number of nodes for each l value (zero nodes for the
basis function with the lowest one-electron energy εnili , incremented by one node for each additional
basis function at higher one-electron energies). In addition, the coefficient Ci is adjusted so that
φ̃0

nili
(r) satisfies the boundary condition:

φ̃0
nili(r) = φ0

nili(r) for r ≥ rc. (18)

In practice, this is achieved by iterating Eq. (17) with variations in Ci so that the logarithmic
derivatives of φ0

nili
(rc) and φ̃0

nili
(rc) are equal, following the approach described in Hartree’s text[13].

Once the pseudo-basis functions |φ̃0
i (r)〉 have been determined by finding the solution of Eq. (17),

the corresponding projector functions are formed according to:

|p̃0
i (r)〉 ≡

k(r)|φ̃0
i (r)〉

〈φ̃0
i |k|φ̃0

i 〉
. (19)

This means that these initial pseudo-basis functions and the corresponding projector functions are
normalized according to

〈φ̃0
i |p̃0

i 〉 = 1, (20)

and related to the smooth Hamiltonian according to the identity:
(
H̃(r)− εi

)
|φ̃0

i (r)〉 = |p̃0
i (r)〉〈φ̃0

i |H̃ − εi|φ̃0
i 〉. (21)
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The final basis and projector functions {|φi(r)〉, |φ̃i(r)〉, |p̃i(r)〉} are formed from the initial functions
{|φ0

i (r)〉, |φ̃0
i (r)〉, |p̃0

i (r)〉} by a Gram-Schmidt orthogonalization procedure as described in Eqs.(91-
96) of Ref. ([1]). Specifically, for each angular momentum quantum number l, we denote the
successive radial functions with indices n1, n2, ... etc. The first set of basis and projector functions
is given by the initial functions:

p̃n1l(r) ≡ p̃0
n1l(r), φ̃n1l(r) ≡ φ̃0

n1l(r), and φn1l(r) ≡ φ0
n1l(r). (22)

If there is a second radial basis function for that l, the final function is orthonormalized with respect
to the first according to:

p̃n2l(r) = Fn2l

[
p̃0

n2l(r)− p̃n1l(r)〈φ̃n1l|p̃0
n2l〉

]
, (23)

φ̃n2l(r) = Fn2l

[
φ̃0

n2l(r)− φ̃n1l(r)〈p̃n1l|φ̃0
n2l〉

]
,

φn2l(r) = Fn2l

[
φ0

n2l(r)− φn1l(r)〈p̃n1l|φ̃0
n2l〉

]
,

where,

Fn2l ≡
(
1− 〈φ̃0

n2l|p̃n1l〉〈φ̃n1l|p̃0
n2l〉

)−1/2
. (24)

If there were addition radial basis functions for that l, they would be orthonormalized in a similar
way. In our experience, and in that of previous workers[14, 15], one or two radial basis functions
are usually sufficient to span the Hilbert space of smooth functions within each atomic sphere.

2 Self-consistency requirements

The self-consistent smooth Hamiltonian is expected take the following form:

H̃(r) = − h̄2

2m
∇2 + ṽeff(r), (25)

where the smooth effective potential is given by

ṽeff(r) ≡ ṽloc(r) + e2
∫

d3r′
ñcore(r′) + ñ(r′) + n̂(r′)

|r− r′| + µxc[ñcore(r) + ñ(r)]. (26)

Here the pseudo-density ñ(r) in Eq. (26) is determined from the pseudo-basis functions and their
occupancies onili according to

ñ(r) =
∑

nili

onili

|φ̃0
nili

(r)|2
4πr2

. (27)

In Eq. 26, the function ñcore(r) is introduced to represent the tail of the core density for r > rc

and a smooth continuous function for r < rc. In particular, we choose

4πr2ñcore(r) ≡
{

r2(U0 + U2r
2 + U4r

4) for r ≤ rc

4πr2ncore(r) for r ≥ rc,
(28)
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where the constants U0, U2, and U4 are chosen so that 4πr2ñcore(r) ≡ d0 and its first two derivatives
d1 and d2 are continuous at rc. This determines the constants to be

U0r
2
c = 3d0 − 9

8
d1rc +

1
8
d2r

2
c . (29)

U2rc = −3d0 +
7
4
d1rc − 1

4
d2r

2
c . (30)

U4 = d0 − 5
8
d1rc +

1
8
d2r

2
c . (31)

The additional “compensation” charge density contribution in Eq. 26 denoted by n̂(r), represents
the total atomic charge minus the pseudo charge, redistributed to a convenient smooth form. This
charge density is spherically symmetric for the atom and can be written:

n̂(r) = Q00g00(r), (32)

where the monopole moment Q00 is

Q00 ≡ −Z +
∫

d3r [ncore(r) + n(r)− ñcore(r)− ñ(r)] . (33)

The functional form of atom-centered moments of the compensation charge is now chosen to be
proportional to the shape function (16):

gLM (r) ≡ NLrLk(r)YLM (r̂), where, [
√

4πNL]−1 ≡
∫ rc

0
dr r2+2L k(r). (34)

Here, YLM (r̂) denotes the spherical harmonic function and NL denotes a normalization factor. For
the atom, only the monopole term is needed; Eq.(34) applies more generally to the solid.

Finally, the local potential term of Eq. (26) can be determined from a knowledge of the smooth
(ñ(r)), compensation (n̂(r), and coretail (ñcore(r) densities by unscreening the local pseudopotential
(9) according to:

ṽloc(r) = V PS(r)− e2
∫

d3r′
ñcore(r′) + ñ(r′) + n̂(r′)

|r− r′| − µxc[ñcore(r) + ñ(r)]. (35)

In this formulation, the unscreened local pseudopotential ṽloc(r) is confined within the augmentation
sphere (r ≤ rc).

3 PAW Hamiltonian

In terms of these basis functions, the generalized eigenvalue equation for the PAW formalism can
be written

HPAW(r)|Ψ̃E(r)〉 = EO|Ψ̃E(r)〉, (36)

where

HPAW ≡ H̃(r) +
∑

aij

|p̃a
i 〉

(
〈φa

i |Ha|φa
j 〉 − 〈φ̃a

i |H̃a|φ̃a
j 〉

)
〈p̃a

j | ≡ H̃(r) +
∑

aij

|p̃a
i 〉Da

ij〈p̃a
j |. (37)
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The overlap term is given by

O ≡ 1 +
∑

aij

|p̃a
i 〉

(
〈φa

i |φa
j 〉 − 〈φ̃a

i |φ̃a
j 〉

)
〈p̃a

j |. (38)

It can be shown that the pre-orthonormalized smooth basis functions functions {|φ̃0
i (r)〉} → |Ψ̃E(r)〉

in the Blöchl formulation and the corresponding smooth basis functions in the Vanderbilt formula-
tion are exact solutions of the PAW equations (36).

The eigenstates |Ψ̃E(r)〉 of Eq. (36) are related to the eigenstates of the all-electron Hamiltonian,
according to:

|ΨE(r)〉 = |Ψ̃E(r)〉+
∑

ai

(
|φa

i (r)〉 − |φ̃a
i (r)〉

)
〈p̃a

i |Ψ̃E〉, (39)

within the accuracy of the PAW representation. For the case of a spherically symmetric atom, the
site index a is trivial and all matrix elements are diagonal in limi indices.

In practice, the Hamiltonians Ha and H̃a which appear in Eq. (37) are defined in terms of matrix
elements evaluated using the orthogonalized basis functions {φa

i } and {φ̃a
i } [1, 2, 4]. The construc-

tion procedure ensures that HPAW reproduces the same eigenvalue spectrum as the all-electron
Hamiltonian within the energy range spanned by the basis functions.

4 Energy and Hamiltonian for solids.

The total energy expression for the solid is taken to be1

E = Ẽ +
∑
a

(
Ea − Ẽa

)
. (40)

The smooth contributions are given by

Ẽ = K̃ +
e2

2

∫
d3r

∫
d3r′

(ñ(r) + ñcore(r) + n̂(r))(ñ(r′) + ñcore(r′) + n̂(r′))
|r− r′| (41)

+
∫

d3r ṽloc(r)ñ(r) + Exc[ñcore + ñ].

For the Bloch wavefunction Ψnk(r), with an occupancy of onk, the smooth density is given by

ñ(r) =
∑

nk

onk|Ψnk(r)|2, (42)

and the kinetic energy is given by

K̃ = − h̄2

2m

∑

nk

onk〈Ψnk(r)|∇2|Ψnk(r)〉. (43)

The total energy expression (41) expression reflects the fact that in the solid, we need to superpose
the atom-centered compensation charge, coretail, and local potential contributions. The coretail

1We have simplified the core tail function defined in Ref.([2]) in this formulation so that overlapping core contri-
butions are neglected in the atom-centered contributions.
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density takes the form
ñcore(r) ≡

∑
a

ña
core(|r−Ra|), (44)

allowing for the superposition of the smooth part of the core electron density in the treatment of
the smooth parts the Coulomb and exchange-correlation interactions.

The compensation charge density takes the form

n̂(r) ≡
∑

aLM

Qa
LMgLM (r−Ra), (45)

where
Qa

LM ≡ (−Za + Qa
core − Q̃a

core)δL0δM0 +
∑

ij

W a
ijG

LM
limiljmj

naL
nilinj lj , (46)

where W a
ij is defined below and

naL
nilinj lj ≡

∫ ra
c

0
dr rL

[
φa

nili(r)φ
a
nj lj (r)− φ̃a

nili(r)φ̃
a
nj lj (r)

]
. (47)

The Gaunt coefficient is defined as follows2

GLM
limiljmj

=
√

4π

∫
dΩY ∗

limi
(r̂)Y ∗

LM (r̂)Yljmj (r̂). (48)

The coretail charge in Eq. (46) is given by

Q̃a
core ≡

∫
d3rña

core(r). (49)

The total local pseudopotential contributions which appear in Eq. (41) take the form

ṽloc(r) ≡
∑
a

ṽa
loc(|r−Ra|). (50)

As it is written, the Coulomb term in Eq. (41) represents a a neutral system. However, it includes
several unphysical self-interaction terms which must be substracted:

∑
a

e2

2

∫
d3r

∫
d3r′

(ña
core(r) + n̂a(r))(ña

core(r
′) + n̂a(r′))

|r− r′| . (51)

Since these terms depend on each atomic site, they are conveniently expressed in the one-center
terms given below. The exchange-correlation energy terms Exc are currently evaluated using the
local density approximation of Perdew and Wang[9] or the generalized gradient approximation of
Perdew, Burke, and Ernzerhof[17, 18], although additional functionals could easily be added.

The one-center terms are given by

Ea − Ẽa =
∑

ij

W a
ij

(
Ka

ij + [va
at]ij − [v̂a]ij +

1
2
[V a

H ]ij
)

(52)

+ (Exc[na
core + na]− Exc[ña

core + ña])− Êa − Ẽa
core −Q00Ẽ

a
core−hat.

2This usage is convenient to the present application but the extra factor of
√

4π is not included in the “standard”
definition of the Gaunt coefficient, such as found in Condon and Shortley[16].
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Here,
W a

ij ≡
∑

nl

onk〈Ψnk|pa
i 〉〈pa

j |Ψnk〉. (53)

The kinetic energy is given by Ka
ij ≡ Ka

nilinj lj
δliljδmimj with

Ka
nilinj li ≡ − h̄2

2m

∫ ra
c

0
dr

[
φa

nili(r)

(
d2

dr2
− li(li + 1)

r2

)
φa

nj li(r)− φ̃a
nili(r)

(
d2

dr2
− li(li + 1)

r2

)
φ̃a

nj li(r)

]
.

(54)
The ionic potential term is given by [va

at]ij ≡ [va
at]nilinj ljδliljδmimj , where [va

at]nilinj li is modified
from its definition in Eq. [3]-26.

[vat]anilinj li ≡
∫ ra

c

0
dr

{
φa

nili(r)

(
−Ze2

r
+ va

core(r)

)
φa

nj li(r)− φ̃a
nili(r) (ṽa

core(r) + ṽa
loc(r)) φ̃a

nj li(r)

}
,

(55)
where va

core(r) and ṽa
core(r) denote the Coulomb potentials corresponding to na

core(r) and ña
core(r)

respectively. The compensation charge matrix element is given by

[v̂a]ij ≡ 〈φ̃a
i |v̂a|φ̃a

j 〉 =
∑

LM

Qa
LM (−1)MGL −M

limiljmj
v̂aL
nilinj lj (56)

where

v̂aL
nilinj lj ≡

∫ ra
c

0
drφ̃a

nili(r)v̂
a
L(r)φ̃a

nj lj (r), (57)

and, using the definitions in Eq. (34)

v̂a
L(r) ≡ 4πe2

2L + 1
NL

∫ ∞

0
r′2dr′

rL
<

rL+1
>

r′L k(r′). (58)

The basis function Hartree term is given by

[V a
H ]ij =

∑

LM

∑

kl

(−1)MGL −M
limiljmj

GLM
lkmkllml

W a
klV

aL
nilinj lj ;nklknlll

, (59)

where

V aL
nilinj lj ;nklknlll

≡ 4πe2

2L + 1

∫ ra
c

0
dr

∫ ra
c

0
dr′

rL
<

rL+1
>

[
φa

nili(r)φ
a
nj lj (r)φ

a
nklk

(r′)φa
nlll

(r′)

−φ̃a
nili(r)φ̃

a
nj lj (r)φ̃

a
nklk

(r′)φ̃a
nlll

(r′)

]
. (60)

In Eq. (52), we have 3 types of “self” interactions which are subtracted from the evaluation. The
compensation charge self energy is given by:

Êa ≡
∑

LM

|Qa
LM |2ÊaL, (61)

where

ÊaL ≡ e2

2

∫
d3rd3r′

ga
LM (r)ga

LM (r′)
|r− r′| . (62)

The coretail self-energy is given by

Ẽa
core ≡

e2

2

∫
d3rd3r′

ña
core(r)ñ

a
core(r

′)
|r− r′| . (63)
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The coretail-hat interaction energy is given by

Qa
00Ẽ

a
core−hat = Qa

00e
2
∫

d3rd3r′
ga
00(r)ñ

a
core(r

′)
|r− r′| . (64)

This treatment of the effects of the coretail density differs from that of our previous work[2]. In
this formulation, the one-center terms do not include any core-overlap effects and therefore may
not completely cancel the corresponding terms in the smooth Hamiltonian in the augmentation
sphere, hopefully a very small error. The core tail density which is included in the smooth Hamil-
tonian represents the Coulombic and exchange-correlation contributions from the small overlap of
the frozen core densities. The interactions of the core tail density from a single atomic site are
subtracted out using the self-energy terms.

The PAW Hamiltonian (37) can be determined [1] by taking the variation of the energy (40) with
respect to the the smooth wavefunctions Ψ̃nk(r). This gives the smooth contribution

H̃(r) = − h̄2

2m
∇2 + ṽeff(r), (65)

where

ṽeff(r) = ṽloc(r) + e2
∫

d3r′
ñcore(r′) + ñ(r′) + n̂(r′)

|r− r′| + µxc[ñcore(r) + ñ(r)]. (66)

The atom-centered contributions are given by

Da
ij = Ka

ij + [va
at]ij − [v̂a]ij + [V a

H ]ij + [va
0 ]ij + [V a

XC ]ij . (67)

Here the exchange matrix element is given by

[V a
XC ]ij =

∫
dΩ Y ∗

limi
(r̂)Yljmj (r̂)

∫ ra
c

0
dr

[
µxc[ncore(r) + n(r)]φnili(r)φnj lj (r) (68)

−µxc[ñcore(r) + ñ(r)]φ̃nili(r)φ̃nj lj (r)
]
.

The shift term comes from the variation of QLM which Blöchl showed to have the form

[va
0 ]ij =

∑

LM

∂E

∂QLM
GLM

limiljmj
naL

nilinj lj , (69)

where

∂E

∂QLM
= e2

∫
d3r

∫
d3r′

(ñ(r) + ñcore(r) + n̂(r))gLM (r′)
|r− r′| (70)

−
∑

ij

W a
ij(−1)MGL −M

limiljmj
v̂aL
nilinj lj − 2QLM ÊaL − Ẽa

core−hatδL0δM0.

To evaluate the smooth contributions, it is convenient to use a planewave representation

Ψ̃nk(r) =
√

1
V

∑

G

Ank(G)ei(k+G)·r, (71)
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were G denotes a reciprocal lattice vector and V denotes the volume of the unit cell. In these
terms, the smooth energy is given by

Ẽ =
∑

nk

onk

(∑

G

h̄2|k + G|2
2m

|Ank(G)|2
)

+
2πe2

V
∑

G 6=0

|¯̃n(G) + ¯̃ncore(G) + ¯̂n(G)|2
G2

+
1
V

∑

G

¯̃vloc(G)¯̃n∗(G) + Exc[ñcore + ñ]. (72)

The force on an atom a at the site Ra is given by

Fa ≡ −{∇Ra [E]} =
4πie2

V
∑

G6=0

G
[¯̂na(G) + ¯̃na

core(G)
] [

¯̃n∗(G) + ¯̂n∗(G) + ¯̃n∗core(G)
]

G2

+
i

V
∑

G 6=0

G ¯̃va
loc(G)¯̃n∗(G)+

i

V
∑

G 6=0

G ¯̃na
core(G)V̄ ∗

xc(G)−
∑

ij

{
∇Ra

[
W a

ij

]}
Da

ij +
∑

ij

{
∇Ra

[
Ua

ij

]}
Oa

ij .

(73)
The first contribution depends on the Fourier transform of the atom-centered compensation and
coretail charges and the second contribution depends on the Fourier transform of the atom centered
local potential (Eq. [3]-14). The third term represents the effects of the coretail densities in the
exchange-correlation interaction. The last term of the force equation involves a weighted projected
occupation coefficient which we define according to

Ua
ij ≡

∑

nk

onkEnk〈Ψ̃nk|p̃a
i 〉〈p̃a

j |Ψ̃nk〉. (74)

The gradient with respect to the atomic position of both W a
ij and Ua

ij depends on the gradient
of the matrix elements 〈∇Ra [p̃a

i ]|Ψ̃nk〉 which can be conveniently evaluated in Fourier space using
equation [2]-A20.

5 Energy and Hamiltonian for atoms

For atoms, the general PAW equations discussed above apply, but there are some simplications due
to spherical symmetry. The smooth contribution to the energy (41) representing the pseudopotential-
like contributions can be written in the form

Ẽ =
∑

nl

onl Knl +
e2

2

∫
d3r

∫
d3r′

ñ(r)ñ(r′)
|r− r′| +

∫
d3r ñ(r) {ṽloc(r) + ṽcore(r) + v̂(r)}+Exc[ñcore + ñ],

(75)
where Knl denotes the radial kinetic energy operator.

Knl ≡ − h̄2

2m

∫
dr φ̃nl(r)

(
d2

dr2
− l(l + 1)

r2

)
φ̃nl(r). (76)

The smooth density ñ(r), core tail density ñcore(r), and compensation charge density n̂(r) have
been defined in equations 27,28,and 32, respectively. Their corresponding Coulomb potentials are
given by

ṽcore(r) ≡ e2
∫

d3r′
ñcore(r′)
|r− r′| v̂(r) ≡ e2

∫
d3r′

n̂(r′)
|r− r′| . (77)
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The remaining terms of the total energy are all atom-centered terms which can be determined
from expressions defined above, but because of the spherical symmetry some of these expressions
simplify:

W a
ij =

∑

nl

onl〈φ̃nl|p̃nil〉〈p̃nj l|φ̃nl〉δlilδlj l. (78)

Only the L = 0 moment of the density matrix element is relevant:

na0
nilinj lj ≡

∫ ra
c

0
dr

(
φa

nili(r)φ
a
nj lj (r)− φ̃a

nili(r)φ̃
a
nj lj (r)

)
δlilj (79)

This allows us to calculate the charge moments

Qa
00 = −Za +

∫
d3r (ncore(r)− ñcore(r)) +

∑

ij

W a
ijn

a0
nilinj lj . (80)

For the atomic case, only the L = 0 term appears in the Hartree term and the corresponding matrix
element can be determined from

[V a
H ]ij =

∑

kl

W a
kl V a0

nilinj lj ;nklknlll
. (81)

The compensation charge term is given by

<φ̃a
i |v̂a|φ̃a

j >= Qa
00v̂

a0
nilinj lj . (82)

The matrix elements involving the compensation charge potential depend upon:

v̂a0
nilinj lj ≡

∫ ra
c

0
dr φ̃a

nili(r)v̂
a
0(r)φ̃a

nj lj (r), (83)

where v̂a
0(r) represents the potential due to a unit compensation charge density.

The Coulomb shift term takes the form

[va
0 ]ij =

∂E

∂Qa
00

na0
nilinj lj , (84)

where for the atomic case,

∂E

∂Qa
00

=
∫

dr 4πr2ñ(r)v̂a
0 −

∑

ij

W a
ij v̂

a0
nilinj lj . (85)

The radial densities can be easily determined from

4πr2ñ(r) =
∑

nl

onl|φ̃nl(r)|2. (86)

4πr2ña(r) =
∑

ij

W a
ijφ̃

a
nili(r)φ̃

a
nj lj (r). (87)
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4πr2na(r) =
∑

ij

W a
ijφ

a
nili(r)φ

a
nj lj (r). (88)

6 Formulation in the abinit code

We have been working with the abinit project (http://www.abinit.org), especially with Dr. Marc
Torrent to interface our projector and basis functions for use in the paw mode of that code. In the
abinit code[19, 20, 21], the formulation of the PAW equations[22] more closely follows the equations
of Kresse and Joubert[6]. For convenience, we compare the notations as follows

Table 1: Correspondence between pwpaw (Refs. ([2, 3, 4])) and abinit (Ref.([6, 22])).
pwpaw abinit

W a
ij ρa

ij

−Zaδ(r−Ra) + na
core(|r−Ra|) na

Zc
(|r−Ra|)

ñcore(|r−Ra|) + (−Z + Qcore − Q̃core)g00(|r−Ra|) ña
Zc

(|r−Ra|)

∑

ij:LM

W a
ijG

LM
limiljmj

naL
nilinj ljgLM (r−Ra) ˆ̂n

a
(r−Ra)

GLM
limiljmj

naL
nilinj lj

/
√

4π qaL
ij

√
4πgLM (r−Ra) gL(|r−Ra|)YLM ( ̂r−Ra)

GLM
limiljmj

naL
nilinj lj

gLM (r−Ra) Q̂aL
ij (r−Ra)

Here, we have used a “double hat” notation to distinguish the compensation charge function in
the abinit convention. In fact, the Coulomb potential corresponding to smooth ionic density term
ña

Zc
(r) is not explicitly calculated, but is combined with the local potential term (35) according to

Eq.(60) in Ref. [6]. That is, in the construction of the pseudopotential parameters discussed in
Sec. (2), unscreening of the local atomic pseudopotential (35) is replaced by

ṽa
Zc

(r) ≡ V aPS(r)− e2
∫

d3r′
ña(r′) + ˆ̂n

a
(r′)

|r− r′| − µxc[ña
core(r) + ˆ̂n

a
(r) + ña(r)], (89)

where in this equation ña(r) represents smooth density in the atomic calculation for atom a. This
ionic pseudopotential term is referenced as vH [ñZc ] in Ref. [6], but since it essentially includes
both Hartree and additional local potential corrections, we prefer to use the more generic notation
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of ṽa
Zc

(r). By construction, since the pseudopotential V aPS(r) represents a neutral system, the
asymptotic form of the ionic potential ṽa

Zc
(r) is

ṽa
Zc

(r) =
r→∞ −e2 Za −Qa

core

r
. (90)

This follows because, by construction,

Za −Qa
core =

∫
d3r

(
ñ(r) + ˆ̂n

a
(r)

)
. (91)

Correspondingly, we can define the superposed ionic potential and the superposed compensation
charge densities as

ṽZc(r) ≡
∑
a

ṽa
Zc

(|r−Ra|) and ˆ̂n(r) ≡
∑
a

ˆ̂n
a
(r−Ra) ≡

∑

aij

∑

LM

ρa
ijQ̂

aL
ij (r−Ra). (92)

In these terms, the total energy can be written in terms of smooth and a summation of atom-
centered contributions as defined in Eq. (40). In this case the smooth energy term analogous to
Eq. (41) takes the form:

Ẽ = K̃ +
e2

2

∫
d3r

∫
d3r′

(ñ(r) + ˆ̂n(r))(ñ(r′) + ˆ̂n(r′))
|r− r′| + Uion−ion (93)

+
∫

d3r ṽZc(r)
(
ñ(r) + ˆ̂n(r)

)
+ Exc[ñcore + ˆ̂n + ñ].

Here, the ionic interaction term is defined by

Uion−ion =
1
2

∫
d3r ṽZc(r)ñZc(r)−

∑
a

1
2

∫
d3r ṽa

Zc
(r)ña

Zc
(r), (94)

which can be evaluated using Ewald summation techniques. While the ionic self-interaction term
is easily treated in the Ewald term (94), additional self-interaction terms

∑
a

{∫
d3r ṽa

Zc
(r)ˆ̂n

a
(r) +

e2

2

∫
d3r

∫
d3r′

ˆ̂n
a
(r)ˆ̂n

a
(r′)

|r− r′|

}
, (95)

must also be subtracted from Eq. (93) and included in the atomic center contributions. Apart
from a different arrangement of the terms, the main difference between this form of the smooth
total energy and that of the pwpapw approach is, following the work of Kresse [6] the compensation
charge ˆ̂n is included in the exchange-correlation expression. In principle, since the compensation
charge is localized within the augmentation sphere, is should be canceled out of the final energy by
atom-center terms. The abinit version of the one-center contributions corresponding to Eq. (52) is
given by

Ea − Ẽa =
∑

ij

ρa
ijD

a0
ij +

1
2

∑

ijkl

ρa
ijρ

a
kle

a
ijkl + Exc[na + na

core]− Exc[ña + ña
core + ˆ̂n

a
]. (96)

Here Da0
ij denotes the matrix elements which are diagonal in the angular momentum indices:

Da0
ij = (Ka

nilinj
+ Xa

nilinj
− Sa

nilinj
)δliljδmimj , (97)
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where the kinetic energy Ka
nilinj

is the same as defined in Eq. (54) and the potential energy term
is given by

Xa
nilinj

≡
∫ ra

c

0
dr

{
φa

nili(r)vH [na
Zc

](r)φa
nj li(r)− φ̃a

nili(r)ṽ
a
Zc

(r)φ̃a
nj li(r)

}
, (98)

which is similar to Eq. (55). Here we have adopted the notation of Ref. [6] for vH [n] to denote the
Hartree (Coulomb) potential corresponding to a charge density n. The self-energy contribution to
Da0

ij corresponding to the first term of (95) is given by

Sa
nilinj

≡
∫

d3r ṽa
Zc

(r)Q̂a0
ij (r). (99)

The four-component contribution comes from the Hartree contributions from the basis function
expansion, from the compensation charges, and from the last term of Eq. (95) correspond to the
compensation charge self-energy contribution:

ea
ijkl ≡

∑

LM

{
(−1)MGL −M

limiljmj
GLM

lkmkllml
V aL

nilinj lj ;nklknlll
(100)

−2GLM
limiljmj

naL
nilinj lj (−1)MGL −M

lkmkllml
vaL
nklknlll

− 8πqaL
ij qaL

kl ÊaL
}
.

In this expression. ÊaL is defined in equation (62).

We can now again take the variation of the energy functional with respect to the smooth wave-
function Ψnk(r) to find the corresponding PAW Hamiltonian in this formulation. The smooth term
takes the form (65) with the effective potential given by

ṽeff(r) = ṽZc(r) + e2
∫

d3r′
ñ(r′) + ˆ̂n(r′)
|r− r′| + µxc[ñcore(r) + ˆ̂n(r) + ñ(r)]. (101)

The corresponding atom-centered contributions can be written

Da
ij = Da0

ij +
∑

kl

ρa
kle

a
ijkl + Daxc

ij + D̂a
ij . (102)

Here Daxc
ij is very similar to [V a

XC ]ij as defined in Eq. (69) except for the appearance of ˆ̂n
a

in the
argument of the smooth exchange-correlation potential and for an additional contribution due to
the dependence of ˆ̂n

a
on the smooth wavefunction. The last term takes the form:

D̂a
ij ≡

∫
d3r ṽeff(r)Q̂aL

ij (r−Ra), (103)

where ṽeff(r) is the smooth effective potential for the system defined in Eq. (101). It corresponds
to Eq. (44) in Ref. [6].

The current version of the atompaw code now outputs the information needed by the pwpaw and
socorro[23] codes as well as by the abinit code. For pwpaw and socorro the local potential needed
is neutral originally defined by Blöchl[1] and is calculated here by Eq. (35) and is listed in the
[atom].atomicdata file with the keyword “VLOCFUN”. For abinit, the local potential is ionic
and is calculated here by Eq. (89) and is listed in the [atom].atomicdata files with the keyword
“VLOCION”. It is our experience that by using the consistently unscreened local potentials, it is
possible to get identical results with the different codes.
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